Melatonin modulates swine luteal and adipose stromal cell functions
Alessandra Dodi A , Simona Bussolati A , Stefano Grolli A , Francesca Grasselli A , Rosanna Di Lecce A and Giuseppina Basini A BA Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy.
B Corresponding author. Email: basini@unipr.it
Reproduction, Fertility and Development - https://doi.org/10.1071/RD20312
Submitted: 1 December 2020 Accepted: 8 December 2020 Published online: 2 February 2021
Abstract
Based on our previous study in follicles, the first aim of this work was to evaluate the effect of melatonin in the swine corpus luteum (CL). Luteal cells were exposed to 10 and 20 pg mL−1 melatonin. We evaluated the effect on proliferation (bromo-deoxy-uridine uptake), steroidogenesis (progesterone) and redox status by means of Griess test (nitric oxide production), WST-1 test (superoxide anion generation) and FRAP test (non-enzymatic antioxidant power). The results showed a significant increase in antioxidant power, as well as a reduction in the other parameters analysed. These data and the expression of MT2 observed in luteal cells allow us to hypothesise a physiological role of melatonin in the regulation of CL functionality. The reproductive function is dependent on energy reserves stored in adipose tissue. Therefore, we sought to verify the effect of melatonin on adipose stromal cells (ASCs). MT2 receptor expression was detected in ASCs and the presence of gene markers (PPARγ and leptin) before and after adipogenic differentiation was verified. The differentiation was significantly inhibited by melatonin, as well as cell viability. In conclusion, present results suggest that melatonin exerts a potential inhibitory action on luteal function and adipogenesis, possibly mediated by MT2.
Keywords: corpus luteum, adipose tissue, progesterone, nitric oxide, superoxide anion.
References
Acuña-Castroviejo, D., Escames, G., Venegas, C., Díaz-Casado, M. E., Lima-Cabello, E., López, L. C., Rosales-Corral, S., Tan, D. X., and Reiter, R. J. (2014). Extrapineal melatonin: sources, regulation, and potential functions. Cell. Mol. Life Sci. 71, 2997–3025.| Extrapineal melatonin: sources, regulation, and potential functions.Crossref | GoogleScholarGoogle Scholar | 24554058PubMed |
Akins, E. L., and Morrissette, M. C. (1968). Gross ovarian changes during estrous cycle of swine. Am. J. Vet. Res. 29, 1953–1957.
| 5692889PubMed |
Alonso-Vale, M. I. C., Andreotti, S., Peres, S. B., Forato Anhe, G., Borges-Silva, C. N., Cipolla Neto, J., and Lima, F. B. (2005). Melatonin enhances leptin expression by rat adipocytes in the presence of insulin. Am. J. Physiol. Endocrinol. Metab. 288, E805–E812.
| Melatonin enhances leptin expression by rat adipocytes in the presence of insulin.Crossref | GoogleScholarGoogle Scholar |
Babalola, G. O., and Shapiro, B. H. (1988). Correlation of follicular steroid hormone profiles with ovarian cyclicity in sows. J. Reprod. Fertil. 84, 79–87.
| Correlation of follicular steroid hormone profiles with ovarian cyclicity in sows.Crossref | GoogleScholarGoogle Scholar | 3184063PubMed |
Basini, G., Santini, S. E., Bussolati, S., and Grasselli, F. (2009). The phytoestrogen quercetin impairs steroidogenesis and angiogenesis in swine granulose cells in vitro. J. Biomed. Biotechnol. 2009, 1–8.
