Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Inhibition of apical domain formation does not block blastocyst development in bovine embryos

S. A. A. dos Anjos A B , C. P. da Costa A , M. E. O. A. Assumpção A , J. A. Visintin A and M. D. Goissis https://orcid.org/0000-0002-7382-7477 A C
+ Author Affiliations
- Author Affiliations

A Department of Animal Reproduction, College of Veterinary Medicine and Animal Science, University of São Paulo, Av. Orlando Marques de Paiva, 87, Sao Paulo, SP 05508-270, Brazil.

B Institute of Biosciences, University of São Paulo, Av. Orlando Marques de Paiva, 87, Sao Paulo, SP 05508-270, Brazil.

C Corresponding author. Email: mdgoissis@usp.br

Reproduction, Fertility and Development 33(10) 665-673 https://doi.org/10.1071/RD20339
Submitted: 23 December 2020  Accepted: 4 May 2021   Published: 7 June 2021

Abstract

The first event of cellular differentiation consists of the segregation of the trophectoderm and the inner cell mass. Studies in mice suggest that cell contractility and the formation of an apical domain play important roles in this event; however, this remains unknown in the bovine. We tested the hypothesis that blocking apical domain formation would halt subsequent trophectoderm differentiation in bovine embryos. We first assessed the formation of an apical domain by the presence of Par-6 Family Cell Polarity Regulator Beta (PARD6B) and Ezrin (EZR), which appeared after the 8-cell stage. We inhibited apical domain formation by blocking cell contractility with 25 μM (–)-blebbistatin. Treatment from 90 to 186 h after insemination did not reduce blastocyst development compared with the untreated control group or the group treated with inactive (+)-blebbistatin. Immunofluorescence staining after blebbistatin treatment revealed the absence of EZR and the trophectoderm marker Caudal Type Homeobox 2 (CDX2). Following blebbistatin treatment, Yes1 Associated Transcriptional Regulator (YAP), which is involved in the Hippo signalling pathway, exhibited cytoplasmic staining instead of nuclear localisation. Despite changes in protein expression and localisation, no difference in trophectoderm or total cell numbers was observed. In conclusion, inhibition of cell contractility inhibited apical domain formation without impairing blastocyst formation, suggesting that a different biological mechanism is involved in trophectoderm and inner cell mass differentiation in bovine embryos.

Keywords: blastocyst, embryo differentiation, inner cell mass, trophectoderm.


References

Akizawa, H., Kobayashi, K., Bai, H., Takahashi, M., Kagawa, S., Nagatomo, H., and Kawahara, M. (2018). Reciprocal regulation of TEAD4 and CCN2 for the trophectoderm development of the bovine blastocyst. Reproduction 155, 563–571.
Reciprocal regulation of TEAD4 and CCN2 for the trophectoderm development of the bovine blastocyst.Crossref | GoogleScholarGoogle Scholar | 29661794PubMed |

Alarcon, V. B. (2010). Cell Polarity Regulator PARD6B Is Essential for Trophectoderm Formation in the Preimplantation Mouse Embryo1. Biol. Reprod. 83, 347–358.
Cell Polarity Regulator PARD6B Is Essential for Trophectoderm Formation in the Preimplantation Mouse Embryo1.Crossref | GoogleScholarGoogle Scholar | 20505164PubMed |

Amano, M., Nakayama, M., and Kaibuchi, K. (2010). Rho-kinase/ROCK: A key regulator of the cytoskeleton and cell polarity. Cytoskeleton (Hoboken) 67, 545–554.
Rho-kinase/ROCK: A key regulator of the cytoskeleton and cell polarity.Crossref | GoogleScholarGoogle Scholar | 20803696PubMed |

Bavister, B. D., Leibfried, M. L., and Lieberman, G. (1983). Development of preimplantation embryos of the golden hamster in a defined culture medium. Biol. Reprod. 28, 235–247.
Development of preimplantation embryos of the golden hamster in a defined culture medium.Crossref | GoogleScholarGoogle Scholar | 6830941PubMed |

Berg, D. K., Smith, C. S., Pearton, D. J., Wells, D. N., Broadhurst, R., Donnison, M., and Pfeffer, P. L. (2011). Trophectoderm Lineage Determination in Cattle. Dev. Cell 20, 244–255.
Trophectoderm Lineage Determination in Cattle.Crossref | GoogleScholarGoogle Scholar | 21316591PubMed |

Bou, G., Liu, S., Sun, M., Zhu, J., Xue, B., Guo, J., Zhao, Y., Qu, B., Weng, X., Wei, Y., Lei, L., and Liu, Z. (2017). CDX2 is essential for cell proliferation and polarity in porcine blastocysts. Development 144, 1296–1306.
CDX2 is essential for cell proliferation and polarity in porcine blastocysts.Crossref | GoogleScholarGoogle Scholar | 28219949PubMed |

