Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
REVIEW

The role of extracellular vesicles in embryo development: implications for reproductive health and therapeutic potential

Seok Hee Lee https://orcid.org/0000-0002-4656-1618 A *
+ Author Affiliations
- Author Affiliations

A Center for Reproductive Sciences, Department of Obstetrics and Gynecology, University of California San Francisco, San Francisco, CA 94143, USA.

* Correspondence to: tempuler@naver.com

Handling Editor: Jennifer Juengel

Reproduction, Fertility and Development 37, RD24151 https://doi.org/10.1071/RD24151
Submitted: 30 August 2024  Accepted: 11 March 2025  Published online: 28 March 2025

© 2025 The Author(s) (or their employer(s)). Published by CSIRO Publishing

Abstract

Extracellular vesicles (EVs) contain various biological molecules, such as proteins, lipids, and diverse nucleic acids, which alter various physiological and pathological processes in recipient cells. This review focuses on the current understanding of the biological characteristics of EVs on embryo development and their potential therapeutic value in treating reproductive disorders. EVs play a crucial role in early embryo development, from fertilization to the pre-implantation stage, gastrulation, cell differentiation, and organogenesis. During the pre-implantation period, EVs interact with maternal reproductive tissue and promote implantation receptivity. In gastrulation, EVs regulate cell differentiation, contributing to tissue formation and maintenance. Abnormal bioactive molecules in EVs are closely related to developmental disorders. Thus, EVs have the potential to serve as biomarkers. Moreover, EVs can serve as therapeutic agents, delivering genetic material for targeted tissue/organs. The findings of this review highlight the potential role of EVs in intercellular signaling during embryo development. This can help advance assisted reproductive technologies and therapies to overcome infertility issues and developmental disorders.

Keywords: cell communication, developmental disorder, embryo development, embryo formation, exosomes, extracellular vesicles, implantation, reproductive disorders.

References

Albanese M, Chen Y-FA, Hüls C, Gärtner K, Tagawa T, Mejias-Perez E, Keppler OT, Göbel C, Zeidler R, Shein M, Schütz AK, Hammerschmidt W (2021) MicroRNAs are minor constituents of extracellular vesicles that are rarely delivered to target cells. PLoS Genetics 17(12), e1009951.
| Crossref | Google Scholar |

Al-Dossary AA, Strehler EE, Martin-Deleon PA (2013) Expression and secretion of plasma membrane Ca2+-ATPase 4a (PMCA4a) during murine estrus: association with oviductal exosomes and uptake in sperm. PLoS ONE 8(11), e80181.
| Crossref | Google Scholar |

Almiñana C, Corbin E, Tsikis G, Alcântara-Neto AS, Labas V, Reynaud K, Galio L, Uzbekov R, Garanina AS, Druart X, Mermillod P (2017) Oviduct extracellular vesicles protein content and their role during oviduct-embryo cross-talk. Reproduction 154(3), 253-268.
| Crossref | Google Scholar |

Altan-Bonnet N (2016) Extracellular vesicles are the Trojan horses of viral infection. Current Opinion in Microbiology 32, 77-81.
| Crossref | Google Scholar |

Aoki S, Inoue Y, Shinozawa A, Tanaka K, Shirasuna K, Iwata H (2022) miR-17-5p in bovine oviductal fluid affects embryo development. Molecular and Cellular Endocrinology 551, 111651.
| Crossref | Google Scholar |

Ashoub MH, Salavatipour MS, Kasgari FH, Valandani HM, Khalilabadi RM (2024) Extracellular microvesicles: biologic properties, biogenesis, and applications in leukemia. Molecular and Cellular Biochemistry 479(2), 419-430.
| Crossref | Google Scholar |

Barnett MM, Reay WR, Geaghan MP, Kiltschewskij DJ, Green MJ, Weidenhofer J, Glatt SJ, Cairns MJ (2023) miRNA cargo in circulating vesicles from neurons is altered in individuals with schizophrenia and associated with severe disease. Science Advances 9(48), eadi4386.
| Crossref | Google Scholar |

