Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
REVIEW

MicroRNA expression in male infertility

C. F. Burgos A # , R. Cikutovic B # and M. Alarcón https://orcid.org/0000-0001-7596-5382 C *
+ Author Affiliations
- Author Affiliations

A Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepcion, Chile.

B Universidad de Talca, Talca, 360000 Maule, Chile.

C Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile.

* Correspondence to: malarcon@utalca.cl

Handling Editor: Tod Fullston

Reproduction, Fertility and Development 34(12) 805-818 https://doi.org/10.1071/RD21131
Published online: 28 June 2022

© 2022 The Author(s) (or their employer(s)). Published by CSIRO Publishing

Abstract

Male infertility is a multifactorial disorder that involves different physiopathological mechanisms and multiple genes. In this sense, we analyse the role of miRNAs in this pathology. Gene expression analysis can provide relevant information to detect biomarkers, signalling pathways, pathologic mechanisms, and potential therapeutic targets for the disease. In this review, we describe four miRNA microarrays related to patients who present infertility diseases, including azoospermia, asthenozoospermia, and oligoasthenozoospermic. We selected 13 miRNAs with altered expressions in testis tissue (hsa-miR-122-5p, hsa-miR-145-5p, hsa-miR-16-5p, hsa-miR-193a-3p, hsa-miR-19a-3p, hsa-miR-23a-3p, hsa-miR-30b-5p, hsa-miR-34b-5p, hsa-miR-34c-5p, hsa-miR-374b-5p, hsa-miR-449a, hsa-miR-574-3p and hsa-miR-92a-3p), and systematically examine the mechanisms of four relevant miRNAs (hsa-miR-16-5p, hsa-miR-19a-3p, hsa-miR-92a-3p and hsa-miR-30b-5p) which we found that regulated a large number of proteins. An interaction network was generated, and its connections allowed us to identify signalling pathways and interactions between proteins associated with male infertility. In this way, we confirm that the most affected and relevant pathway is the PI3K-Akt signalling.

Keywords: asthenozoospermia, azoospermia, biomarkers, male infertility, miRNA, oligoasthenozoospermic, sperm, spermatogenesis.


References

Abu-Halima, M, Hammadeh, M, Schmitt, J, Leidinger, P, Keller, A, Meese, E, and Backes, C (2013). Altered microRNA expression profiles of human spermatozoa in patients with different spermatogenic impairments. Fertility and Sterility 99, 1249–1255.e16.
Altered microRNA expression profiles of human spermatozoa in patients with different spermatogenic impairments.Crossref | GoogleScholarGoogle Scholar | 23312218PubMed |

Abu-Halima, M, Backes, C, Leidinger, P, Keller, A, Lubbad, AM, Hammadeh, M, and Meese, E (2014). MicroRNA expression profiles in human testicular tissues of infertile men with different histopathologic patterns. Fertility and Sterility 101, 78–86.e2.
MicroRNA expression profiles in human testicular tissues of infertile men with different histopathologic patterns.Crossref | GoogleScholarGoogle Scholar | 24140040PubMed |

Al-Nakhle, H, Burns, PA, Cummings, M, Hanby, AM, Hughes, TA, Satheesha, S, Shaaban, AM, Smith, L, and Speirs, V (2010). Estrogen receptor β1 expression is regulated by miR-92 in breast cancer. Cancer Research 70, 4778–4784.
Estrogen receptor β1 expression is regulated by miR-92 in breast cancer.Crossref | GoogleScholarGoogle Scholar | 20484043PubMed |

Amaral, A, Paiva, C, Attardo Parrinello, C, Estanyol, JM, Ballescà, JL, Ramalho-Santos, J, and Oliva, R (2014). Identification of proteins involved in human sperm motility using high-throughput differential proteomics. Journal of Proteome Research 13, 5670–5684.
Identification of proteins involved in human sperm motility using high-throughput differential proteomics.Crossref | GoogleScholarGoogle Scholar | 25250979PubMed |

Amaro-Ortiz, A, Yan, B, and D’Orazio, JA (2014). Ultraviolet radiation, aging and the skin: prevention of damage by topical cAMP manipulation. Molecules 19, 6202–6219.
Ultraviolet radiation, aging and the skin: prevention of damage by topical cAMP manipulation.Crossref | GoogleScholarGoogle Scholar | 24838074PubMed |

Aqeilan, RI, Calin, GA, and Croce, CM (2010). miR-15a and miR-16-1 in cancer: discovery, function and future perspectives. Cell Death & Differentiation 17, 215–220.
miR-15a and miR-16-1 in cancer: discovery, function and future perspectives.Crossref | GoogleScholarGoogle Scholar |

Aquila, S, Middea, E, Catalano, S, Marsico, S, Lanzino, M, Casaburi, I, Barone, I, Bruno, R, Zupo, S, and Ando, S (2007). Human sperm express a functional androgen receptor: effects on PI3K/AKT pathway. Human Reproduction 22, 2594–2605.
Human sperm express a functional androgen receptor: effects on PI3K/AKT pathway.Crossref | GoogleScholarGoogle Scholar | 17656415PubMed |

Azpiazu, R, Amaral, A, Castillo, J, Estanyol, JM, Guimerà, M, Ballescà, JL, Balasch, J, and Oliva, R (2014). High-throughput sperm differential proteomics suggests that epigenetic alterations contribute to failed assisted reproduction. Human Reproduction 29, 1225–1237.
High-throughput sperm differential proteomics suggests that epigenetic alterations contribute to failed assisted reproduction.Crossref | GoogleScholarGoogle Scholar | 24781426PubMed |

