Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Maternal protein restriction before and during pregnancy leads to a gestational day-dependent response of folliculogenesis in outbred mice

Lucas C. Cardoso A , Beatriz F. M. D. Costa A , Fernando Felicioni A B , Dirce R. Oliveira C , Marcelo V. Caliari D , Enrrico Bloise A , Hélio Chiarini-Garcia A and Fernanda R. C. L. Almeida https://orcid.org/0000-0003-4219-1290 A E
+ Author Affiliations
- Author Affiliations

A Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, 31270-901, Belo Horizonte, MG, Brazil.

B School of Medicine, Atenas University Centre, Av. Prefeito Alberto Moura, 6000, 35701-383, Sete Lagoas, MG, Brazil.

C Department of Basic Life Sciences, Federal University of Juiz de Fora, Campus Governador Valadares, Av. Dr Raimundo Monteiro de Rezende, 330, Centro – Governador Valadares, MG, CEP 35010-177, Brazil.

D Department of Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, 31270-901, Belo Horizonte, MG, Brazil.

E Corresponding author. Email: falmeida@icb.ufmg.br

Reproduction, Fertility and Development 33(10) 655-664 https://doi.org/10.1071/RD21028
Submitted: 29 January 2021  Accepted: 30 April 2021   Published: 11 June 2021

Abstract

Knowledge of follicle development during pregnancy under experimental conditions could be a key factor to understanding maternal ovarian activity. Thus, this study evaluated the effects of maternal protein restriction before and during pregnancy on folliculogenesis. Swiss outbred female mice were allocated to either a control (CC; 20% protein) or treated (TT; 8% protein) group. Pregnant females were killed either on Gestational day (GD) 7.5 or GD17.5 and the ovaries were evaluated using histomorphometric and immunohistochemical methods. TT females showed higher feed and energy intakes, but lower bodyweight gain at GD17.5 (P < 0.05). They also had lower number of secondary follicles at GD7.5 and a higher proportion of primordial follicles at GD17.5 (P < 0.05). In addition, the areas of the secondary follicles and their granulosa layer were smaller in the TT group on GD7.5, whereas the areas of the oocyte and granulosa layer from atretic follicles were larger (P < 0.05). Notwithstanding the slight increase in the insulin-like growth factor 1 (IGF1) receptor expression on GD7.5 in the TT group, there was a marked reduction in IGF1 expression detected in secondary follicles on GD17.5 (P < 0.05). Collectively, these results demonstrate that protein restriction during pregnancy negatively affects follicle quality by reducing the size and activation capacity, which is more severe in late pregnancy.

Keywords: folliculogenesis, insulin-like growth factor 1 receptor (IGF1R), protein restriction, vascular endothelial growth factor 2 receptor (VEGF2R).


References

Adashi, E. Y. (1998). The IGF family and folliculogenesis. J. Reprod. Immunol. 39, 13–19.
The IGF family and folliculogenesis.Crossref | GoogleScholarGoogle Scholar | 9786450PubMed |

Adashi, E. Y., Resnick, C. E., Hurwitz, A., Ricciarelli, E., Hernandez, E. R., Roberts, C. T., Leroith, D., and Rosenfeld, R. (1991). Insulin-like growth factors: the ovarian connection. Hum. Reprod. 6, 1213–1219.
Insulin-like growth factors: the ovarian connection.Crossref | GoogleScholarGoogle Scholar | 1721620PubMed |

Aiken, C. E., Tarry-Adkins, J. L., and Ozanne, S. E. (2015). Transgenerational developmental programming of ovarian reserve. Sci. Rep. 5, 16175.
Transgenerational developmental programming of ovarian reserve.Crossref | GoogleScholarGoogle Scholar | 26525600PubMed |

Almeida, F. R. C. L., Silva, G. A. B., Fiúza, A. T. L., Chianca, D. A., Ferreira, A. J., and Chiarini-Garcia, H. (2012). Gestational and postnatal protein deficiency affects postnatal development and histomorphometry of liver, kidneys, and ovaries of female rats’ offspring. Appl. Physiol. Nutr. Metab. 37, 293–300.
Gestational and postnatal protein deficiency affects postnatal development and histomorphometry of liver, kidneys, and ovaries of female rats’ offspring.Crossref | GoogleScholarGoogle Scholar |