Belair C, Sim S, Kim K-Y, Tanaka Y, Park I-H, Wolin SL (2019) The RNA exosome nuclease complex regulates human embryonic stem cell differentiation. Journal of Cell Biology 218(8), 2564-2582.
| Crossref | Google Scholar |

Berumen Sánchez G, Bunn KE, Pua HH, Rafat M (2021) Extracellular vesicles: mediators of intercellular communication in tissue injury and disease. Cell Communication and Signaling 19(1), 104.
| Crossref | Google Scholar |

Bidarimath M, Khalaj K, Kridli RT, Kan FWK, Koti M, Tayade C (2017) Extracellular vesicle mediated intercellular communication at the porcine maternal-fetal interface: a new paradigm for conceptus-endometrial cross-talk. Scientific Reports 7, 40476.
| Crossref | Google Scholar |

Burns G, Brooks K, Wildung M, Navakanitworakul R, Christenson LK, Spencer TE (2014) Extracellular vesicles in luminal fluid of the ovine uterus. PLoS ONE 9(3), e90913.
| Crossref | Google Scholar |

Buzas EI (2023) The roles of extracellular vesicles in the immune system. Nature Reviews Immunology 23(4), 236-250.
| Crossref | Google Scholar |

Cain JW, Seo H, Bumgardner K, Lefevre C, Burghardt RC, Bazer FW, Johnson GA (2024) Pig conceptuses utilize extracellular vesicles for interferon-gamma-mediated paracrine communication with the endometrium. Biology of Reproduction 111(1), 174-185.
| Crossref | Google Scholar |

Canse C, Yildirim E, Yaba A (2023) Overview of junctional complexes during mammalian early embryonic development. Frontiers in Endocrinology 14, 1150017.
| Crossref | Google Scholar |

Capalbo A, Ubaldi FM, Cimadomo D, Noli L, Khalaf Y, Farcomeni A, Ilic D, Rienzi L (2016) MicroRNAs in spent blastocyst culture medium are derived from trophectoderm cells and can be explored for human embryo reproductive competence assessment. Fertility and Sterility 105(1), 225-235.E3.
| Crossref | Google Scholar | PubMed |

Chang X, He Q, Wei M, Jia L, Wei Y, Bian Y, Duan T, Wang K (2023) Human umbilical cord mesenchymal stem cell derived exosomes (HUCMSC-exos) recovery soluble fms-like tyrosine kinase-1 (sFlt-1)-induced endothelial dysfunction in preeclampsia. European Journal of Medical Research 28(1), 277.
| Crossref | Google Scholar |

Chen K, Liang J, Qin T, Zhang Y, Chen X, Wang Z (2022) The role of extracellular vesicles in embryo implantation. Frontiers in Endocrinology 13, 809596.
| Crossref | Google Scholar |

Chen T-Q, Wei X-J, Liu H-Y, Zhan S-H, Yang X-J (2023) Telocyte-derived exosomes provide an important source of wnts that inhibits fibrosis and supports regeneration and repair of endometrium. Cell Transplantation 32, 9636897231212746.
| Crossref | Google Scholar |

Chernyshev VS, Yashchenok A, Ivanov M, Silachev DN (2023) Filtration-based technologies for isolation, purification and analysis of extracellular vesicles. Physical Chemistry Chemical Physics 25(35), 23344-23357.
| Crossref | Google Scholar | PubMed |

Cuman C, Menkhorst E, Winship A, Van Sinderen M, Osianlis T, Rombauts LJ, Dimitriadis E (2014) Fetal-maternal communication: the role of Notch signalling in embryo implantation. Reproduction 147(3), R75-R86.
| Crossref | Google Scholar | PubMed |

Danilchik M, Tumarkin T (2017) Exosomal trafficking in Xenopus development. Genesis 55(1-2), e23011.
| Crossref | Google Scholar |

Ding Y, Hu Q, Gan J, Zang X, Gu T, Wu Z, Cai G, Hong L (2022) Effect of miR-143-3p from extracellular vesicles of porcine uterine luminal fluid on porcine trophoblast cells. Animals 12(23), 3402.
| Crossref | Google Scholar |