Barbu, MG, Thompson, DC, Suciu, N, Voinea, SC, Cretoiu, D, and Predescu, DV (2021). The Roles of MicroRNAs in Male Infertility. International Journal of Molecular Sciences 22, 2910.
The Roles of MicroRNAs in Male Infertility.Crossref | GoogleScholarGoogle Scholar | 33805594PubMed |

Belleannée, C, Calvo, E, Thimon, V, Cyr, DG, Légaré, C, Garneau, L, and Sullivan, R (2012). Role of microRNAs in controlling gene expression in different segments of the human epididymis. PLoS ONE 7, e34996.
Role of microRNAs in controlling gene expression in different segments of the human epididymis.Crossref | GoogleScholarGoogle Scholar | 22511979PubMed |

Berezikov, E, van Tetering, G, Verheul, M, van de Belt, J, van Laake, L, Vos, J, Verloop, R, van de Wetering, M, Guryev, V, Takada, S, van Zonneveld, AJ, Mano, H, Plasterk, R, and Cuppen, E (2006). Many novel mammalian microRNA candidates identified by extensive cloning and RAKE analysis. Genome Research 16, 1289–1298.
Many novel mammalian microRNA candidates identified by extensive cloning and RAKE analysis.Crossref | GoogleScholarGoogle Scholar | 16954537PubMed |

Bindea, G, Mlecnik, B, Hackl, H, Charoentong, P, Tosolini, M, Kirilovsky, A, Fridman, W-H, Pagès, F, Trajanoski, Z, and Galon, J (2009). ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25, 1091–1093.
ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks.Crossref | GoogleScholarGoogle Scholar | 19237447PubMed |

Björk, JK, Sandqvist, A, Elsing, AN, Kotaja, N, and Sistonen, L (2010). miR-18, a member of Oncomir-1, targets heat shock transcription factor 2 in spermatogenesis. Development 137, 3177–3184.
miR-18, a member of Oncomir-1, targets heat shock transcription factor 2 in spermatogenesis.Crossref | GoogleScholarGoogle Scholar | 20724452PubMed |

Bonci, D, Coppola, V, Musumeci, M, Addario, A, Giuffrida, R, Memeo, L, D’Urso, L, Pagliuca, A, Biffoni, M, Labbaye, C, Bartucci, M, Muto, G, Peschle, C, and De Maria, R (2008). The miR-15a miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nature Medicine 14, 1271–1277.
The miR-15a miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities.Crossref | GoogleScholarGoogle Scholar | 18931683PubMed |

Bonomi, M, Rochira, V, Pasquali, D, Balercia, G, Jannini, EA, and Ferlin, A (2017). Klinefelter syndrome (KS): genetics, clinical phenotype and hypogonadism. Journal of Endocrinological Investigation 40, 123–134.
Klinefelter syndrome (KS): genetics, clinical phenotype and hypogonadism.Crossref | GoogleScholarGoogle Scholar | 27644703PubMed |

Calin, GA, Dumitru, CD, Shimizu, M, Bichi, R, Zupo, S, Noch, E, Aldler, H, Rattan, S, Keating, M, Rai, K, Rassenti, L, Kipps, T, Negrini, M, Bullrich, F, and Croce, CM (2002). Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proceedings of the National Academy of Sciences of the United States of America 99, 15524–15529.
Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia.Crossref | GoogleScholarGoogle Scholar | 12434020PubMed |

Capra, E, Turri, F, Lazzari, B, Cremonesi, P, Gliozzi, TM, Fojadelli, I, Stella, A, and Pizzi, F (2017). Small RNA sequencing of cryopreserved semen from single bull revealed altered miRNAs and piRNAs expression between High- and Low-motile sperm populations. BMC Genomics 18, 14.
Small RNA sequencing of cryopreserved semen from single bull revealed altered miRNAs and piRNAs expression between High- and Low-motile sperm populations.Crossref | GoogleScholarGoogle Scholar | 28052756PubMed |

Carlsen, E, Giwercman, A, Keiding, N, and Skakkebaek, NE (1992). Evidence for decreasing quality of semen during past 50 years. British Medical Journal 305, 609.
Evidence for decreasing quality of semen during past 50 years.Crossref | GoogleScholarGoogle Scholar | 1393072PubMed |

Chen, H-Y, and Chen, R-H (2016). Cullin 3 ubiquitin ligases in cancer biology: functions and therapeutic implications. Frontiers in Oncology 6, 113.
Cullin 3 ubiquitin ligases in cancer biology: functions and therapeutic implications.Crossref | GoogleScholarGoogle Scholar | 27200299PubMed |

Chen, WS, Xu, P-Z, Gottlob, K, Chen, M-L, Sokol, K, Shiyanova, T, Roninson, I, Weng, W, Suzuki, R, Tobe, K, Kadowaki, T, and Hay, N (2001). Growth retardation and increased apoptosis in mice with homozygous disruption of the akt1 gene. Genes & Development 15, 2203–2208.
Growth retardation and increased apoptosis in mice with homozygous disruption of the akt1 gene.Crossref | GoogleScholarGoogle Scholar |

Chen, Z, Sui, J, Zhang, F, and Zhang, C (2015). Cullin family proteins and tumorigenesis: genetic association and molecular mechanisms. Journal of Cancer 6, 233–242.
Cullin family proteins and tumorigenesis: genetic association and molecular mechanisms.Crossref | GoogleScholarGoogle Scholar | 25663940PubMed |