Bryant, D. M., Roignot, J., Datta, A., Overeem, A. W., Kim, M., Yu, W., Peng, X., Eastburn, D. J., Ewald, A. J., Werb, Z., and Mostov, K. E. (2014). A molecular switch for the orientation of epithelial cell polarization. Dev. Cell 31, 171–187.
A molecular switch for the orientation of epithelial cell polarization.Crossref | GoogleScholarGoogle Scholar | 25307480PubMed |

Chi, F., Sharpley, M. S., Nagaraj, R., Sen Roy, S., and Banerjee, U. (2020). Glycolysis-Independent Glucose Metabolism Distinguishes TE from ICM Fate during Mammalian Embryogenesis. Dev. Cell 53, 9–26.e4.
Glycolysis-Independent Glucose Metabolism Distinguishes TE from ICM Fate during Mammalian Embryogenesis.Crossref | GoogleScholarGoogle Scholar | 32197068PubMed |

de Sousa, R. V., da Silva Cardoso, C. R., Butzke, G., Dode, M. A. N., Rumpf, R., and Franco, M. M. (2017). Biopsy of bovine embryos produced in vivo and in vitro does not affect pregnancy rates. Theriogenology 90, 25–31.
Biopsy of bovine embryos produced in vivo and in vitro does not affect pregnancy rates.Crossref | GoogleScholarGoogle Scholar | 28166976PubMed |

Gaspar, P., and Tapon, N. (2014). Sensing the local environment: Actin architecture and Hippo signalling. Curr. Opin. Cell Biol. 31, 74–83.
Sensing the local environment: Actin architecture and Hippo signalling.Crossref | GoogleScholarGoogle Scholar | 25259681PubMed |

Gerri, C., McCarthy, A., Alanis-Lobato, G., Demtschenko, A., Bruneau, A., Loubersac, S., Fogarty, N. M. E., Hampshire, D., Elder, K., Snell, P., Christie, L., David, L., Van de Velde, H., Fouladi-Nashta, A. A., and Niakan, K. K. (2020). Initiation of a conserved trophectoderm program in human, cow and mouse embryos. Nature 587, 443–447.
Initiation of a conserved trophectoderm program in human, cow and mouse embryos.Crossref | GoogleScholarGoogle Scholar | 32968278PubMed |

Goissis, M. D., and Cibelli, J. B. (2014). Functional Characterization of CDX2 During Bovine Preimplantation Development In Vitro. Mol. Reprod. Dev. 81, 962–970.
Functional Characterization of CDX2 During Bovine Preimplantation Development In Vitro.Crossref | GoogleScholarGoogle Scholar | 25251051PubMed |

Hirate, Y., Hirahara, S., Inoue, K. I., Suzuki, A., Alarcon, V. B., Akimoto, K., Hirai, T., Hara, T., Adachi, M., Chida, K., Ohno, S., Marikawa, Y., Nakao, K., Shimono, A., and Sasaki, H. (2013). Polarity-dependent distribution of angiomotin localizes hippo signaling in preimplantation embryos. Curr. Biol. 23, 1181–1194.
Polarity-dependent distribution of angiomotin localizes hippo signaling in preimplantation embryos.Crossref | GoogleScholarGoogle Scholar | 23791731PubMed |

Hirate, Y., Hirahara, S., Inoue, K-i., Kiyonari, H., Niwa, H., and Sasaki, H. (2015). Par-aPKC-dependent and -independent mechanisms cooperatively control cell polarity, Hippo signaling, and cell positioning in 16-cell stage mouse embryos. Dev. Growth Differ. 57, 544–556.
Par-aPKC-dependent and -independent mechanisms cooperatively control cell polarity, Hippo signaling, and cell positioning in 16-cell stage mouse embryos.Crossref | GoogleScholarGoogle Scholar | 26450797PubMed |

Koo, D.-B., Kang, Y.-K., Choi, Y.-H., Park, J. S., Kim, H.-N., Oh, K. B., Son, D.-S., Park, H., Lee, K.-K., and Han, Y.-M. (2002). Aberrant allocations of inner cell mass and trophectoderm cells in bovine nuclear transfer blastocysts. Biol. Reprod. 67, 487–492.
Aberrant allocations of inner cell mass and trophectoderm cells in bovine nuclear transfer blastocysts.Crossref | GoogleScholarGoogle Scholar | 12135886PubMed |