Eichholz KF, Woods I, Riffault M, Johnson GP, Corrigan M, Lowry MC, Shen N, Labour M-N, Wynne K, O’Driscoll L, Hoey DA (2020) Human bone marrow stem/stromal cell osteogenesis is regulated via mechanically activated osteocyte-derived extracellular vesicles. Stem Cells Translational Medicine 9(11), 1431-1447.
| Crossref | Google Scholar |

Ferianec V, Linhartova L (2011) Extreme elevation of placental alkaline phosphatase as a marker of preterm delivery, placental insufficiency and low birth weight. Neuro Endocrinology Letters 32(2), 154-157.
| Google Scholar | PubMed |

Fu B, Ma H, Liu D (2020) Extracellular vesicles function as bioactive molecular transmitters in the mammalian oviduct: an inspiration for optimizing in vitro culture systems and improving delivery of exogenous nucleic acids during preimplantation embryonic development. International Journal of Molecular Sciences 21(6), 2189.
| Crossref | Google Scholar |

Fu B, Ma H, Zhang D-J, Wang L, Li Z-Q, Guo Z-H, Liu Z-G, Wu S-H, Meng X-R, Wang F, Chen W-G, Liu D (2022) Porcine oviductal extracellular vesicles facilitate early embryonic development via relief of endoplasmic reticulum stress. Cell Biology International 46(2), 300-310.
| Crossref | Google Scholar |

Ghadami S, Dellinger K (2023) The lipid composition of extracellular vesicles: applications in diagnostics and therapeutic delivery. Frontiers in Molecular Biosciences 10, 1198044.
| Crossref | Google Scholar |

Ghafourian M, Mahdavi R, Akbari Jonoush Z, Sadeghi M, Ghadiri N, Farzaneh M, Mousavi Salehi A (2022) The implications of exosomes in pregnancy: emerging as new diagnostic markers and therapeutics targets. Cell Communication and Signaling 20(1), 51.
| Crossref | Google Scholar |

Giacomini E, Scotti GM, Vanni VS, Lazarevic D, Makieva S, Privitera L, Signorelli S, Cantone L, Bollati V, Murdica V, Tonon G, Papaleo E, Candiani M, Viganò P (2021) Global transcriptomic changes occur in uterine fluid-derived extracellular vesicles during the endometrial window for embryo implantation. Human Reproduction 36(8), 2249-2274.
| Crossref | Google Scholar |

Ginini L, Billan S, Fridman E, Gil Z (2022) Insight into extracellular vesicle-cell communication: from cell recognition to intracellular fate. Cells 11(9), 1375.
| Crossref | Google Scholar |

Greening DW, Nguyen HPT, Elgass K, Simpson RJ, Salamonsen LA (2016) Human endometrial exosomes contain hormone-specific cargo modulating trophoblast adhesive capacity: insights into endometrial-embryo interactions. Biology of Reproduction 94(2), 38.
| Crossref | Google Scholar |

Gurunathan S, Kang M-H, Song H, Kim NH, Kim J-H (2022) The role of extracellular vesicles in animal reproduction and diseases. Journal of Animal Science and Biotechnology 13(1), 62.
| Crossref | Google Scholar |

Gurung S, Perocheau D, Touramanidou L, Baruteau J (2021) The exosome journey: from biogenesis to uptake and intracellular signalling. Cell Communication and Signaling 19(1), 47.
| Crossref | Google Scholar |

Guzewska MM, Myszczynski K, Heifetz Y, Kaczmarek MM (2023a) Embryonic signals mediate extracellular vesicle biogenesis and trafficking at the embryo-maternal interface. Cell Communication and Signaling 21(1), 210.
| Crossref | Google Scholar |

Guzewska MM, Szuszkiewicz J, Kaczmarek MM (2023b) Extracellular vesicles: focus on peri-implantation period of pregnancy in pigs. Molecular Reproduction and Development 90(7), 634-645.
| Crossref | Google Scholar |