Basini, G., Baioni, L., Bussolati, S., Grolli, S., Kramer, L. H., Wagner, G. F., and Grasselli, F. (2010). Expression and localization of stanniocalcin 1 in swine ovary. Gen. Comp. Endocrinol. 166, 404–408.
| Expression and localization of stanniocalcin 1 in swine ovary.Crossref | GoogleScholarGoogle Scholar | 20035757PubMed |
Basini, G., Falasconi, I., Bussolati, S., Grolli, S., Ramoni, R., and Grasselli, F. (2014). Isolation of endothelial cells and pericytes from swine corpus luteum. Domest. Anim. Endocrinol. 48, 100–109.
| Isolation of endothelial cells and pericytes from swine corpus luteum.Crossref | GoogleScholarGoogle Scholar | 24906935PubMed |
Basini, G., Bussolati, S., Ciccimarra, R., and Grasselli, F. (2017). Melatonin potentially acts directly on swine ovary by modulating granulosa cell function and angiogenesis. Reprod. Fertil. Dev. 29, 2305–2312.
| Melatonin potentially acts directly on swine ovary by modulating granulosa cell function and angiogenesis.Crossref | GoogleScholarGoogle Scholar | 28366192PubMed |
Basini, G., Ciccimarra, R., Bussolati, S., Grolli, S., Ragionieri, L., Ravanetti, F., Botti, M., Gazza, F., Cacchioli, A., Di Lecce, R., Cantoni, A. M., and Grasselli, F. (2018). Orexin A in swine corpus luteum. Domest. Anim. Endocrinol. 64, 38–48.
| Orexin A in swine corpus luteum.Crossref | GoogleScholarGoogle Scholar | 29733985PubMed |
Berni, M., Gigante, P., Bussolati, S., Grasselli, F., Grolli, S., Ramoni, R., and Basini, G. (2019). Bisphenol S, a bisphenol A alternative, impairs swine ovarian and adipose cell functions. Domest. Anim. Endocrinol. 66, 48–56.
| Bisphenol S, a bisphenol A alternative, impairs swine ovarian and adipose cell functions.Crossref | GoogleScholarGoogle Scholar | 30439591PubMed |
Brydon, L., Petit, L., Delagrange, P., Strosberg, A. D., and Jockers, R. (2001). Expression of MT2 (Mel1b) receptors in human PAZ6 adipocytes. Endocrinology 142, 4264–4271.
| Expression of MT2 (Mel1b) receptors in human PAZ6 adipocytes.Crossref | GoogleScholarGoogle Scholar | 11564683PubMed |
Cao, Y., Feng, Y., Zhang, Y., Zhu, X., and Jin, F. (2016). L-Arginine supplementation inhibits the growth of breast cancer by enhancing innate and adaptative immune responses mediated by suppression of MDSCs in vivo. BMC Cancer 16, 343.
| L-Arginine supplementation inhibits the growth of breast cancer by enhancing innate and adaptative immune responses mediated by suppression of MDSCs in vivo.Crossref | GoogleScholarGoogle Scholar | 27246354PubMed |
Cipolla-Neto, J., Amaral, F. J., Afeche, S. C., Tan, D. X., and Reiter, R. J. (2014). Melatonin, energy metabolism, and obesity: a review. J. Pineal Res. 56, 371–381.
| Melatonin, energy metabolism, and obesity: a review.Crossref | GoogleScholarGoogle Scholar | 24654916PubMed |
Codenotti, S., Battistelli, M., Burattini, S., Salucci, S., Falcieri, E., Rezzani, R., Faggi, F., Colombi, M., Monti, E., and Fanzani, A. (2015). Melatonin decreases cell proliferation, impairs myogenic differentiation and triggers apoptotic cell death in rhabdomyosarcoma cell lines. Oncol. Rep. 34, 279–287.
| Melatonin decreases cell proliferation, impairs myogenic differentiation and triggers apoptotic cell death in rhabdomyosarcoma cell lines.Crossref | GoogleScholarGoogle Scholar | 25998836PubMed |
Croci, S., Bruni, L., Bussolati, S., Castaldo, M., and Dondi, M. (2011). Potassium bicarbonate and D-ribose effects on A27 canine and HTB-126 human cancer cell line proliferation in vitro. Cancer Cell Int. 11, 30.
| Potassium bicarbonate and D-ribose effects on A27 canine and HTB-126 human cancer cell line proliferation in vitro.Crossref | GoogleScholarGoogle Scholar | 21859451PubMed |
Dong, Y. L., and Yallampalli, C. (1996). Interaction between nitric oxide and prostaglandin E2 pathways in pregnant rat uteri. Am. J. Physiol. 270, E471–E476.
