Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

168 miRNA LEVELS DURING BOVINE PREIMPLANTATION EMBRYONIC DEVELOPMENT

D. K. Berg, S. E. Beaumont and P. L. Pfeffer

Reproduction, Fertility and Development 20(1) 164 - 164
Published: 12 December 2007

Abstract

MicroRNAs (miRNAs) are a class of naturally occurring non-coding RNAs that play a role in gene regulation. They are highly conserved, single-stranded RNAs, 22 nucleotides in length, that are cleaved from larger inactive hairpin precursor transcripts, and use the RNA interference-related pathways to repress their mRNA targets. They play diverse regulatory roles in cellular proliferation, morphogenesis, apoptosis, and differentiation. Maternal miRNAs are crucial for early mammalian development (Murchison et al. 2007 Genes Dev. 21, 682–693; Tang et al. 2007 Genes Dev. 21, 655–648), while sperm-borne miRNAs do not contribute significantly to miRNAs in the zygote (Amanai et al. 2006 Biol. Reprod. 75, 877–884). Our objective was to identify miRNAs that are expressed during bovine in vitro oocyte maturation (MII) and blastocyst stages as well as during parthenogenic development. MII oocytes (n = 1680) were generated from abattoir-derived oocytes and matured in vitro for 24 h. Cumulus cells were removed and the first polar body was visually assessed before the oocytes were frozen in liquid N2. Parthenogenic blastocysts (n = 575) were produced using ionomycin/6DMAP activation, and IVF blastocysts (n = 1150) were produced using standard in vitro fertilization followed by in vitro culture in synthetic oviduct fluid (Thompson et al. 2000 J. Reprod. Fertil. 118, 47–55). Blastocysts (grades 1 and 2) were selected on Day 7 post-activation/insemination and frozen in liquid N2. RNA was isolated using the mirVana miRNA isolation kit (Ambion, Scoresby, Victoria, Australia). miRNAs were quantified using the TaqMan® MicroRNA Human Panel-Early Access Kit (Applied Biosystems, Scoresby, Victoria, Australia) following the manufacturer's protocol. Absolute copy numbers per embryo were estimated. Of the 157 miRNAs in the panel, 102, 136, and 118 were detected above background in oocytes, IVF, and parthenogenic blastocysts, respectively. Only 28 miRNAs were present at over 100 copies in MII oocytes, with maximum levels reaching 1300 copies. Levels were generally much higher at blastocyst stages, with 21 miRNAs present at more than 10 000 copies. miR-16 was one of the most abundant miRNAs in all samples tested. Copy numbers per blastomere cell were 5-fold higher in IVF blastocysts compared to parthegenotic blastocysts for miR-19a, 21, and 30b. The low copy numbers of mature miRNAs before embryonic genome activation may have implications for somatic cell nuclear transfer experiments in that exogenously added miRNAs from the donor cell could impact on the embryonic gene expression profiles.

https://doi.org/10.1071/RDv20n1Ab168

© CSIRO 2007

Committee on Publication Ethics

Export Citation Get Permission

Share

Share on Facebook Share on Twitter Share on LinkedIn Share via Email