Chen H, Chai RR, Chen GW, O WS (2016) PI3K/AKT signaling pathway involvement in motility loss associated with prohibitin downregulation in sperm from infertile men. In ‘Society for reproduction and fertility annual conference 2016’. (University of Winchester)

Cimmino, A, Calin, GA, Fabbri, M, Iorio, MV, Ferracin, M, Shimizu, M, Wojcik, SE, Aqeilan, RI, Zupo, S, Dono, M, Rassenti, L, Alder, H, Volinia, S, Liu, C-G, Kipps, TJ, Negrini, M, and Croce, CM (2005). miR-15 and miR-16 induce apoptosis by targeting BCL2. Proceedings of the National Academy of Sciences of the United States of America 102, 13944–13949.
miR-15 and miR-16 induce apoptosis by targeting BCL2.Crossref | GoogleScholarGoogle Scholar | 16166262PubMed |

Ciraolo, E, Iezzi, M, Marone, R, Marengo, S, Curcio, C, Costa, C, Azzolino, O, Gonella, C, Rubinetto, C, Wu, H, Dastrù, W, Martin, EL, Silengo, L, Altruda, F, Turco, E, Lanzetti, L, Musiani, P, Rückle, T, Rommel, C, Backer, JM, Forni, G, Wymann, MP, and Hirsch, E (2008). Phosphoinositide 3-kinase p110β activity: key role in metabolism and mammary gland cancer but not development. Science Signaling 1, ra3.
Phosphoinositide 3-kinase p110β activity: key role in metabolism and mammary gland cancer but not development.Crossref | GoogleScholarGoogle Scholar | 18780892PubMed |

Ciraolo, E, Morello, F, Hobbs, RM, Wolf, F, Marone, R, Iezzi, M, Lu, X, Mengozzi, G, Altruda, F, Sorba, G, Guan, K, Pandolfi, PP, Wymann, MP, and Hirsch, E (2010). Essential role of the p110β subunit of phosphoinositide 3-OH kinase in male fertility. Molecular Biology of the Cell 21, 704–711.
Essential role of the p110β subunit of phosphoinositide 3-OH kinase in male fertility.Crossref | GoogleScholarGoogle Scholar | 20053680PubMed |

Concepcion, CP, Bonetti, C, and Ventura, A (2012). The microRNA-17-92 family of microRNA clusters in development and disease. The Cancer Journal 18, 262–267.
The microRNA-17-92 family of microRNA clusters in development and disease.Crossref | GoogleScholarGoogle Scholar | 22647363PubMed |

Cui, Z, Sharma, R, and Agarwal, A (2016). Proteomic analysis of mature and immature ejaculated spermatozoa from fertile men. Asian Journal of Andrology 18, 735–746.
Proteomic analysis of mature and immature ejaculated spermatozoa from fertile men.Crossref | GoogleScholarGoogle Scholar | 26510506PubMed |

Dini, P, El-Sheikh Ali, H, Carossino, M, Loux, SC, Esteller-Vico, A, Scoggin, KE, Daels, P, and Ball, BA (2019). Expression profile of the chromosome 14 microRNA cluster (C14MC) ortholog in equine maternal circulation throughout pregnancy and its potential implications. International Journal of Molecular Sciences 20, 6285.
Expression profile of the chromosome 14 microRNA cluster (C14MC) ortholog in equine maternal circulation throughout pregnancy and its potential implications.Crossref | GoogleScholarGoogle Scholar |

Fischer, S, Buck, T, Wagner, A, Ehrhart, C, Giancaterino, J, Mang, S, Schad, M, Mathias, S, Aschrafi, A, Handrick, R, and Otte, K (2014). A functional high-content miRNA screen identifies miR-30 family to boost recombinant protein production in CHO cells. Biotechnology Journal 9, 1279–1292.
A functional high-content miRNA screen identifies miR-30 family to boost recombinant protein production in CHO cells.Crossref | GoogleScholarGoogle Scholar | 25061012PubMed |

Forouhari, S, Mahmoudi, E, Safdarian, E, Beygi, Z, and Gheibihayat, SM (2021). MicroRNA: a potential diagnosis for male infertility. Mini-Reviews in Medicinal Chemistry 21, 1226–1236.
MicroRNA: a potential diagnosis for male infertility.Crossref | GoogleScholarGoogle Scholar | 33302836PubMed |

Fox, EM, Davis, RJ, and Shupnik, MA (2008). ERβ in breast cancer—onlooker, passive player, or active protector? Steroids 73, 1039–1051.
ERβ in breast cancer—onlooker, passive player, or active protector?Crossref | GoogleScholarGoogle Scholar | 18501937PubMed |

Franke, TF (2008). PI3K/Akt: getting it right matters. Oncogene 27, 6473–6488.
PI3K/Akt: getting it right matters.Crossref | GoogleScholarGoogle Scholar | 18955974PubMed |

Friedman, RC, Farh, KK-H, Burge, CB, and Bartel, DP (2009). Most mammalian mRNAs are conserved targets of microRNAs. Genome Research 19, 92–105.
Most mammalian mRNAs are conserved targets of microRNAs.Crossref | GoogleScholarGoogle Scholar | 18955434PubMed |

Gao, Y, Feng, B, Lu, L, Han, S, Chu, X, Chen, L, and Wang, R (2017). MiRNAs and E2F3: a complex network of reciprocal regulations in human cancers. Oncotarget 8, 60624–60639.
MiRNAs and E2F3: a complex network of reciprocal regulations in human cancers.Crossref | GoogleScholarGoogle Scholar | 28947999PubMed |