| 8638695PubMed |
Fang, L., Li, Y., Wang, S., Yu, Y., Li, Y., Guo, Y., Yan, Y., and Sun, Y. P. (2019). Melatonin induces progesterone production in human granulosa-lutein cells through upregulation of StAR expression. Aging (Albany NY) 11, 9013–9024.
| Melatonin induces progesterone production in human granulosa-lutein cells through upregulation of StAR expression.Crossref | GoogleScholarGoogle Scholar | 31619582PubMed |
Fink, T., and Zachar, V. (2011). Adipogenic differentiation of human mesenchymal stem cells. In ‘Mesenchymal Stem Cell Assays and Applications. Methods in Molecular Biology (Methods and Protocols), Vol. 698’. (Eds M. Vemuri, L. Chase and M Rao.) (Humana Press.)
Georgescu, S. E., Manea, M. A., Dinescu, S., and Costache, M. (2014). Comparative study of leptin and leptin receptor gene expression in different swine breeds. Genet. Mol. Res. 13, 7140–7148.
| Comparative study of leptin and leptin receptor gene expression in different swine breeds.Crossref | GoogleScholarGoogle Scholar | 24615118PubMed |
Gigante, P., Berni, M., Bussolati, S., Grasselli, F., Grolli, S., Ramoni, R., and Basini, G. (2018). Glyphosate affects swine ovarian and adipose stromal cell functions. Anim. Reprod. Sci. 195, 185–196.
| Glyphosate affects swine ovarian and adipose stromal cell functions.Crossref | GoogleScholarGoogle Scholar | 29843941PubMed |
Gospodarowicz, D., and Gospodarowicz, F. (1972). A technique for the isolation of bovine luteal cells and its application to metabolic studies of luteal cells in vitro. Endocrinology 90, 1427–1434.
| A technique for the isolation of bovine luteal cells and its application to metabolic studies of luteal cells in vitro.Crossref | GoogleScholarGoogle Scholar | 4336433PubMed |
Gregoraszczuk, E. L., and Oblonczyk, K. (1996). Effect of a specific aromatase inhibitor on oestradiol secretion by porcine corpora lutea at various stages of the luteal phase. Reprod. Nutr. Dev. 36, 65–72.
| Effect of a specific aromatase inhibitor on oestradiol secretion by porcine corpora lutea at various stages of the luteal phase.Crossref | GoogleScholarGoogle Scholar | 8881593PubMed |
He, Y., Deng, H., Jiang, Z., Li, Q., Shi, M., Chen, H., and Han, Z. (2016). Effects of melatonin on follicular atresia and granulosa cell apoptosis in the porcine. Mol. Reprod. Dev. 83, 692–700.
| Effects of melatonin on follicular atresia and granulosa cell apoptosis in the porcine.Crossref | GoogleScholarGoogle Scholar | 27391761PubMed |
Heldmaier, G., and Hoffmann, K. (1974). Melatonin stimulates growth of brown adipose tissue. Nature 247, 224–225.
| Melatonin stimulates growth of brown adipose tissue.Crossref | GoogleScholarGoogle Scholar | 4810431PubMed |
Heo, J. S., Pyo, S., Lim, J. Y., Yoon, D. W., Kim, B. Y., Kim, J. H., Kim, G. J., Lee, S. G., and Kim, J. (2019). Biological effects of melatonin on human adipose-derived mesenchymal stem cells. Int. J. Mol. Med. 44, 2234–2244.
| Biological effects of melatonin on human adipose-derived mesenchymal stem cells.Crossref | GoogleScholarGoogle Scholar | 31573052PubMed |
Itoh, M. T., Ishizuka, B., Kuribayashi, Y., Amemiya, A., and Sumi, Y. (1999). Melatonin, its precursors, and synthesizing enzyme activities in the human ovary. Mol. Hum. Reprod. 5, 402–408.