Korotkevich, E., Niwayama, R., Courtois, A., Friese, S., Berger, N., Buchholz, F., and Hiiragi, T. (2017). The Apical Domain Is Required and Sufficient for the First Lineage Segregation in the Mouse Embryo. Dev. Cell 40, 235–247.e7.
The Apical Domain Is Required and Sufficient for the First Lineage Segregation in the Mouse Embryo.Crossref | GoogleScholarGoogle Scholar | 28171747PubMed |

Koyama, H., Suzuki, H., Yang, X., Jiang, S., and Foote, R. H. (1994). Analysis of Polarity of Bovine and Rabbit Embryos by Scanning Electron Microscopy1. Biol. Reprod. 50, 163–170.
Analysis of Polarity of Bovine and Rabbit Embryos by Scanning Electron Microscopy1.Crossref | GoogleScholarGoogle Scholar | 8312441PubMed |

Liu, S., Bou, G., Zhao, J., Guo, S., Guo, J., Weng, X., Yin, Z., and Liu, Z. (2018). Asynchronous CDX2 expression and polarization of porcine trophoblast cells reflects a species-specific trophoderm lineage determination progress model. Mol. Reprod. Dev. 85, 590–598.
Asynchronous CDX2 expression and polarization of porcine trophoblast cells reflects a species-specific trophoderm lineage determination progress model.Crossref | GoogleScholarGoogle Scholar | 29719081PubMed |

Maître, J. L., Turlier, H., Illukkumbura, R., Eismann, B., Niwayama, R., Nédélec, F., and Hiiragi, T. (2016). Asymmetric division of contractile domains couples cell positioning and fate specification. Nature 536, 344–348.
Asymmetric division of contractile domains couples cell positioning and fate specification.Crossref | GoogleScholarGoogle Scholar | 27487217PubMed |

Motegi, F., and Sugimoto, A. (2006). Sequential functioning of the ECT-2 RhoGEF, RHO-1 and CDC-42 establishes cell polarity in Caenorhabditis elegans embryos. Nat. Cell Biol. 8, 978–985.
Sequential functioning of the ECT-2 RhoGEF, RHO-1 and CDC-42 establishes cell polarity in Caenorhabditis elegans embryos.Crossref | GoogleScholarGoogle Scholar | 16921365PubMed |

Negrón-Pérez, V. M., and Hansen, P. J. (2018). Role of yes-associated protein 1, angiomotin, and mitogen-activated kinase kinase 1/2 in development of the bovine blastocyst. Biol. Reprod. 98, 170–183.
Role of yes-associated protein 1, angiomotin, and mitogen-activated kinase kinase 1/2 in development of the bovine blastocyst.Crossref | GoogleScholarGoogle Scholar | 29228123PubMed |

Negrón-Pérez, V. M., Rodrigues, L. T., Mingoti, G. Z., and Hansen, P. J. (2018). Role of ROCK signaling in formation of the trophectoderm of the bovine preimplantation embryo. Mol. Reprod. Dev. 85, 374–375.
Role of ROCK signaling in formation of the trophectoderm of the bovine preimplantation embryo.Crossref | GoogleScholarGoogle Scholar | 29542836PubMed |

Nishioka, N., Yamamoto, S., Kiyonari, H., Sato, H., Sawada, A., Ota, M., Nakao, K., and Sasaki, H. (2008). Tead4 is required for specification of trophectoderm in pre-implantation mouse embryos. Mech. Dev. 125, 270–283.
Tead4 is required for specification of trophectoderm in pre-implantation mouse embryos.Crossref | GoogleScholarGoogle Scholar | 18083014PubMed |

Nishioka, N., Inoue, K. I., Adachi, K., Kiyonari, H., Ota, M., Ralston, A., Yabuta, N., Hirahara, S., Stephenson, R. O., Ogonuki, N., Makita, R., Kurihara, H., Morin-Kensicki, E. M., Nojima, H., Rossant, J., Nakao, K., Niwa, H., and Sasaki, H. (2009). The Hippo Signaling Pathway Components Lats and Yap Pattern Tead4 Activity to Distinguish Mouse Trophectoderm from Inner Cell Mass. Dev. Cell 16, 398–410.
The Hippo Signaling Pathway Components Lats and Yap Pattern Tead4 Activity to Distinguish Mouse Trophectoderm from Inner Cell Mass.Crossref | GoogleScholarGoogle Scholar | 19289085PubMed |

Parrish, J. J., Susko-Parrish, J., Winer, M. A., and First, N. L. (1988). Capacitation of Bovine Sperm by Heparin1. Biol. Reprod. 38, 1171–1180.
Capacitation of Bovine Sperm by Heparin1.Crossref | GoogleScholarGoogle Scholar | 3408784PubMed |

