Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

250 ALL REGIONS OF THE MOUSE EPIDIDYMIS ARE ABLE TO PHAGOCYTIZE IMMATURE SPERMATOGENIC CELLS

P. Ramos-Ibeas A , E. Pericuesta A , R. Fernandez-Gonzalez A , M. A. Ramirez A and A. Gutierrez-Adan A
+ Author Affiliations
- Author Affiliations

Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria, Madrid, Spain

Reproduction, Fertility and Development 25(1) 272-273 https://doi.org/10.1071/RDv25n1Ab250
Published: 4 December 2012

Abstract

Successful mammalian fertilization requires gametes with an intact structure and functionality. Although it is well known that epididymal functions are sperm maturation, sustenance, transport, and storage, there is controversial information about its role in sperm quality control, and it has been suggested that some regions of the rat epididymis are able to phagocytize germ cells. Our objective was to analyse whether different segments of the mouse epididymal epithelium act as a selection barrier for abnormal spermatogenic cells by removing immature cells from the lumen by phagocytosis. To detect the presence of immature germ cells along the epididymis, transgenic mice expressing enhanced green fluorescent protein under a Deleted in Azoospermia-Like (mDazl) promoter were generated. The transgenic animals express specifically enhanced green fluorescent protein in spermatogonias, spermatocytes, and spermatids; thus, immature spermatogenic cells can be easily identified by fluorescence microscopy. Colchicine, a microtubule disruptor that leads to severe alterations in the architecture of the seminiferous tubules, was administered in the rete testis to induce the release of immature germ cells into the epididymis. Mice were killed daily, from Day 1 to 8 post-administration, and epididymides were collected and observed under a fluorescence stereoscope to determine the transit of immature germ cells along the epididymis. Epididymides from control mice without colchicine administration were also collected. Fluorescent immature germ cells were present in the caput epididymis 24 h after colchicine administration, and they progressed through the corpus and cauda, leaving the epididymis 7 days after colchicine administration. After fluorescence observation, epididymides were fixed, sectioned, and stained with hematoxylin solution. Immature germ cells and phagosomes were not observed in control epididymides. By contrast, the presence of phagosomes in the principal cells of the epididymal epithelium containing immature germ cells in different degrees of degradation was observed by light microscopy in mice injected with colchicine. Phagocytosis was observed along the epididymis following the main wave of fluorescent immature cells. Thus, when immature cells had reached the corpus epididymis, phagocytosis was detected in several segments of the caput epididymis. Later, once the immature cells had arrived to the cauda epididymis or had abandoned the epididymis, phagocytosis was observed in the corpus and cauda epididymis. The presence of phagosomes was observed in all epididymal tubules within a phagocytosis area. In conclusion, we demonstrated that the epididymal epithelium is engaged in sperm quality control by clearing immature germ cells after a massive shedding into the epididymal lumen, and that this phenomenon is not restricted to a specific segment of the epididymis.