Han C, Wang C, Chen Y, Wang J, Xu X, Hilton T, Cai W, Zhao Z, Wu Y, Li K, Houck K, Liu L, Sood AK, Wu X, Xue F, Li M, Dong J-F, Zhang J (2020) Placenta-derived extracellular vesicles induce preeclampsia in mouse models. Haematologica 105(6), 1686-1694.
| Crossref | Google Scholar |

Hawke DC, Watson AJ, Betts DH (2021) Extracellular vesicles, microRNA and the preimplantation embryo: non-invasive clues of embryo well-being. Reproductive BioMedicine Online 42(1), 39-54.
| Crossref | Google Scholar | PubMed |

Hua R, Liu Q, Lian W, Gao D, Huang C, Lei M (2022) Transcriptome regulation of extracellular vesicles derived from porcine uterine flushing fluids during peri-implantation on endometrial epithelial cells and embryonic trophoblast cells. Gene 822, 146337.
| Crossref | Google Scholar |

Hur YH, Feng S, Wilson KF, Cerione RA, Antonyak MA (2021) Embryonic stem cell-derived extracellular vesicles maintain ESC stemness by activating FAK. Developmental Cell 56(3), 277-291.E6.
| Crossref | Google Scholar |

Jiang N-X, Li X-L (2021) The complicated effects of extracellular vesicles and their cargos on embryo implantation. Frontiers in Endocrinology 12, 681266.
| Crossref | Google Scholar |

Kalluri R (2016) The biology and function of exosomes in cancer. The Journal of Clinical Investigation 126(4), 1208-1215.
| Crossref | Google Scholar |

Kang C, Ren X, Lee D, Ramesh R, Nimmo S, Yang-Hartwich Y, Kim D (2024) Harnessing small extracellular vesicles for pro-oxidant delivery: novel approach for drug-sensitive and resistant cancer therapy. Journal of Controlled Release 365, 286-300.
| Crossref | Google Scholar | PubMed |

Kim J, Lee J, Lee TB, Jun JH (2019) Embryotrophic effects of extracellular vesicles derived from outgrowth embryos in pre- and peri-implantation embryonic development in mice. Molecular Reproduction and Development 86(2), 187-196.
| Crossref | Google Scholar |

Kusama K, Nakamura K, Bai R, Nagaoka K, Sakurai T, Imakawa K (2018) Intrauterine exosomes are required for bovine conceptus implantation. Biochemical and Biophysical Research Communications 495(1), 1370-1375.
| Crossref | Google Scholar |

Latifi Z, Fattahi A, Ranjbaran A, Nejabati HR, Imakawa K (2018) Potential roles of metalloproteinases of endometrium-derived exosomes in embryo-maternal crosstalk during implantation. Journal of Cellular Physiology 233(6), 4530-4545.
| Crossref | Google Scholar |

Leal CLV, Cañón-Beltrán K, Cajas YN, Hamdi M, Yaryes A, Millán de la Blanca MG, Beltrán-Breña P, Mazzarella R, da Silveira JC, Gutiérrez-Adán A, González EM, Rizos D (2022) Extracellular vesicles from oviductal and uterine fluids supplementation in sequential in vitro culture improves bovine embryo quality. Journal of Animal Science and Biotechnology 13(1), 116.
| Crossref | Google Scholar |

Lee SH, Saadeldin IM (2020) Exosomes as a potential tool for supporting canine oocyte development. Animals 10(11), 1971.
| Crossref | Google Scholar |

Lee SH, Oh HJ, Kim MJ, Lee BC (2020a) Canine oviductal exosomes improve oocyte development via EGFR/MAPK signaling pathway. Reproduction 160(4), 613-625.
| Crossref | Google Scholar | PubMed |

Lee SH, Oh HJ, Kim MJ, Lee BC (2020b) Exosomes derived from oviduct cells mediate the EGFR/MAPK signaling pathway in cumulus cells. Journal of Cellular Physiology 235(2), 1386-1404.
| Crossref | Google Scholar |

Lee SH, Lira-Albarran S, Saadeldin IM (2021) Comprehensive proteomics analysis of in vitro canine oviductal cell-derived extracellular vesicles. Animals 11(2), 573.
| Crossref | Google Scholar |