Goertz, MJ, Wu, Z, Gallardo, TD, Hamra, FK, and Castrillon, DH (2011). Foxo1 is required in mouse spermatogonial stem cells for their maintenance and the initiation of spermatogenesis. The Journal of Clinical Investigation 121, 3456–3466.
Foxo1 is required in mouse spermatogonial stem cells for their maintenance and the initiation of spermatogenesis.Crossref | GoogleScholarGoogle Scholar | 21865646PubMed |

Gu, H, Wu, W, Yuan, B, Tang, Q, Guo, D, Chen, Y, Xia, Y, Hu, L, Chen, D, Sha, J, and Wang, X (2017). Genistein up-regulates miR-20a to disrupt spermatogenesis via targeting Limk1. Oncotarget 8, 58728–58737.
Genistein up-regulates miR-20a to disrupt spermatogenesis via targeting Limk1.Crossref | GoogleScholarGoogle Scholar | 28938591PubMed |

Guzick, DS, Overstreet, JW, Factor-Litvak, P, Brazil, CK, Nakajima, ST, Coutifaris, C, Carson, SA, Cisneros, P, Steinkampf, MP, Hill, JA, Xu, D, and Vogel, DL (2001). Sperm morphology, motility, and concentration in fertile and infertile men. New England Journal of Medicine 345, 1388–1393.
Sperm morphology, motility, and concentration in fertile and infertile men.Crossref | GoogleScholarGoogle Scholar | 11794171PubMed |

Han, T, Wu, N, Wang, Y, Shen, W, and Zou, J (2019). miR-16-2-3p inhibits cell proliferation and migration and induces apoptosis by targeting PDPK1 in maxillary primordium mesenchymal cells. International Journal of Molecular Medicine 43, 1441–1451.
miR-16-2-3p inhibits cell proliferation and migration and induces apoptosis by targeting PDPK1 in maxillary primordium mesenchymal cells.Crossref | GoogleScholarGoogle Scholar | 30664182PubMed |

Houbaviy, HB, Murray, MF, and Sharp, PA (2003). Embryonic stem cell-specific MicroRNAs. Developmental Cell 5, 351–358.
Embryonic stem cell-specific MicroRNAs.Crossref | GoogleScholarGoogle Scholar | 12919684PubMed |

Im, H-I, and Kenny, PJ (2012). MicroRNAs in neuronal function and dysfunction. Trends in Neurosciences 35, 325–334.
MicroRNAs in neuronal function and dysfunction.Crossref | GoogleScholarGoogle Scholar | 22436491PubMed |

Innis, JW, Goodman, FR, Bacchelli, C, Williams, TM, Mortlock, DP, Sateesh, P, Scambler, PJ, McKinnon, W, and Guttmacher, AE (2002). A HOXA13 allele with a missense mutation in the homeobox and a dinucleotide deletion in the promoter underlies Guttmacher syndrome. Human mutation 19, 573–574.
A HOXA13 allele with a missense mutation in the homeobox and a dinucleotide deletion in the promoter underlies Guttmacher syndrome.Crossref | GoogleScholarGoogle Scholar | 11968094PubMed |

Jangravi, Z, Alikhani, M, Arefnezhad, B, Sharifi Tabar, M, Taleahmad, S, Karamzadeh, R, Jadaliha, M, Mousavi, SA, Ahmadi Rastegar, D, Parsamatin, P, Vakilian, H, Mirshahvaladi, S, Sabbaghian, M, Mohseni Meybodi, A, Mirzaei, M, Shahhoseini, M, Ebrahimi, M, Piryaei, A, Moosavi-Movahedi, AA, Haynes, PA, Goodchild, AK, Nasr-Esfahani, MH, Jabbari, E, Baharvand, H, Sedighi Gilani, MA, Gourabi, H, and Salekdeh, GH (2013). A fresh look at the male-specific region of the human Y chromosome. Journal of Proteome Research 12, 6–22.
A fresh look at the male-specific region of the human Y chromosome.Crossref | GoogleScholarGoogle Scholar | 23253012PubMed |

Jumeau, F, Chalmel, F, Fernandez-Gomez, F-J, Carpentier, C, Obriot, H, Tardivel, M, Caillet-Boudin, M-L, Rigot, J-M, Rives, N, Buée, L, Sergeant, N, and Mitchell, V (2016). Defining the human sperm microtubulome: an integrated genomics approach. Biology of Reproduction 96, 93–106.
Defining the human sperm microtubulome: an integrated genomics approach.Crossref | GoogleScholarGoogle Scholar |

Khazaie, Y, and Nasr Esfahani, MH (2014). MicroRNA and male infertility: a potential for diagnosis. International Journal of Fertility & Sterility 8, 113–118.

