186 BOVINE AMNIOTIC FLUID MESENCHYMAL STEM CELLS CHARACTERIZATION AFTER CULTURE IN VITRO
B. Rossi A , B. Merlo A , E. Iacono A , P. P. Pagliaro C , P. L. Tazzari C , F. Ricci C and C. Galli A BA Department of Veterinary Medical Sciences, Ozzano Emilia (Bologna), Italy;
B Avantea, Laboratory of Reproductive Technologies, Cremona, Italy;
C Service of Transfusion Medicine, S. Orsola-Malpighi Hospital, Bologna, Italy
Reproduction, Fertility and Development 26(1) 207-208 https://doi.org/10.1071/RDv26n1Ab186
Published: 5 December 2013
Abstract
In recent years, fetal adnexa and fluids have been recognised as important sources of mesenchymal stem cells (MSC). The aim of this study was to characterise cell populations of bovine amniotic fluid, studying phenotypic characterisation, RNA expression, and differentiation potential of samples after in vitro culture for different lengths of time following trypsinization and expansion (passage). Amniotic fluid samples were recovered at the slaughterhouse from 25 pregnant cows and harvested cells were cultured in DMEM-TCM199 (1 : 1) plus 10% fetal bovine serum (FBS) in 5% CO2 at 38.5°C. At passages P3 and P7, a sample for each of the 4 population found was characterised. Immunophenotypic characterisation was performed for MSC (CD90, CD105, CD44) and haematopoietic (CD14, CD34) markers by flow cytometry (FACS). Immunocytochemistry (ICC) was performed for Oct4, SSEA4, and α-SMA and the ratio between positive cells and total nuclei was evaluated. Gene expression profile was analysed by RT–PCR for pluripotency markers (Oct4, Nanog, Sox2). At the same passages chondrogenic, osteogenic and adipogenic differentiation were induced and evaluated morphologically and cytologically using, respectively, Alcian blue to identify cartilage matrix, Von Kossa for extracellular calcium deposition, and Oil Red O for intracellular lipid droplets. Cell population appeared heterogeneous and we could identify 2 main cell types: round (R) and spindle-shaped (S) cells. Each isolated sample was classified into one of the following 4 types depending on percentages of R or S cells: prevalence of S-cells (S), prevalence of R-cells (R), and samples showing both morphologies with ~10% of S-cells (S10) or 40% S-cells (S40). S-cells percentage decreased with passages in S10 and S40. After FACS, all lines were positive for CD90, CD105, CD44, and CD34 and negative for CD14 both at P3 and at P7. After ICC, Oct4 was negative in all samples analysed, few S cells stained for SSEA4 (8%) at P3 but increased at P7 to 22%; R, S10, and S40 did not express SSEA4 both at P3 and at P7. α-SMA was expressed in all samples at P3 (9.4% S; 0.9% R; 2.5% S10; 27% S40) but not at P7 (27.5% S; 0% R; 0% S10; 0% S40). After RT–PCR analyses, Oct4 was negative in all samples; at P3, Nanog was clearly positive in S-cells, weak in S40, and negative in R and S10, but all samples turned negative at P7. Sox2 was weakly expressed (S) or not expressed (S10, S40, R) at P3 and it was negative in all cells at P7. Only S showed high differentiation potential into all 3 lineages at both P3 and P7, R had the lowest differentiation potential, whereas S10 and S40 were intermediate at both end points. In conclusion, bovine amniotic fluid showed heterogeneous cell populations and S-type had the characteristics of MSCs. S10 and S40 showed more MSC markers at P3, when S cells were still present, and this aspect suggests that S population is the presumptive MSC one. Although prevalent, R-type showed only some MSC characteristics. Further studies are under way to improve S-type isolation, purification, and culture, and to determine the lifespan of these cell types.
This work was supported by grant PRIN2009.