Li Y, Liu C, Guo N, Cai L, Wang M, Zhu L, Li F, Jin L, Sui C (2023a) Extracellular vesicles from human Fallopian tubal fluid benefit embryo development in vitro. Human Reproduction Open 2023(2), hoad006.
| Crossref | Google Scholar |

Li Z, Liu Y, Tian Y, Li Q, Shi W, Zhang J, Zhang H, Tan Y, Yang S, Yang T, Huang X, Du Y (2023b) Human umbilical cord mesenchymal stem cell-derived exosomes improve ovarian function in natural aging by inhibiting apoptosis. International Journal of Molecular Medicine 52(4), 94.
| Crossref | Google Scholar |

Liu Y-J, Wang C (2023) A review of the regulatory mechanisms of extracellular vesicles-mediated intercellular communication. Cell Communication and Signaling 21(1), 77.
| Crossref | Google Scholar |

Liu Q, Li D, Pan X, Liang Y (2023) Targeted therapy using engineered extracellular vesicles: principles and strategies for membrane modification. Journal of Nanobiotechnology 21(1), 334.
| Crossref | Google Scholar |

Liu X, Liu G, Mao Y, Luo J, Cao Y, Tan W, Li W, Yu H, Jia X, Li H (2024) Engineering extracellular vesicles mimetics for targeted chemotherapy of drug-resistant ovary cancer. Nanomedicine 19(1), 25-41.
| Crossref | Google Scholar | PubMed |

Machtinger R, Laurent LC, Baccarelli AA (2016) Extracellular vesicles: roles in gamete maturation, fertilization and embryo implantation. Human Reproduction Update 22(2), 182-193.
| Crossref | Google Scholar |

Melo-Baez B, Wong YS, Aguilera CJ, Cabezas J, Mancanares ACF, Riadi G, Castro FO, Rodriguez-Alvarez L (2020) MicroRNAs from extracellular vesicles secreted by bovine embryos as early biomarkers of developmental competence. International Journal of Molecular Sciences 21(23), 8888.
| Crossref | Google Scholar |

Menck K, Sivaloganathan S, Bleckmann A, Binder C (2020) Microvesicles in cancer: small size, large potential. International Journal of Molecular Sciences 21(15), 5373.
| Crossref | Google Scholar |

Minakawa T, Yamashita JK (2023) Extracellular vesicles and microRNAs in the regulation of cardiomyocyte differentiation and proliferation. Archives of Biochemistry and Biophysics 749, 109791.
| Crossref | Google Scholar |

Modi DN, Godbole G, Suman P, Gupta SK (2012) Endometrial biology during trophoblast invasion. Frontiers in Bioscience 4(3), 1151-1171.
| Crossref | Google Scholar |

Monguió-Tortajada M, Gálvez-Montón C, Bayes-Genis A, Roura S, Borràs FE (2019) Extracellular vesicle isolation methods: rising impact of size-exclusion chromatography. Cellular and Molecular Life Sciences 76(12), 2369-2382.
| Crossref | Google Scholar |

Noguchi S, Tozawa S, Sakurai T, Ohkuchi A, Takahashi H, Fujiwara H, Takizawa T (2024) BeWo exomeres are enriched for bioactive extracellular placenta-specific C19MC miRNAs. Journal of Reproductive Immunology 161, 104187.
| Crossref | Google Scholar |

Pavani KC, Alminana C, Wydooghe E, Catteeuw M, Ramírez MA, Mermillod P, Rizos D, Van Soom A (2017) Emerging role of extracellular vesicles in communication of preimplantation embryos in vitro. Reproduction, Fertility and Development 29(1), 66-83.
| Crossref | Google Scholar |

Petersen SH, Odintsova E, Haigh TA, Rickinson AB, Taylor GS, Berditchevski F (2011) The role of tetraspanin CD63 in antigen presentation via MHC class II. European Journal of Immunology 41(9), 2556-2561.
| Crossref | Google Scholar | PubMed |

Qu P, Qing S, Liu R, Qin H, Wang W, Qiao F, Ge H, Liu J, Zhang Y, Cui W, Wang Y (2017) Effects of embryo-derived exosomes on the development of bovine cloned embryos. PLoS ONE 12(3), e0174535.
| Crossref | Google Scholar |

