Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Alterations in epididymal sperm maturation caused by ageing

B. P. López-Trinidad A H , R. M. Vigueras-Villaseñor B , M. Konigsberg C , A. Ávalos-Rodríguez D , A. Rodríguez-Tobón E H , E. Cortés-Barberena F , M. Arteaga-Silva G and E. Arenas-Ríos https://orcid.org/0000-0002-2534-9351 H *
+ Author Affiliations
- Author Affiliations

A Doctorado en Biología Experimental. Universidad Autónoma Metropolitana. Unidad Iztapalapa. Ciudad de México, México.

B Laboratorio de Biología de la Reproducción, Instituto Nacional de Pediatría, Ciudad de México, México.

C Laboratorio de Bioenergética y envejecimiento Celular, Universidad Autónoma Metropolitana. Unidad Iztapalapa. Ciudad de México, México.

D Laboratorio de Bioquímica de la Reproducción, Universidad Autónoma Metropolitana. Unidad Xochimilco. Ciudad de México, México.

E Laboratorio de Ecología y Biología de Mamíferos, Universidad Autónoma Metropolitana. Unidad Iztapalapa. Ciudad de México, México.

F Laboratorio de Biología Celular y Citometría de Flujo, Universidad Autónoma Metropolitana. Unidad Iztapalapa. Ciudad de México, México.

G Laboratorio de Neuroendocrinología Reproductiva, Universidad Autónoma Metropolitana. Unidad Iztapalapa. Ciudad de México, México.

H Laboratorio de Morfofisiología y Bioquímica del Espermatozoide, Universidad Autónoma Metropolitana. Unidad Iztapalapa. Ciudad de México, México.

* Correspondence to: editharenas2000@yahoo.com.mx

Handling Editor: Jessica Dunleavy

Reproduction, Fertility and Development 33(18) 855-864 https://doi.org/10.1071/RD21081
Published online: 30 November 2021

© 2021 The Author(s) (or their employer(s)). Published by CSIRO Publishing

Abstract

The epididymis is an organ that performs all the biochemical changes responsible for sperm maturation. During ageing, histological alterations in the epididymis and decreased protein synthesis have been found. This might affect the sperm maturation process. The aim of this study was to determine if the changes in the epididymis during ageing might cause alterations in sperm maturation. Wistar rats of 3–4 months old (young) and 18–21 months old (old) were used. The testosterone concentration was determined and the epididymides were dissected and divided in three regions: caput, corpus, and cauda. The tissues were used for histological processing and sperm extraction. Testosterone concentration decreased 34% in the old animals compared to the young ones. The distribution of mannose, sialic acid, and N-acetylglucosamine in the glycocalyx of the sperm membrane of old animals was different from that of young animals. The same occurred with phosphatidylserine externalisation and protein phosphorylation at tyrosine residues. Epididymis histology in old animals showed tubular and cellular degeneration. Our results suggest that ageing affects maturational markers, likely due to alterations in the epididymis as a result of the testosterone decrease associated with ageing.

Keywords: ageing, epididymis, externalization of phosphatidylserine, membrane carbohydrates, rats, sperm, sperm maturation, testosterone, tyrosine phosphorylation.


References

Aguilera, AC, Carvelli, L, Boschin, V, Mohamed, F, Zyla, L, and Sosa, MA (2015). Changes in lysosomal enzymes and mannose-6-phosphate receptors related to sexual maturation in bull epididymis. Reproduction, Fertility and Development 28, 1608–1617.
Changes in lysosomal enzymes and mannose-6-phosphate receptors related to sexual maturation in bull epididymis.Crossref | GoogleScholarGoogle Scholar |

Aitken, RJ, Nixon, B, Lin, M, Koppers, AJ, Lee, YH, and Baker, MA (2007). Proteomic changes in mammalian spermatozoa during epididymal maturation. Asian Journal of Andrology 9, 554–564.
Proteomic changes in mammalian spermatozoa during epididymal maturation.Crossref | GoogleScholarGoogle Scholar | 17589795PubMed |

Asadi, MH, Zafari, F, Sarveazad, A, Abbasi, M, Safa, M, Koruji, M, Yari, A, and Alizadeh Miran, R (2014). Saffron improves epididymal sperm parameters in rats exposed to cadmium. Nephrourology Monthly 6, e12125.
Saffron improves epididymal sperm parameters in rats exposed to cadmium.Crossref | GoogleScholarGoogle Scholar |

