Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

88 EFFECTS OF REMOVAL OF CUMULUS CELLS AND pb1 PRESENCE OF IN VITRO-MATURED BUFFALO OOCYTES PRIOR TO IVF ON CLEAVAGE RATE AND SUBSEQUENT EMBRYO DEVELOPMENT

J.-H. Shang A , H.-Y. Zheng A , C.-Y. Yang A , F.-X. Huang A , B.-Z. Yang A and X.-W. Liang A
+ Author Affiliations
- Author Affiliations

Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China

Reproduction, Fertility and Development 26(1) 158-158 https://doi.org/10.1071/RDv26n1Ab88
Published: 5 December 2013

Abstract

The efficiency of oocyte maturation and embryo production in vitro in buffalo is relatively poor when compared with that in cattle. The percentage of oocytes selected by pb1 (the 1st polar body) presence for somatic cell nuclear transfer (SCNT) ranged from 50 to 70% in our laboratory, which meant that 30 to 50% oocytes have been abandoned. The present study was designed to identify the effect of cumulus cells removal and pb1 presence or absence before the IVF of matured buffalo oocytes on cleavage rate and subsequent embryo development and to try to reuse those oocytes without pb1 for embryo in vitro production. In vitro-matured oocytes enclosed with cumulus cells were randomly selected and denuded mechanically, then the denuded oocytes (DO) were divided into 3 groups by non-selection (pb1 ± ), selection of pb1 presence (pb1+) and absence (pb1–). Intact cumulus–oocyte complexes (COC, control) and pb1 ± , pb1+, and pb1– DO (treatments) were inseminated with motile buffalo sperm in Tyrode's medium for 24 h. The presumed zygotes were washed 3 times and transferred into 50-μL droplets of IVC medium (TCM 199 + 10% fetal bovine serum) and co-cultured with buffalo cumulus cells monolayer for more than 10 days to evaluate the developmental ability of embryos. Cleavage rate (CR) and blastocyst rate (BR) were assessed at 48 h and 240 h after fertilization (0 h). The results indicated that CR and BR for COC (61.69 ± 9.22% and 34.07 ± 7.61%) and pb1+ (66.59 ± 15.50% and 35.96 ± 10.87%) were significantly higher (P < 0.01) than those for pb1 ±  (49.11 ± 6.83% and 21.88 ± 8.17%) and pb1– (35.09 ± 9.17% and 13.16 ± 5.38%). In addition, there was a significant difference (P < 0.05) in the CR and BR between pb1 ±  and pb1– but no difference (P > 0.05) between COCs and pb1+ DO. These data show that removal of cumulus cells before IVF significantly reduces the overall developmental competence to cleavage and blastocyst stage and this negative effects mainly caused by the immature oocytes (indicated by the absence of pb1), but there was no effect on mature oocytes (presence of pb1). However, the oocytes without pb1 can still be used for in vitro embryo production even with lower efficiency when compared with intact COC.

This research was supported by grants from the National Natural Science Foundation of China (31160456), the Natural Science Foundation of Guangxi, China (2011GXSFB018045, 2013GXNSFAA019075).