Plusa, B., Frankenberg, S., Chalmers, A., Hadjantonakis, A.-K., Moore, C. A., Papalopulu, N., Papaioannou, V. E., Glover, D. M., and Zernicka-Goetz, M. (2005). Downregulation of Par3 and aPKC function directs cells towards the ICM in the preimplantation mouse embryo. J. Cell Sci. 118, 505–515.
Downregulation of Par3 and aPKC function directs cells towards the ICM in the preimplantation mouse embryo.Crossref | GoogleScholarGoogle Scholar | 15657073PubMed |

Pontes, J. H. F., Nonato-Junior, I., Sanches, B. V., Ereno-Junior, J. C., Uvo, S., Barreiros, T. R. R., Oliveira, J. A., Hasler, J. F., and Seneda, M. M. (2009). Comparison of embryo yield and pregnancy rate between in vivo and in vitro methods in the same Nelore (Bos indicus) donor cows. Theriogenology 71, 690–697.
Comparison of embryo yield and pregnancy rate between in vivo and in vitro methods in the same Nelore (Bos indicus) donor cows.Crossref | GoogleScholarGoogle Scholar |

Saiz, N., Kang, M., Schrode, N., Lou, X., and Hadjantonakis, A.-K. (2016). Quantitative Analysis of Protein Expression to Study Lineage Specification in Mouse Preimplantation Embryos. J. Vis. Exp. 108, e53654.
Quantitative Analysis of Protein Expression to Study Lineage Specification in Mouse Preimplantation Embryos.Crossref | GoogleScholarGoogle Scholar |

Sakurai, N., Takahashi, K., Emura, N., Hashizume, T., and Sawai, K. (2017). Effects of downregulating TEAD4 transcripts by RNA interference on early development of bovine embryos. J. Reprod. Dev. 63, 135–142.
Effects of downregulating TEAD4 transcripts by RNA interference on early development of bovine embryos.Crossref | GoogleScholarGoogle Scholar | 27941302PubMed |

Schneider, C. A., Rasband, W. S., and Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675.
NIH Image to ImageJ: 25 years of image analysis.Crossref | GoogleScholarGoogle Scholar | 22930834PubMed |

Tribulo, P., da Silva Leão, B. C., Lehloenya, K. C., Mingoti, G. Z., and Hansen, P. J. (2017). Consequences of endogenous and exogenous WNT signaling for development of the preimplantation bovine embryo. Biol. Reprod. 96, 1129–1141.
Consequences of endogenous and exogenous WNT signaling for development of the preimplantation bovine embryo.Crossref | GoogleScholarGoogle Scholar | 28575156PubMed |

Yagi, R., Kohn, M. J., Karavanova, I., Kaneko, K. J., Vullhorst, D., DePamphilis, M. L., and Buonanno, A. (2007). Transcription factor TEAD4 specifies the trophectoderm lineage at the beginning of mammalian development. Development 134, 3827–3836.
Transcription factor TEAD4 specifies the trophectoderm lineage at the beginning of mammalian development.Crossref | GoogleScholarGoogle Scholar | 17913785PubMed |

Zenker, J., White, M. D., Gasnier, M., Alvarez, Y. D., Lim, H. Y. G., Bissiere, S., Biro, M., and Plachta, N. (2018). Expanding Actin Rings Zipper the Mouse Embryo for Blastocyst Formation. Cell 173, 776–791.e17.
Expanding Actin Rings Zipper the Mouse Embryo for Blastocyst Formation.Crossref | GoogleScholarGoogle Scholar | 29576449PubMed |

Zhu, M., Leung, C. Y., Shahbazi, M. N., and Zernicka-Goetz, M. (2017). Actomyosin polarisation through PLC-PKC triggers symmetry breaking of the mouse embryo. Nat. Commun. 8, 921.
Actomyosin polarisation through PLC-PKC triggers symmetry breaking of the mouse embryo.Crossref | GoogleScholarGoogle Scholar | 29030553PubMed |

Zullo, G., Albero, G., Neglia, G., De Canditiis, C., Bifulco, G., Campanile, G., and Gasparrini, B. (2016a). L-ergothioneine supplementation during culture improves quality of bovine in vitro-produced embryos. Theriogenology 85, 688–697.
L-ergothioneine supplementation during culture improves quality of bovine in vitro-produced embryos.Crossref | GoogleScholarGoogle Scholar | 26542137PubMed |

Zullo, G., De Canditiis, C., Pero, M. E., Albero, G., Salzano, A., Neglia, G., Campanile, G., and Gasparrini, B. (2016b). Crocetin improves the quality of in vitro–produced bovine embryos: Implications for blastocyst development, cryotolerance, and apoptosis. Theriogenology 86, 1879–1885.
Crocetin improves the quality of in vitro–produced bovine embryos: Implications for blastocyst development, cryotolerance, and apoptosis.Crossref | GoogleScholarGoogle Scholar | 27393222PubMed |