Baker, MA, Hetherington, L, Weinberg, A, Naumovski, N, Velkov, T, Pelzing, M, Dolman, S, Condina, MR, and Aitken, RJ (2012). Analysis of phosphopeptide changes as spermatozoa acquire functional competence in the epididymis demonstrates changes in the post-translational modification of izumo. Journal of Proteome Research 11, 5252–5264.
Analysis of phosphopeptide changes as spermatozoa acquire functional competence in the epididymis demonstrates changes in the post-translational modification of izumo.Crossref | GoogleScholarGoogle Scholar | 22954305PubMed |

Baker, SS, Thomas, M, and Thaler, CD (2004). Sperm membrane dynamics assessed by changes in lectin fluorescence before and after capacitation. Journal of Andrology 25, 744–751.
Sperm membrane dynamics assessed by changes in lectin fluorescence before and after capacitation.Crossref | GoogleScholarGoogle Scholar | 15292105PubMed |

Beattie, MC, Adekola, L, Papadopoulos, V, Chen, H, and Zirkin, BR (2015). Leydig cell aging and hypogonadism. Experimental Gerontology 68, 87–91.
Leydig cell aging and hypogonadism.Crossref | GoogleScholarGoogle Scholar | 25700847PubMed |

Björkgren, I, and Sipilä, P (2019). The impact of epididymal proteins on sperm function. Reproduction 158, R155–R167.
The impact of epididymal proteins on sperm function.Crossref | GoogleScholarGoogle Scholar | 31176304PubMed |

Chen, H, Ge, RS, and Zirkin, BR (2009). Leydig cells: from stem cells to aging. Molecular and Cellular Endocrinology 306, 9–16.
Leydig cells: from stem cells to aging.Crossref | GoogleScholarGoogle Scholar | 19481681PubMed |

Cheon, YP, and Kim, CH (2015). Impact of glycosylation on the unimpaired functions of the sperm. Clinical and Experimental Reproductive Medicine 42, 77–85.
Impact of glycosylation on the unimpaired functions of the sperm.Crossref | GoogleScholarGoogle Scholar | 26473106PubMed |

Cran, DG, and Jones, R (1980). Aging male reproductive system: changes in the epididymis. Experimental Gerontology 15, 93–101.
Aging male reproductive system: changes in the epididymis.Crossref | GoogleScholarGoogle Scholar | 7190098PubMed |

de Souza, APB, Schorr-Lenz, ÂM, Lucca, F, and Bustamante-Filho, IC (2017). The epididymis and its role on sperm quality and male fertility. Animal Reproduction 14, 1234–1244.
The epididymis and its role on sperm quality and male fertility.Crossref | GoogleScholarGoogle Scholar |

de Vries, KJ, Wiedmer, T, Sims, PJ, and Gadella, BM (2003). Caspase-independent exposure of aminophospholipids and tyrosine phosphorylation in bicarbonate responsive human sperm cells. Biology of Reproduction 68, 2122–2134.
Caspase-independent exposure of aminophospholipids and tyrosine phosphorylation in bicarbonate responsive human sperm cells.Crossref | GoogleScholarGoogle Scholar | 12606386PubMed |

Ded, L, Hwang, JY, Miki, K, Shi, HF, and Chung, J-J (2020). 3D in situ imaging of the female reproductive tract reveals molecular signatures of fertilizing spermatozoa in mice. eLife 9, e62043.
3D in situ imaging of the female reproductive tract reveals molecular signatures of fertilizing spermatozoa in mice.Crossref | GoogleScholarGoogle Scholar | 33078708PubMed |

Elcock, LH, and Schoning, P (1984). Age-related changes in the cat testis and epididymis. American Journal of Veterinary Research 45, 2380–2384.
| 6524733PubMed |

Fernandez-Fuertes, B, Blanco-Fernandez, A, Reid, CJ, Meade, KG, Fair, S, and Lonergan, P (2018). Removal of sialic acid from bull sperm decreases motility and mucus penetration ability but increases zona pellucida binding and polyspermic penetration in vitro. Reproduction 155, 481–492.
Removal of sialic acid from bull sperm decreases motility and mucus penetration ability but increases zona pellucida binding and polyspermic penetration in vitro.Crossref | GoogleScholarGoogle Scholar | 29618635PubMed |