Kigoshi, Y, Tsuruta, F, and Chiba, T (2011). Ubiquitin ligase activity of Cul3-KLHL7 protein is attenuated by autosomal dominant retinitis pigmentosa causative mutation. Journal of Biological Chemistry 286, 33613–33621.
Ubiquitin ligase activity of Cul3-KLHL7 protein is attenuated by autosomal dominant retinitis pigmentosa causative mutation.Crossref | GoogleScholarGoogle Scholar | 21828050PubMed |

Kimura, T, Suzuki, A, Fujita, Y, Yomogida, K, Lomeli, H, Asada, N, Ikeuchi, M, Nagy, A, Mak, TW, and Nakano, T (2003). Conditional loss of PTEN leads to testicular teratoma and enhances embryonic germ cell production. Development 130, 1691–1700.
Conditional loss of PTEN leads to testicular teratoma and enhances embryonic germ cell production.Crossref | GoogleScholarGoogle Scholar | 12620992PubMed |

Kobayashi, N, Miyauchi, N, Tatsuta, N, Kitamura, A, Okae, H, Hiura, H, Sato, A, Utsunomiya, T, Yaegashi, N, Nakai, K, and Arima, T (2017). Factors associated with aberrant imprint methylation and oligozoospermia. Scientific Reports 7, 42336.
Factors associated with aberrant imprint methylation and oligozoospermia.Crossref | GoogleScholarGoogle Scholar | 28186187PubMed |

Köhler, A, and Hurt, E (2007). Exporting RNA from the nucleus to the cytoplasm. Nature Reviews Molecular Cell Biology 8, 761–773.
Exporting RNA from the nucleus to the cytoplasm.Crossref | GoogleScholarGoogle Scholar | 17786152PubMed |

Krawetz, SA, Kruger, A, Lalancette, C, Tagett, R, Anton, E, Draghici, S, and Diamond, MP (2011). A survey of small RNAs in human sperm. Human Reproduction 26, 3401–3412.
A survey of small RNAs in human sperm.Crossref | GoogleScholarGoogle Scholar | 21989093PubMed |

Lagos-Quintana, M, Rauhut, R, Lendeckel, W, and Tuschl, T (2001). Identification of novel genes coding for small expressed RNAs. Science 294, 853–858.
Identification of novel genes coding for small expressed RNAs.Crossref | GoogleScholarGoogle Scholar | 11679670PubMed |

Lagos-Quintana, M, Rauhut, R, Meyer, J, Borkhardt, A, and Tuschl, T (2003). New microRNAs from mouse and human. RNA 9, 175–179.
New microRNAs from mouse and human.Crossref | GoogleScholarGoogle Scholar | 12554859PubMed |

Landgraf, P, Rusu, M, Sheridan, R, Sewer, A, Iovino, N, Aravin, A, Pfeffer, S, Rice, A, Kamphorst, AO, Landthaler, M, Lin, C, Socci, ND, Hermida, L, Fulci, V, Chiaretti, S, Foà, R, Schliwka, J, Fuchs, U, Novosel, A, Müller, R-U, Schermer, B, Bissels, U, Inman, J, Phan, Q, Chien, M, Weir, DB, Choksi, R, De Vita, G, Frezzetti, D, Trompeter, H-I, Hornung, V, Teng, G, Hartmann, G, Palkovits, M, Di Lauro, R, Wernet, P, Macino, G, Rogler, CE, Nagle, JW, Ju, J, Papavasiliou, FN, Benzing, T, Lichter, P, Tam, W, Brownstein, MJ, Bosio, A, Borkhardt, A, Russo, JJ, Sander, C, Zavolan, M, and Tuschl, T (2007). A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129, 1401–1414.
A mammalian microRNA expression atlas based on small RNA library sequencing.Crossref | GoogleScholarGoogle Scholar | 17604727PubMed |

Levine, H, Jørgensen, N, Martino-Andrade, A, Mendiola, J, Weksler-Derri, D, Mindlis, I, Pinotti, R, and Swan, SH (2017). Temporal trends in sperm count: a systematic review and meta-regression analysis. Human Reproduction Update 23, 646–659.
Temporal trends in sperm count: a systematic review and meta-regression analysis.Crossref | GoogleScholarGoogle Scholar | 28981654PubMed |

Li, J, Donath, S, Li, Y, Qin, D, Prabhakar, BS, and Li, P (2010). miR-30 regulates mitochondrial fission through targeting p53 and the dynamin-related protein-1 pathway. PLoS Genetics 6, e1000795.
miR-30 regulates mitochondrial fission through targeting p53 and the dynamin-related protein-1 pathway.Crossref | GoogleScholarGoogle Scholar | 20062521PubMed |

Li, C, Chen, S, Li, H, Chen, L, Zhao, Y, Jiang, Y, Liu, Z, Liu, Y, Gao, S, Wang, F, Yu, J, Wang, H, Rao, J, and Zhou, X (2016). MicroRNA-16 modulates melatonin-induced cell growth in the mouse-derived spermatogonia cell line GC-1 spg cells by targeting Ccnd1. Biology of Reproduction 95, 1–10.
MicroRNA-16 modulates melatonin-induced cell growth in the mouse-derived spermatogonia cell line GC-1 spg cells by targeting Ccnd1.Crossref | GoogleScholarGoogle Scholar | 27465135PubMed |

Lian, J, Zhang, X, Tian, H, Liang, N, Wang, Y, Liang, C, Li, X, and Sun, F (2009). Altered microRNA expression in patients with non-obstructive azoospermia. Reproductive Biology and Endocrinology 7, 13.
Altered microRNA expression in patients with non-obstructive azoospermia.Crossref | GoogleScholarGoogle Scholar | 19210773PubMed |

Lin, Z, and Tong, M-H (2019). m6A mRNA modification regulates mammalian spermatogenesis. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 1862, 403–411.
m6A mRNA modification regulates mammalian spermatogenesis.Crossref | GoogleScholarGoogle Scholar |

Linsley, PS, Schelter, J, Burchard, J, Kibukawa, M, Martin, MM, Bartz, SR, Johnson, JM, Cummins, JM, Raymond, CK, Dai, H, Chau, N, Cleary, M, Jackson, AL, Carleton, M, and Lim, L (2007). Transcripts targeted by the microRNA-16 family cooperatively regulate cell cycle progression. Molecular and Cellular Biology 27, 2240–2252.
Transcripts targeted by the microRNA-16 family cooperatively regulate cell cycle progression.Crossref | GoogleScholarGoogle Scholar | 17242205PubMed |