Almeida, F. R. C. L., Laurenssen, B., Pereira, L. X., Teerds, K. J., and Soede, N. M. (2017). Effects of birthweight on reproductive system development and onset of puberty in gilts. Reprod. Fertil. Dev. 29, 254–261.
Effects of birthweight on reproductive system development and onset of puberty in gilts.Crossref | GoogleScholarGoogle Scholar |

Bachelot, A., and Binart, N. (2005). Corpus luteum development: lessons from genetic models in mice. Curr. Top. Dev. Biol. 68, 49–84.
Corpus luteum development: lessons from genetic models in mice.Crossref | GoogleScholarGoogle Scholar | 16124996PubMed |

Bernal, A. B., Vickers, M. H., Hampton, M. B., Poynton, R. A., and Sloboda, D. M. (2010). Maternal undernutrition significantly impacts ovarian follicle number and increases ovarian oxidative stress in adult rat offspring. PLoS One 5, e15558.
Maternal undernutrition significantly impacts ovarian follicle number and increases ovarian oxidative stress in adult rat offspring.Crossref | GoogleScholarGoogle Scholar | 21179452PubMed |

Bozzola, J. J., and Russell, L. D. (1999). ‘Electron Microscopy: Principles and Techniques For Biologists.’ 2nd edn. (Jones & Bartlett Learning: London.)

Chiarini-Garcia, H., Parreira, G. G., and Almeida, F. R. (2011). Glycol methacrylate embedding for improved morphological, morphometrical, and immunohistochemical investigations under light microscopy: testes as a model. In ‘Light Microscopy’. (Eds H. Chiarini-Garcia and R. C. N. Melo.) pp. 3–18. (Humana Press: Totowa.)

Close, W. H., and Mullan, B. P. (1996). Nutrition and feeding of breeding stock. In ‘Pig Production’. (Eds M. R. Taverner and A. C. Dunkin.) pp. 169–202. (Elsevier: Amsterdam.)

Costermans, N. G. J., Keijer, J., van Schothorst, E. M., Kemp, B., Keshtkar, S., Bunschoten, A., Soede, N. M., and Teerds, K. J. (2019). In ovaries with high or low variation in follicle size, granulosa cells of antral follicles exhibit distinct size-related processes. Mol. Hum. Reprod. 25, 614–624.
In ovaries with high or low variation in follicle size, granulosa cells of antral follicles exhibit distinct size-related processes.Crossref | GoogleScholarGoogle Scholar |

Daniel, Z., Swali, A., Emes, R., and Langley-Evans, S. C. (2016). The effect of maternal undernutrition on the rat placental transcriptome: protein restriction up-regulates cholesterol transport. Genes Nutr. 11, 27.
The effect of maternal undernutrition on the rat placental transcriptome: protein restriction up-regulates cholesterol transport.Crossref | GoogleScholarGoogle Scholar | 27777632PubMed |

Drumond, A. L., Meistrich, M. L., and Chiarini-Garcia, H. (2011). Spermatogonial morphology and kinetics during testis development in mice: a high-resolution light microscopy approach. Reproduction 142, 145.
Spermatogonial morphology and kinetics during testis development in mice: a high-resolution light microscopy approach.Crossref | GoogleScholarGoogle Scholar | 21521798PubMed |

Erickson, G. F., and Danforth, D. R. (1995). Ovarian control of follicle development. Am. J. Obstet. Gynecol. 172, 736–747.
Ovarian control of follicle development.Crossref | GoogleScholarGoogle Scholar | 7872375PubMed |

Evans, A. C. O., Mossa, F., Walsh, S. W., Scheetz, D., Jimenez-Krassel, F., Ireland, J. L. H., Smith, G. W., and Ireland, J. J. (2012). Effects of maternal environment during gestation on ovarian folliculogenesis and consequences for fertility in bovine offspring. Reprod. Domest. Anim. 47, 31–37.
Effects of maternal environment during gestation on ovarian folliculogenesis and consequences for fertility in bovine offspring.Crossref | GoogleScholarGoogle Scholar |

Felicioni, F., Santos, T. G., Paula, T. D. M. D., Chiarini-Garcia, H., and Almeida, F. R. C. L. (2019). Intrauterine growth restriction: screening and diagnosis using animal models. Anim. Reprod. 16, 66–71.
Intrauterine growth restriction: screening and diagnosis using animal models.Crossref | GoogleScholarGoogle Scholar |