Fierro, R, Foliguet, B, Grignon, G, Daniel, M, Bene, MC, Faure, GC, and Barbarino-Monnier, P (1996). Lectin-binding sites on human sperm during acrosome reaction: modifications judged by electron microscopy/flow cytometry. Archives of Andrology 36, 187–196.
Lectin-binding sites on human sperm during acrosome reaction: modifications judged by electron microscopy/flow cytometry.Crossref | GoogleScholarGoogle Scholar | 8743350PubMed |

Gervasi, MG, and Visconti, PE (2017). Molecular changes and signaling events occurring in spermatozoa during epididymal maturation. Andrology 5, 204–218.
Molecular changes and signaling events occurring in spermatozoa during epididymal maturation.Crossref | GoogleScholarGoogle Scholar | 28297559PubMed |

Hamilton, DW (1980). UDP-galactose:N-acetylglucosamine galactosyltransferase in fluids from rat rete testis and epididymis. Biology of Reproduction 23, 377–385.
UDP-galactose:N-acetylglucosamine galactosyltransferase in fluids from rat rete testis and epididymis.Crossref | GoogleScholarGoogle Scholar | 6774786PubMed |

Henkel, R, Maass, G, Schuppe, H-C, Jung, A, Schubert, J, and Schill, W-B (2005). Molecular aspects of declining sperm motility in older men. Fertility and Sterility 84, 1430–1437.
Molecular aspects of declining sperm motility in older men.Crossref | GoogleScholarGoogle Scholar | 16275240PubMed |

Hermann, M, Untergasser, G, Rumpold, H, and Berger, P (2000). Aging of the male reproductive system. Experimental Gerontology 35, 1267–1279.
Aging of the male reproductive system.Crossref | GoogleScholarGoogle Scholar | 11113607PubMed |

Holt, WV (1980). Surface-bound sialic acid on ram and bull spermatozoa: deposition during epididymal transit and stability during washing. Biology of Reproduction 23, 847–857.
Surface-bound sialic acid on ram and bull spermatozoa: deposition during epididymal transit and stability during washing.Crossref | GoogleScholarGoogle Scholar | 7448285PubMed |

Huang, L, Haratake, K, Miyahara, H, and Chiba, T (2016). Proteasome activators, PA28γ and PA200, play indispensable roles in male fertility. Scientific Reports 6, 23171.
Proteasome activators, PA28γ and PA200, play indispensable roles in male fertility.Crossref | GoogleScholarGoogle Scholar | 27003159PubMed |

Iusem, ND, De Larminat, MA, Tezon, JG, Blaquier, JA, and Belocopitow, E (1984). Androgen dependence of protein N-glycosylation in rat epididymis. Endocrinology 114, 1448–1453.
Androgen dependence of protein N-glycosylation in rat epididymis.Crossref | GoogleScholarGoogle Scholar | 6231179PubMed |

Karnovsky, MJ (1965). A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. Journal of Cell Biology 27, 137A–138A.

Katz-Jaffe, MG, Parks, J, McCallie, B, and Schoolcraft, WB (2013). Aging sperm negatively impacts in vivo and in vitro reproduction: a longitudinal murine study. Fertility and Sterility 100, 262–268.e2.
Aging sperm negatively impacts in vivo and in vitro reproduction: a longitudinal murine study.Crossref | GoogleScholarGoogle Scholar | 23579004PubMed |

Kitchener A, McDonald A (2004) The longevity legacy: the problem of old mammalsin zoos. In ‘Proceedings of the EAZA Conference, 21–25 September 2004, Kolmarden’. (Ed. B Hiddinga) pp. 132–137. (EAZA Executive Office)

Kunimura, Y, Iwata, K, Ishigami, A, and Ozawa, H (2017). Age-Related alterations in hypothalamic kisspeptin, neurokinin B, and dynorphin neurons and in pulsatile LH release in female and male rats. Neurobiology Aging 50, 30–38.
Age-Related alterations in hypothalamic kisspeptin, neurokinin B, and dynorphin neurons and in pulsatile LH release in female and male rats.Crossref | GoogleScholarGoogle Scholar |