Liu, Q, Fu, H, Sun, F, Zhang, H, Tie, Y, Zhu, J, Xing, R, Sun, Z, and Zheng, X (2008). miR-16 family induces cell cycle arrest by regulating multiple cell cycle genes. Nucleic Acids Research 36, 5391–5404.
miR-16 family induces cell cycle arrest by regulating multiple cell cycle genes.Crossref | GoogleScholarGoogle Scholar | 18701644PubMed |

Liu, T, Cheng, W, Gao, Y, Wang, H, and Liu, Z (2012). Microarray analysis of microRNA expression patterns in the semen of infertile men with semen abnormalities. Molecular Medicine Reports 6, 535–542.
Microarray analysis of microRNA expression patterns in the semen of infertile men with semen abnormalities.Crossref | GoogleScholarGoogle Scholar | 22735917PubMed |

Liu, J, Yao, W, Yao, Y, Du, X, Zhou, J, Ma, B, Liu, H, Li, Q, and Pan, Z (2014). MiR-92a inhibits porcine ovarian granulosa cell apoptosis by targeting Smad7 gene. FEBS Letters 588, 4497–4503.
MiR-92a inhibits porcine ovarian granulosa cell apoptosis by targeting Smad7 gene.Crossref | GoogleScholarGoogle Scholar | 25448599PubMed |

Lujambio, A, and Lowe, SW (2012). The microcosmos of cancer. Nature 482, 347–355.
The microcosmos of cancer.Crossref | GoogleScholarGoogle Scholar | 22337054PubMed |

Ma, F, Li, T, Zhang, H, and Wu, G (2016). MiR-30s family inhibit the proliferation and apoptosis in human coronary artery endothelial cells through targeting the 3′UTR region of ITGA4 and PLCG1. Journal of Cardiovascular Pharmacology 68, 327–333.
MiR-30s family inhibit the proliferation and apoptosis in human coronary artery endothelial cells through targeting the 3′UTR region of ITGA4 and PLCG1.Crossref | GoogleScholarGoogle Scholar | 27464494PubMed |

Madison-Villar, MJ, and Michalak, P (2011). Misexpression of testicular microRNA in sterile Xenopus hybrids points to tetrapod-specific microRNAs associated with male fertility. Journal of Molecular Evolution 73, 316–324.
Misexpression of testicular microRNA in sterile Xenopus hybrids points to tetrapod-specific microRNAs associated with male fertility.Crossref | GoogleScholarGoogle Scholar | 22207500PubMed |

Major, AT, Whiley, PAF, and Loveland, KL (2011). Expression of nucleocytoplasmic transport machinery: clues to regulation of spermatogenic development. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1813, 1668–1688.
Expression of nucleocytoplasmic transport machinery: clues to regulation of spermatogenic development.Crossref | GoogleScholarGoogle Scholar |

Martin-Ponthieu, A, Wouters-Tyrou, D, Pudlo, B, Buisine, E, and Sautière, P (1994). Isolation and characterization of a small putative zinc finger protein from cuttlefish epididymal sperm cells. European Journal of Biochemistry 220, 463–468.
Isolation and characterization of a small putative zinc finger protein from cuttlefish epididymal sperm cells.Crossref | GoogleScholarGoogle Scholar | 8125104PubMed |

Mierla, D, Malageanu, M, Tulin, R, and Albu, D (2015). Prevalence of chromosomal abnormalities in infertile couples in Romania. Balkan Journal of Medical Genetics 18, 23–30.
Prevalence of chromosomal abnormalities in infertile couples in Romania.Crossref | GoogleScholarGoogle Scholar | 26929902PubMed |

Muñoz, X, Mata, A, Bassas, L, and Larriba, S (2015). Altered miRNA signature of developing germ-cells in infertile patients relates to the severity of spermatogenic failure and persists in spermatozoa. Scientific Reports 5, 17991.
Altered miRNA signature of developing germ-cells in infertile patients relates to the severity of spermatogenic failure and persists in spermatozoa.Crossref | GoogleScholarGoogle Scholar | 26648257PubMed |

O’Flynn O’Brien, KL, Varghese, AC, and Agarwal, A (2010). The genetic causes of male factor infertility: a review. Fertility and Sterility 93, 1–12.
The genetic causes of male factor infertility: a review.Crossref | GoogleScholarGoogle Scholar | 20103481PubMed |

O’Donovan, R, and Völlm, B (2017). Klinefelter’s syndrome and sexual offending - a literature review. Criminal Behaviour and Mental Health 28, 132–140.
Klinefelter’s syndrome and sexual offending - a literature review.Crossref | GoogleScholarGoogle Scholar | 28782868PubMed |

Olive, V, Bennett, MJ, Walker, JC, Ma, C, Jiang, I, Cordon-Cardo, C, Li, Q-J, Lowe, SW, Hannon, GJ, and He, L (2009). miR-19 is a key oncogenic component of mir-17-92. Genes & Development 23, 2839–2849.
miR-19 is a key oncogenic component of mir-17-92.Crossref | GoogleScholarGoogle Scholar |

Ota, A, Tagawa, H, Karnan, S, Tsuzuki, S, Karpas, A, Kira, S, Yoshida, Y, and Seto, M (2004). Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant lymphoma. Cancer Research 64, 3087–3095.
Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant lymphoma.Crossref | GoogleScholarGoogle Scholar | 15126345PubMed |