Gonzalez, P. N., Gasperowicz, M., Barbeito-Andrés, J., Klenin, N., Cross, J. C., and Hallgrímsson, B. (2016). Chronic protein restriction in mice impacts placental function and maternal body weight before fetal growth. PLoS One 11, e0152227.
Chronic protein restriction in mice impacts placental function and maternal body weight before fetal growth.Crossref | GoogleScholarGoogle Scholar | 27018791PubMed |

Greenwald, G. S., and Choudary, J. B. (1969). Follicular development and induction of ovulation in the pregnant mouse. Endocrinology 84, 1512–1516.
Follicular development and induction of ovulation in the pregnant mouse.Crossref | GoogleScholarGoogle Scholar | 5781130PubMed |

Guzmán, C., García-Becerra, R., Aguilar-Medina, M. A., Méndez, I., Merchant-Larios, H., and Zambrano, E. (2014). Maternal protein restriction during pregnancy and/or lactation negatively affects follicular ovarian development and steroidogenesis in the prepubertal rat offspring. Arch. Med. Res. 45, 294–300.
Maternal protein restriction during pregnancy and/or lactation negatively affects follicular ovarian development and steroidogenesis in the prepubertal rat offspring.Crossref | GoogleScholarGoogle Scholar | 24819035PubMed |

Henchion, M., Hayes, M., Mullen, A., Fenelon, M., and Tiwari, B. (2017). Future protein supply and demand: strategies and factors influencing a sustainable equilibrium. Foods 6, 53.
Future protein supply and demand: strategies and factors influencing a sustainable equilibrium.Crossref | GoogleScholarGoogle Scholar |

Hess, J. M., Cifelli, C. J., Agarwal, S., and Fulgoni, V. L. (2019). Comparing the cost of essential nutrients from different food sources in the American diet using NHANES 2011–2014. Nutr. J. 18, 68.
Comparing the cost of essential nutrients from different food sources in the American diet using NHANES 2011–2014.Crossref | GoogleScholarGoogle Scholar | 31706353PubMed |

Ito, T., Hoshiai, K., Tanabe, K., Nakamura, A., Funamoto, K., Aoyagi, A., Chisaka, H., Okamura, K., Yaegashi, N., and Kimura, Y. (2011). Maternal undernutrition with vaginal inflammation impairs the neonatal oligodendrogenesis in mice. Tohoku J. Exp. Med. 223, 215–222.
Maternal undernutrition with vaginal inflammation impairs the neonatal oligodendrogenesis in mice.Crossref | GoogleScholarGoogle Scholar | 21403432PubMed |

Krasnow, S. M., and Steiner, R. A. (2006). Physiological mechanisms integrating metabolism and reproduction. In ‘Knobil and Neill’s Physiology of Reproduction’. 3rd edn. (Ed. J. D. Neill.) pp. 2553–2625. (Elsevier.)

Melincovici, C. S., Bosca, A. B., Susman, S., Marginean, M., Mihu, C., Istrate, M., Moldovan, I. M., Roman, A. L., and Mihu, C. M. (2018). Vascular endothelial growth factor (VEGF) – key factor in normal and pathological angiogenesis. Rom. J. Morphol. Embryol. 59, 455–467.
| 30173249PubMed |

National Research Council (US) Subcommittee on Laboratory Animal Nutrition (1995). ‘Nutrient Requirements of Laboratory Animals: 1995.’ Fourth Revised Edition. (National Academies Press: Washington, DC.)

Nelson, D. L., and Cox, M. M. (2013). ‘Lehninger Principles of Biochemistry.’ 6th edn. (W. H. Freeman and Co.: New York.)