Lewis, B, and John Aitken, R (2001). Impact of epididymal maturation on the tyrosine phosphorylation patterns exhibited by rat spermatozoa. Biology of Reproduction 64, 1545–1556.
Impact of epididymal maturation on the tyrosine phosphorylation patterns exhibited by rat spermatozoa.Crossref | GoogleScholarGoogle Scholar | 11319163PubMed |

López-Otín, C, Blasco, MA, Partridge, L, Serrano, M, and Kroemer, G (2013). The hallmarks of aging. Cell 153, 1194–1217.
The hallmarks of aging.Crossref | GoogleScholarGoogle Scholar | 23746838PubMed |

Lucio, RA, Tlachi, JL, López, AA, Zempoalteca, R, and Velázquez-Moctezuma, J (2009). Análisis de los parámetros del eyaculado en la rata Wistar de laboratorio: descripción de la técnica. Veterinaria México 40, 405–415.

Lucio, RA, Tlachi-López, JL, Eguibar, JR, and Ågmo, A (2013). Sperm count and sperm motility decrease in old rats. Physiology & Behavior 110–111, 73–79.
Sperm count and sperm motility decrease in old rats.Crossref | GoogleScholarGoogle Scholar |

Luo, L, Chen, H, and Zirkin, BR (1996). Are Leydig cell steroidogenic enzymes differentially regulated with aging? Journal of Andrology 17, 509–515.
| 8957694PubMed |

Ma, X, Pan, Q, Feng, Y, Choudhury, BP, Ma, Q, Gagneux, P, and Ma, F (2016). Sialylation facilitates the maturation of mammalian sperm and affects its survival in female uterus. Biology of Reproduction 94, 123.
Sialylation facilitates the maturation of mammalian sperm and affects its survival in female uterus.Crossref | GoogleScholarGoogle Scholar | 27075617PubMed |

Midzak, AS, Chen, H, Papadopoulos, V, and Zirkin, BR (2009). Leydig cell aging and the mechanisms of reduced testosterone synthesis. Molecular and Cellular Endocrinology 299, 23–31.
Leydig cell aging and the mechanisms of reduced testosterone synthesis.Crossref | GoogleScholarGoogle Scholar | 18761053PubMed |

Oakes, CC, Smiraglia, DJ, Plass, C, Trasler, JM, and Robaire, B (2003). Aging results in hypermethylation of ribosomal DNA in sperm and liver of male rats. Proceedings of the National Academy of Sciences of the United States of America 100, 1775–1780.
Aging results in hypermethylation of ribosomal DNA in sperm and liver of male rats.Crossref | GoogleScholarGoogle Scholar | 12574505PubMed |

OIE (2021) Use of animals in research and education. In ‘OIE terrestrial animal health code’. Chapter 7.8. (Organisation for Animal Health) Available at https://www.oie.int/en/what-we-do/standards/codes-and-manuals/terrestrial-code-online-access/?id=169&L=1&htmfile=chapitre_aw_research_education.htm

Paul, C, Nagano, M, and Robaire, B (2013). Aging results in molecular changes in an enriched population of undifferentiated rat spermatogonia. Biology of Reproduction 89, 147.
Aging results in molecular changes in an enriched population of undifferentiated rat spermatogonia.Crossref | GoogleScholarGoogle Scholar | 24227752PubMed |

Rajfer, J (2003). Decreased testosterone in the aging male. Reviews in Urology 5, S1–S2.

Rival, CM, Xu, W, Shankman, LS, Morioka, S, Arandjelovic, S, Lee, CS, Wheeler, KM, Smith, RP, Haney, LB, Isakson, BE, Purcell, S, Lysiak, JJ, and Ravichandran, KS (2019). Phosphatidylserine on viable sperm and phagocytic machinery in oocytes regulate mammalian fertilization. Nature Communications 10, 4456.
Phosphatidylserine on viable sperm and phagocytic machinery in oocytes regulate mammalian fertilization.Crossref | GoogleScholarGoogle Scholar | 31575859PubMed |

Robaire B (2002) Aging of the epididymis. In ‘The epididymis: from molecules to clinical practice: from molecules to clinical practice : a comprehensive survey of the efferent ducts, the epididymis and the vas deferens’. (Eds B Robaire, B Hinton, MC Orgebin-Crist) (Springer US)