Panwar, B, Omenn, GS, and Guan, Y (2017). miRmine: a database of human miRNA expression profiles. Bioinformatics 33, 1554–1560.
miRmine: a database of human miRNA expression profiles.Crossref | GoogleScholarGoogle Scholar | 28108447PubMed |

Petroski, MD, and Deshaies, RJ (2005). Function and regulation of cullin–RING ubiquitin ligases. Nature Reviews Molecular Cell Biology 6, 9–20.
Function and regulation of cullin–RING ubiquitin ligases.Crossref | GoogleScholarGoogle Scholar | 15688063PubMed |

Presslauer, C, Tilahun Bizuayehu, T, Kopp, M, Fernandes, JMO, and Babiak, I (2017). Dynamics of miRNA transcriptome during gonadal development of zebrafish. Scientific Reports 7, 43850.
Dynamics of miRNA transcriptome during gonadal development of zebrafish.Crossref | GoogleScholarGoogle Scholar | 28262836PubMed |

Qin, X, Chen, J, Wu, L, and Liu, Z (2017). MiR-30b-5p acts as a tumor suppressor, repressing cell proliferation and cell cycle in human hepatocellular carcinoma. Biomedicine & Pharmacotherapy 89, 742–750.
MiR-30b-5p acts as a tumor suppressor, repressing cell proliferation and cell cycle in human hepatocellular carcinoma.Crossref | GoogleScholarGoogle Scholar |

Sakurai, K, Mikamoto, K, Shirai, M, Iguchi, T, Ito, K, Takasaki, W, and Mori, K (2015). MicroRNA profling in ethylene glycol monomethyl ether-induced monkey testicular toxicity model. The Journal of Toxicological Sciences 40, 375–382.
MicroRNA profling in ethylene glycol monomethyl ether-induced monkey testicular toxicity model.Crossref | GoogleScholarGoogle Scholar | 25972197PubMed |

Shigoka, M, Tsuchida, A, Matsudo, T, Nagakawa, Y, Saito, H, Suzuki, Y, Aoki, T, Murakami, Y, Toyoda, H, Kumada, T, Bartenschlager, R, Kato, N, Ikeda, M, Takashina, T, Tanaka, M, Suzuki, R, Oikawa, K, Takanashi, M, and Kuroda, M (2010). Deregulation of miR-92a expression is implicated in hepatocellular carcinoma development. Pathology International 60, 351–357.
Deregulation of miR-92a expression is implicated in hepatocellular carcinoma development.Crossref | GoogleScholarGoogle Scholar | 20518884PubMed |

Suh, M-R, Lee, Y, Kim, JY, Kim, S-K, Moon, S-H, Lee, JY, Cha, K-Y, Chung, HM, Yoon, HS, Moon, SY, Kim, VN, and Kim, K-S (2004). Human embryonic stem cells express a unique set of microRNAs. Developmental Biology 270, 488–498.
Human embryonic stem cells express a unique set of microRNAs.Crossref | GoogleScholarGoogle Scholar | 15183728PubMed |

Tahmasbpour, E, Balasubramanian, D, and Agarwal, A (2014). A multi-faceted approach to understanding male infertility: gene mutations, molecular defects and assisted reproductive techniques (ART). Journal of Assisted Reproduction and Genetics 31, 1115–1137.
A multi-faceted approach to understanding male infertility: gene mutations, molecular defects and assisted reproductive techniques (ART).Crossref | GoogleScholarGoogle Scholar | 25117645PubMed |

Tanaka, M, Oikawa, K, Takanashi, M, Kudo, M, Ohyashiki, J, Ohyashiki, K, and Kuroda, M (2009). Down-regulation of miR-92 in human plasma is a novel marker for acute leukemia patients. PLoS ONE 4, e5532.
Down-regulation of miR-92 in human plasma is a novel marker for acute leukemia patients.Crossref | GoogleScholarGoogle Scholar | 19440243PubMed |

Teruel-Montoya, R, Rosendaal, FR, and Martínez, C (2015). MicroRNAs in hemostasis. Journal of Thrombosis and Haemostasis 13, 170–181.
MicroRNAs in hemostasis.Crossref | GoogleScholarGoogle Scholar | 25400249PubMed |

Tormo, E, Adam-Artigues, A, Ballester, S, Pineda, B, Zazo, S, González-Alonso, P, Albanell, J, Rovira, A, Rojo, F, Lluch, A, and Eroles, P (2017). The role of miR-26a and miR-30b in HER2+ breast cancer trastuzumab resistance and regulation of the CCNE2 gene. Scientific Reports 7, 41309.
The role of miR-26a and miR-30b in HER2+ breast cancer trastuzumab resistance and regulation of the CCNE2 gene.Crossref | GoogleScholarGoogle Scholar | 28120942PubMed |

Uziel, T, Karginov, FV, Xie, S, Parker, JS, Wang, Y-D, Gajjar, A, He, L, Ellison, D, Gilbertson, RJ, Hannon, G, and Roussel, MF (2009). The miR-17∼92 cluster collaborates with the Sonic Hedgehog pathway in medulloblastoma. Proceedings of the National Academy of Sciences of the United States of America 106, 2812–2817.
The miR-17∼92 cluster collaborates with the Sonic Hedgehog pathway in medulloblastoma.Crossref | GoogleScholarGoogle Scholar | 19196975PubMed |