Ren Y, He J, Wang X, Liang H, Ma Y (2023) Exosomes from adipose-derived stem cells alleviate premature ovarian failure via blockage of autophagy and AMPK/mTOR pathway. PeerJ 11, e16517.
| Crossref | Google Scholar |

Rosenbluth EM, Shelton DN, Wells LM, Sparks AET, Van Voorhis BJ (2014) Human embryos secrete microRNAs into culture media – a potential biomarker for implantation. Fertility and Sterility 101(5), 1493-1500.
| Crossref | Google Scholar | PubMed |

Ruiz-González I, Xu J, Wang X, Burghardt RC, Dunlap KA, Bazer FW (2015) Exosomes, endogenous retroviruses and toll-like receptors: pregnancy recognition in ewes. Reproduction 149(3), 281-291.
| Crossref | Google Scholar | PubMed |

Salomon C, Nuzhat Z, Dixon CL, Menon R (2018) Placental exosomes during gestation: liquid biopsies carrying signals for the regulation of human parturition. Current Pharmaceutical Design 24(9), 974-982.
| Crossref | Google Scholar | PubMed |

Silva AM, Lázaro-Ibáñez E, Gunnarsson A, Dhande A, Daaboul G, Peacock B, Osteikoetxea X, Salmond N, Friis KP, Shatnyeva O, Dekker N (2021) Quantification of protein cargo loading into engineered extracellular vesicles at single-vesicle and single-molecule resolution. Journal of Extracellular Vesicles 10(10), e12130.
| Crossref | Google Scholar |

Song Y, Shi R, Liu Y, Cui F, Han L, Wang C, Chen T, Li Z, Zhang Z, Tang Y, Yang G-Y, Guan Y (2023a) M2 microglia extracellular vesicle miR-124 Regulates neural stem cell differentiation in ischemic stroke via AAK1/NOTCH. Stroke 54(10), 2629-2639.
| Crossref | Google Scholar | PubMed |

Song A, Zhang S, Zhao X, Wu S, Qi X, Gao S, Qi J, Li P, Tan J (2023b) Exosomes derived from menstrual blood stromal cells ameliorated premature ovarian insufficiency and granulosa cell apoptosis by regulating SMAD3/AKT/MDM2/P53 pathway via delivery of thrombospondin-1. Biomedicine & Pharmacotherapy 166, 115319.
| Crossref | Google Scholar |

Srinivasan S, He X, Mirza S, Mager J (2024) Exosome complex components 1 and 2 are vital for early mammalian development. Gene Expression Patterns 51, 119346.
| Crossref | Google Scholar |

Strømme O, Heck KA, Brede G, Lindholm HT, Otterlei M, Arum C-J (2021) Differentially expressed extracellular vesicle-contained microRNAs before and after transurethral resection of bladder tumors. Current Issues in Molecular Biology 43(1), 286-300.
| Crossref | Google Scholar | PubMed |

Szuszkiewicz J, Myszczynski K, Reliszko ZP, Heifetz Y, Kaczmarek MM (2022) Early steps of embryo implantation are regulated by exchange of extracellular vesicles between the embryo and the endometrium. The FASEB Journal 36(8), e22450.
| Crossref | Google Scholar |

Tan F, Li X, Wang Z, Li J, Shahzad K, Zheng J (2024) Clinical applications of stem cell-derived exosomes. Signal Transduction and Targeted Therapy 9(1), 17.
| Crossref | Google Scholar |

Tian C, Ziegler JN, Zucker IH (2023) Extracellular vesicle microRNAs in heart failure: pathophysiological mediators and therapeutic targets. Cells 12(17), 2145.
| Crossref | Google Scholar |

Wan C, Stowell MHB, Shen J (2022) Progress and gaps of extracellular vesicle-mediated intercellular cargo transfer in the central nervous system. Communications Biology 5(1), 1223.
| Crossref | Google Scholar |