Robaire, B, and Hamzeh, M (2011). Androgen action in the epididymis. Journal of Andrology 32, 592–599.
Androgen action in the epididymis.Crossref | GoogleScholarGoogle Scholar | 21764895PubMed |

Robaire B, Hinton BT, Orgebin-Crist M-C (2006) The epididymis. In ‘Knobil and Neill’s physiology of reproduction’. (Eds E Knobil, JD Neill) pp. 1071–1148. (Elsevier)

Roberts, KP, Wamstad, JA, Ensrud, KM, and Hamilton, DW (2003). Inhibition of capacitation-associated tyrosine phosphorylation signaling in rat sperm by epididymal protein Crisp-11. Biology of Reproduction 69, 572–581.
Inhibition of capacitation-associated tyrosine phosphorylation signaling in rat sperm by epididymal protein Crisp-11.Crossref | GoogleScholarGoogle Scholar | 12700197PubMed |

Rosano, G, Caille, AM, Gallardo-Ríos, M, and Munuce, MJ (2007). D-Mannose-binding sites are putative sperm determinants of human oocyte recognition and fertilization. Reproductive BioMedicine Online 15, 182–190.
D-Mannose-binding sites are putative sperm determinants of human oocyte recognition and fertilization.Crossref | GoogleScholarGoogle Scholar | 17697495PubMed |

Rosiak-Gill, A, Gill, K, Jakubik, J, Fraczek, M, Patorski, L, Gaczarzewicz, D, Kurzawa, R, Kurpisz, M, and Piasecka, M (2019). Age-Related changes in human sperm DNA integrity. Aging 11, 5399–5411.
Age-Related changes in human sperm DNA integrity.Crossref | GoogleScholarGoogle Scholar | 31412318PubMed |

SADER (1999) Especificaciones técnicas para la producción, cuidado y uso de los animales de laboratorio. NORMA Oficial Mexicana – NOM-062-ZOO-1999. (Secretaría de Agricultura, Ganaderia, Desarrollo Rural, Pesca y Alimentación) Available at https://www.wgob.mx/cms/uploads/attachment/file/203498/NOM-062-ZOO-1999_220801.pdf

Sakhaee, E, Emadi, L, Abshenas, J, Kheirandish, R, Azari, O, and Amiri, E (2012). Evaluation of epididymal sperm quality following experimentally induced copper poisoning in male rats. Andrologia 44, 110–116.
Evaluation of epididymal sperm quality following experimentally induced copper poisoning in male rats.Crossref | GoogleScholarGoogle Scholar | 21729134PubMed |

Schjoldager, KT, Narimatsu, Y, Joshi, HJ, and Clausen, H (2020). Global view of human protein glycosylation pathways and functions. Nature Reviews Molecular Cell Biology 21, 729–749.
Global view of human protein glycosylation pathways and functions.Crossref | GoogleScholarGoogle Scholar | 33087899PubMed |

Segawa, K, and Nagata, S (2015). An apoptotic ‘Eat Me’ signal: phosphatidylserine exposure. Trends in Cell Biology 25, 639–650.
An apoptotic ‘Eat Me’ signal: phosphatidylserine exposure.Crossref | GoogleScholarGoogle Scholar | 26437594PubMed |

Seligman, J, Zipser, Y, and Kosower, NS (2004). Tyrosine phosphorylation, thiol status, and protein tyrosine phosphatase in rat epididymal spermatozoa. Biology of Reproduction 71, 1009–1015.
Tyrosine phosphorylation, thiol status, and protein tyrosine phosphatase in rat epididymal spermatozoa.Crossref | GoogleScholarGoogle Scholar | 15151929PubMed |

Serre, V, and Robaire, B (1998). Segment-specific morphological changes in aging Brown Norway rat epididymis. Biology of Reproduction 58, 497–513.
Segment-specific morphological changes in aging Brown Norway rat epididymis.Crossref | GoogleScholarGoogle Scholar | 9475407PubMed |

Sullivan, R, and Mieusset, R (2016). The human epididymis: its function in sperm maturation. Human Reproduction Update 22, 574–587.
The human epididymis: its function in sperm maturation.Crossref | GoogleScholarGoogle Scholar | 27307387PubMed |

Syntin, P, and Robaire, B (2001). Sperm structural and motility changes during aging in the Brown Norway rat. Journal of Andrology 22, 235–244.
| 11229797PubMed |