Varghese, AC, du Plessis, SS, and Agarwal, A (2008). Male gamete survival at stake: causes and solutions. Reproductive BioMedicine Online 17, 866–880.
Male gamete survival at stake: causes and solutions.Crossref | GoogleScholarGoogle Scholar | 19079972PubMed |

Vashisht, A, and Gahlay, GK (2020). Using miRNAs as diagnostic biomarkers for male infertility: opportunities and challenges. Molecular Human Reproduction 26, 199–214.
Using miRNAs as diagnostic biomarkers for male infertility: opportunities and challenges.Crossref | GoogleScholarGoogle Scholar | 32084276PubMed |

Voorhoeve, PM, le Sage, C, Schrier, M, Gillis, AJM, Stoop, H, Nagel, R, Liu, Y-P, van Duijse, J, Drost, J, Griekspoor, A, Zlotorynski, E, Yabuta, N, De Vita, G, Nojima, H, Looijenga, LHJ, and Agami, R (2006). A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell 124, 1169–1181.
A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors.Crossref | GoogleScholarGoogle Scholar | 16564011PubMed |

Wang, S, Zheng, H, Esaki, Y, Kelly, F, and Yan, W (2006). Cullin3 is a KLHL10-interacting protein preferentially expressed during late spermiogenesis. Biology of Reproduction 74, 102–108.
Cullin3 is a KLHL10-interacting protein preferentially expressed during late spermiogenesis.Crossref | GoogleScholarGoogle Scholar | 16162871PubMed |

Wang, C, Yang, C, Chen, X, Yao, B, Yang, C, Zhu, C, Li, L, Wang, J, Li, X, Shao, Y, Liu, Y, Ji, J, Zhang, J, Zen, K, Zhang, C-Y, and Zhang, C (2011). Altered profile of seminal plasma microRNAs in the molecular diagnosis of male infertility. Clinical Chemistry 57, 1722–1731.
Altered profile of seminal plasma microRNAs in the molecular diagnosis of male infertility.Crossref | GoogleScholarGoogle Scholar | 21933900PubMed |

Wang, L, Himmelstein, DS, Santaniello, A, Parvin, M, and Baranzini, SE (2015). iCTNet2: integrating heterogeneous biological interactions to understand complex traits. F1000Research 4, 485.
iCTNet2: integrating heterogeneous biological interactions to understand complex traits.Crossref | GoogleScholarGoogle Scholar | 26834985PubMed |

Xie, X, Lu, J, Kulbokas, EJ, Golub, TR, Mootha, V, Lindblad-Toh, K, Lander, ES, and Kellis, M (2005). Systematic discovery of regulatory motifs in human promoters and 3′UTRs by comparison of several mammals. Nature 434, 338–345.
Systematic discovery of regulatory motifs in human promoters and 3′UTRs by comparison of several mammals.Crossref | GoogleScholarGoogle Scholar | 15735639PubMed |

Yan, W, Ma, L, Burns, KH, and Matzuk, MM (2004). Haploinsufficiency of kelch-like protein homolog 10 causes infertility in male mice. Proceedings of the National Academy of Sciences of the United States of America 101, 7793–7798.
Haploinsufficiency of kelch-like protein homolog 10 causes infertility in male mice.Crossref | GoogleScholarGoogle Scholar | 15136734PubMed |

Yan, X, Liang, H, Deng, T, Zhu, K, Zhang, S, Wang, N, Jiang, X, Wang, X, Liu, R, Zen, K, Zhang, C-Y, Ba, Y, and Chen, X (2013). The identification of novel targets of miR-16 and characterization of their biological functions in cancer cells. Molecular Cancer 12, 92.
The identification of novel targets of miR-16 and characterization of their biological functions in cancer cells.Crossref | GoogleScholarGoogle Scholar | 23941513PubMed |

Ye, H, Liu, X, Lv, M, Wu, Y, Kuang, S, Gong, J, Yuan, P, Zhong, Z, Li, Q, Jia, H, Sun, J, Chen, Z, and Guo, A-Y (2012). MicroRNA and transcription factor co-regulatory network analysis reveals miR-19 inhibits CYLD in T-cell acute lymphoblastic leukemia. Nucleic Acids Research 40, 5201–5214.
MicroRNA and transcription factor co-regulatory network analysis reveals miR-19 inhibits CYLD in T-cell acute lymphoblastic leukemia.Crossref | GoogleScholarGoogle Scholar | 22362744PubMed |

Zhang, X, Yu, H, Lou, JR, Zheng, J, Zhu, H, Popescu, N-I, Lupu, F, Lind, SE, and Ding, W-Q (2011). MicroRNA-19 (miR-19) regulates tissue factor expression in breast cancer cells. Journal of Biological Chemistry 286, 1429–1435.
MicroRNA-19 (miR-19) regulates tissue factor expression in breast cancer cells.Crossref | GoogleScholarGoogle Scholar | 21059650PubMed |

Zhou, C, Shen, L, Mao, L, Wang, B, Li, Y, and Yu, H (2015). miR-92a is upregulated in cervical cancer and promotes cell proliferation and invasion by targeting FBXW7. Biochemical and Biophysical Research Communications 458, 63–69.
miR-92a is upregulated in cervical cancer and promotes cell proliferation and invasion by targeting FBXW7.Crossref | GoogleScholarGoogle Scholar | 25623537PubMed |

Zimmerman, S, and Sutovsky, P (2009). The sperm proteasome during sperm capacitation and fertilization. Journal of Reproductive Immunology 83, 19–25.
The sperm proteasome during sperm capacitation and fertilization.Crossref | GoogleScholarGoogle Scholar | 19853307PubMed |