Wang X, Tian F, Chen C, Feng Y, Sheng X, Guo Y, Ni H (2019) Exosome-derived uterine microRNAs isolated from cows with endometritis impede blastocyst development. Reproductive Biology 19(2), 204-209.
| Crossref | Google Scholar | PubMed |

Wang Z-X, Luo Z-W, Li F-X-Z, Cao J, Rao S-S, Liu Y-W, Wang Y-Y, Zhu G-Q, Gong J-S, Zou J-T, Wang Q, Tan Y-J, Zhang Y, Hu Y, Li Y-Y, Yin H, Wang X-K, He Z-H, Ren L, Liu Z-Z, Hu X-K, Yuan L-Q, Xu R, Chen C-Y, Xie H (2022) Aged bone matrix-derived extracellular vesicles as a messenger for calcification paradox. Nature Communications 13(1), 1453.
| Crossref | Google Scholar |

Wang B, Li L, Yu R (2023) Exosomes from adipose-derived stem cells suppress the progression of chronic endometritis. Cell Transplantation 32, 9636897231173736.
| Crossref | Google Scholar |

Wei Z, Fan B, Ding H, Liu Y, Tang H, Pan D, Shi J, Zheng P, Shi H, Wu H, Li A, Feng S (2019) Proteomics analysis of Schwann cell-derived exosomes: a novel therapeutic strategy for central nervous system injury. Molecular and Cellular Biochemistry 457(1-2), 51-59.
| Crossref | Google Scholar |

Welsh JA, Goberdhan DCI, O’Driscoll L, Buzas EI, Blenkiron C, Bussolati B, Cai H, Di Vizio D, Driedonks TAP, Erdbrügger U, Falcon-Perez JM, Fu Q-L, Hill AF, Lenassi M, Lim SK, Mahoney MG, Mohanty S, Möller A, Nieuwland R, Ochiya T, Sahoo S, Torrecilhas AC, Zheng L, Zijlstra A, Abuelreich S, Bagabas R, Bergese P, Bridges EM, Brucale M, Burger D, Carney RP, Cocucci E, Crescitelli R, Hanser E, Harris AL, Haughey NJ, Hendrix A, Ivanov AR, Jovanovic-Talisman T, Kruh-Garcia NA, Ku’ulei-Lyn Faustino V, Kyburz D, Lässer C, Lennon KM, Lötvall J, Maddox AL, Martens-Uzunova ES, Mizenko RR, Newman LA, Ridolfi A, Rohde E, Rojalin T, Rowland A, Saftics A, Sandau US, Saugstad JA, Shekari F, Swift S, Ter-Ovanesyan D, Tosar JP, Useckaite Z, Valle F, Varga Z, van der Pol E, van Herwijnen MJC, Wauben MHM, Wehman AM, Williams S, Zendrini A, Zimmerman AJ, MISEV Consortium, Thery C, Witwer KW (2024) Minimal information for studies of extracellular vesicles (MISEV2023): from basic to advanced approaches. Journal of Extracellular Vesicles 13(2), e12404.
| Crossref | Google Scholar |

Zaborowski MP, Balaj L, Breakefield XO, Lai CP (2015) Extracellular vesicles: composition, biological relevance, and methods of study. BioScience 65(8), 783-797.
| Crossref | Google Scholar |

Zhao B, Zhang Y, Han S, Zhang W, Zhou Q, Guan H, Liu J, Shi J, Su L, Hu D (2017) Exosomes derived from human amniotic epithelial cells accelerate wound healing and inhibit scar formation. Journal of Molecular Histology 48(2), 121-132.
| Crossref | Google Scholar | PubMed |

Zhao L, Ye Y, Gu L, Jian Z, Stary CM, Xiong X (2021) Extracellular vesicle-derived miRNA as a novel regulatory system for bi-directional communication in gut-brain-microbiota axis. Journal of Translational Medicine 19(1), 202.
| Crossref | Google Scholar |

Zheng D, Huo M, Li B, Wang W, Piao H, Wang Y, Zhu Z, Li D, Wang T, Liu K (2021) The role of exosomes and exosomal microRNA in cardiovascular disease. Frontiers in Cell and Developmental Biology 8, 616161.
| Crossref | Google Scholar |