Tecle, E, and Gagneux, P (2015). Sugar-coated sperm: unraveling the functions of the mammalian sperm glycocalyx. Molecular Reproduction and Development 82, 635–650.
Sugar-coated sperm: unraveling the functions of the mammalian sperm glycocalyx.Crossref | GoogleScholarGoogle Scholar | 26061344PubMed |

Tourzani, DA, Paudel, B, Miranda, PV, Visconti, PE, and Gervasi, MG (2018). Changes in protein O-GlcNAcylation during mouse epididymal sperm maturation. Frontiers in Cell and Developmental Biology 6, 60–60.
Changes in protein O-GlcNAcylation during mouse epididymal sperm maturation.Crossref | GoogleScholarGoogle Scholar | 29942801PubMed |

Vermeulen, A (2000). Andropause. Maturitas 34, 5–15.
Andropause.Crossref | GoogleScholarGoogle Scholar | 10687877PubMed |

Vigueras-Villaseñor, RM, Rojas-Castañeda, JC, Chávez-Saldaña, M, Gutiérrez-Pérez, O, García-Cruz, ME, Cuevas-Alpuche, O, Reyes-Romero, MM, and Zambrano, E (2011). Alterations in the spermatic function generated by obesity in rats. Acta Histochemica 113, 214–220.
Alterations in the spermatic function generated by obesity in rats.Crossref | GoogleScholarGoogle Scholar | 20149418PubMed |

Wan, X, Ru, Y, Chu, C, Ni, Z, Zhou, Y, Wang, S, Zhou, Z, and Zhang, Y (2016). Bisphenol A accelerates capacitation-associated protein tyrosine phosphorylation of rat sperm by activating protein kinase A. Acta Biochimica et Biophysica Sinica 48, 573–580.
Bisphenol A accelerates capacitation-associated protein tyrosine phosphorylation of rat sperm by activating protein kinase A.Crossref | GoogleScholarGoogle Scholar | 27174873PubMed |

Wang, C, Sinha Hikim, AP, Lue, YH, Leung, A, Baravarian, S, and Swerdloff, RS (1999). Reproductive aging in the Brown Norway rat is characterized by accelerated germ cell apoptosis and is not altered by luteinizing hormone replacement. Journal of Andrology 20, 509–518.
Reproductive aging in the Brown Norway rat is characterized by accelerated germ cell apoptosis and is not altered by luteinizing hormone replacement.Crossref | GoogleScholarGoogle Scholar | 10452595PubMed |

Wang, Y, Chen, F, Ye, L, Zirkin, B, and Chen, H (2017). Steroidogenesis in Leydig cells: effects of aging and environmental factors. Reproduction 154, R111–R122.
Steroidogenesis in Leydig cells: effects of aging and environmental factors.Crossref | GoogleScholarGoogle Scholar | 28747539PubMed |

Weir, CP, and Robaire, B (2007). Spermatozoa have decreased antioxidant enzymatic capacity and increased reactive oxygen species production during aging in the Brown Norway rat. J Androl 28, 229–240.
Spermatozoa have decreased antioxidant enzymatic capacity and increased reactive oxygen species production during aging in the Brown Norway rat.Crossref | GoogleScholarGoogle Scholar | 17021340PubMed |

WHO (2010) ‘WHO laboratory manual for the examination and processing of human semen.’ (World Health Organization)

Wu, L, and Sampson, NS (2014). Fucose, mannose, and β-N-acetylglucosamine glycopolymers initiate the mouse sperm acrosome reaction through convergent signaling pathways. ACS Chemical Biology 9, 468–475.
Fucose, mannose, and β-N-acetylglucosamine glycopolymers initiate the mouse sperm acrosome reaction through convergent signaling pathways.Crossref | GoogleScholarGoogle Scholar | 24252131PubMed |

Zirkin, BR, Chen, H, and Luo, L (1997). Leydig cell steroidogenesis in aging rats. Experimental Gerontology 32, 529–537.
Leydig cell steroidogenesis in aging rats.Crossref | GoogleScholarGoogle Scholar | 9315454PubMed |

Zitzmann, M (2013). Effects of age on male fertility. Best Practice & Research Clinical Endocrinology & Metabolism 27, 617–628.
Effects of age on male fertility.Crossref | GoogleScholarGoogle Scholar |