Osman, P. (1986). Morphometric analysis of follicular dynamics in pregnant and pseudopregnant rats. J. Reprod. Fertil. 76, 11–22.
Morphometric analysis of follicular dynamics in pregnant and pseudopregnant rats.Crossref | GoogleScholarGoogle Scholar | 3944784PubMed |

Prata, L. O., Rodrigues, C. R., Martins, J. M., Vasconcelos, P. C., Oliveira, F. M. S., Ferreira, A. J., Rodrigues-Machado, M. G., and Caliari, M. V. (2017). ACE2 activator associated with physical exercise potentiates the reduction of pulmonary fibrosis. Exp. Biol. Med. (Maywood) 242, 8–21.
ACE2 activator associated with physical exercise potentiates the reduction of pulmonary fibrosis.Crossref | GoogleScholarGoogle Scholar | 27550926PubMed |

Reeves, P. G., Nielsen, F. H., and Fahey, G. C. (1993). AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J. Nutr. 123, 1939–1951.
AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet.Crossref | GoogleScholarGoogle Scholar | 8229312PubMed |

Richards, J. S., and Kersey, K. A. (1979). Changes in theca and granulosa cell function in antral follicles developing during pregnancy in the rat: gonadotropin receptors, cyclic AMP and estradiol-17β. Biol. Reprod. 21, 1185–1201.
Changes in theca and granulosa cell function in antral follicles developing during pregnancy in the rat: gonadotropin receptors, cyclic AMP and estradiol-17β.Crossref | GoogleScholarGoogle Scholar | 229922PubMed |

Ross, M. H., and Pawlina, W. (2016). ‘Ross Histologia: texto e atlas.’ 7th edn. (Guanabara Koogan: Rio de Janeiro.)

Sánchez, F., and Smitz, J. (2012). Molecular control of oogenesis. Biochim. Biophys. Acta 1822, 1896–1912.
Molecular control of oogenesis.Crossref | GoogleScholarGoogle Scholar | 22634430PubMed |

Schutt, A. K., Blesson, C. S., Hsu, J. W., Valdes, C. T., Gibbons, W. E., Jahoor, F., and Yallampalli, C. (2019). Preovulatory exposure to a protein-restricted diet disrupts amino acid kinetics and alters mitochondrial structure and function in the rat oocyte and is partially rescued by folic acid. Reprod. Biol. Endocrinol. 17, 12.
Preovulatory exposure to a protein-restricted diet disrupts amino acid kinetics and alters mitochondrial structure and function in the rat oocyte and is partially rescued by folic acid.Crossref | GoogleScholarGoogle Scholar | 30654812PubMed |

Sui, S., Jia, Y., He, B., Li, R., Li, X., Cai, D., Song, H., Zhang, R., and Zhao, R. (2014). Maternal low-protein diet alters ovarian expression of folliculogenic and steroidogenic genes and their regulatory MicroRNAs in neonatal piglets. Asian-Australas. J. Anim. Sci. 27, 1695–1704.
Maternal low-protein diet alters ovarian expression of folliculogenic and steroidogenic genes and their regulatory MicroRNAs in neonatal piglets.Crossref | GoogleScholarGoogle Scholar | 25358362PubMed |

United Nations (2016). The UN decade of action on nutrition. Available at https://www.un.org/nutrition/ [verified August 2020].

Winship, A. L., Gazzard, S. E., Cullen-McEwen, L. A., Bertram, J. F., and Hutt, K. J. (2018). Maternal low-protein diet programmes low ovarian reserve in offspring. Reproduction 156, 299–311.
Maternal low-protein diet programmes low ovarian reserve in offspring.Crossref | GoogleScholarGoogle Scholar | 30306601PubMed |

Zhou, J., Kumar, T. R., Matzuk, M. M., and Bondy, C. (1997). Insulin-like growth factor I regulates gonadotropin responsiveness in the murine ovary. Mol. Endocrinol. 11, 1924–1933.
Insulin-like growth factor I regulates gonadotropin responsiveness in the murine ovary.Crossref | GoogleScholarGoogle Scholar | 9415397PubMed |

Zhuo, Y., Hua, L., Feng, B., Jiang, X., Li, J., Jiang, D., Huang, X., Zhu, Y., Li, Z., Yan, L., Jin, C., Che, L., Fang, Z., Lin, Y., Xu, S., Li, J., and Wu, D. (2019). Fibroblast growth factor 21 coordinates adiponectin to mediate the beneficial effects of low-protein diet on primordial follicle reserve. EBioMedicine 41, 623–635.
Fibroblast growth factor 21 coordinates adiponectin to mediate the beneficial effects of low-protein diet on primordial follicle reserve.Crossref | GoogleScholarGoogle Scholar | 30772303PubMed |