| Melatonin, its precursors, and synthesizing enzyme activities in the human ovary.Crossref | GoogleScholarGoogle Scholar | 10338362PubMed |
Ivanovska, A., Grolli, S., Borghetti, P., Ravanetti, F., Conti, V., De Angelis, E., Macchi, F., Ramoni, R., Martelli, P., Gazza, F., and Cacchioli, A. (2017). Immunophenotypical characterization of canine mesenchymal stem cells from perivisceral and subcutaneous adipose tissue by a species-specific panel of antibodies. Res. Vet. Sci. 114, 51–58.
| Immunophenotypical characterization of canine mesenchymal stem cells from perivisceral and subcutaneous adipose tissue by a species-specific panel of antibodies.Crossref | GoogleScholarGoogle Scholar | 28319827PubMed |
Jiménez-Aranda, A., Fernández-Vázquez, G., Campos, D., Tassi, M., Velasco-Perez, L., Tan, D. X., Reiter, R. J., and Agil, A. (2013). Melatonin induces browning of inguinal white adipose tissue in Zucker diabetic fatty rats. J. Pineal Res. 55, 416–423.
| Melatonin induces browning of inguinal white adipose tissue in Zucker diabetic fatty rats.Crossref | GoogleScholarGoogle Scholar | 24007241PubMed |
Kurowska, P., Mlyczyńska, E., Dupont, J., and Rak, A. (2020). Novel insights on the corpus luteum function: role of vaspin on porcine luteal cell angiogenesis, proliferation and apoptosis by activation of GRP78 receptor and MAP3/1 kinase pathways. Int. J. Mol. Sci. 21, 6823.
| Novel insights on the corpus luteum function: role of vaspin on porcine luteal cell angiogenesis, proliferation and apoptosis by activation of GRP78 receptor and MAP3/1 kinase pathways.Crossref | GoogleScholarGoogle Scholar |
Liu, K., Yu, W., Wei, W., Zhang, X., Tian, Y., and Sherif, M. (2019). Melatonin reduces intramuscular fat deposition by promoting lipolysis and increasing mitochondrial function. J. Lipid Res. 60, 767–782.
| Melatonin reduces intramuscular fat deposition by promoting lipolysis and increasing mitochondrial function.Crossref | GoogleScholarGoogle Scholar | 30552289PubMed |
Luchetti, F., Canonico, B., Bartolini, D., Arcangeletti, M., Ciffolilli, S., Murdolo, G., Piroddi, M., Papa, S., Reiter, R. J., and Galli, F. (2014). Melatonin regulates mesenchymal stem cell differentiation: a review. J. Pineal Res. 56, 382–397.
| Melatonin regulates mesenchymal stem cell differentiation: a review.Crossref | GoogleScholarGoogle Scholar | 24650016PubMed |
Maranesi, M., Petrucci, L., Leonardi, L., Bufalari, A., Parillo, F., Boiti, C., and Zerani, M. (2019). Kisspeptin/kisspeptin receptor system in pseudopregnant rabbit corpora lutea: presence and function. Sci. Rep. 9, 5044.
| Kisspeptin/kisspeptin receptor system in pseudopregnant rabbit corpora lutea: presence and function.Crossref | GoogleScholarGoogle Scholar | 30911071PubMed |
Maruri, A., Cruzans, P. R., Lorenzo, M. S., Tello, M. F., Teplitz, G. M., Carou, M. C., and Lombardo, D. M. (2018). Embryotrophic effect of a short-term embryo coculture with bovine luteal cells. Theriogenology 119, 143–149.
| Embryotrophic effect of a short-term embryo coculture with bovine luteal cells.Crossref | GoogleScholarGoogle Scholar | 30006130PubMed |
McDonald, L. E. (1975). ‘Veterinary Endocrinology and Reproduction.’ 2nd edn, pp. 283–285. ( Lea & Febiger, Philadelphia.)
Nitkiewicz, A., Smolinska, N., Przała, J., and Kaminski, T. (2010). Expression of orexin receptors 1 (OX1R) and 2 (OX2R) in the porcine ovary during the oestrous cycle. Regul. Pept. 165, 186–190.
| Expression of orexin receptors 1 (OX1R) and 2 (OX2R) in the porcine ovary during the oestrous cycle.Crossref | GoogleScholarGoogle Scholar | 20688107PubMed |
Pan, S., Yang, X., Jia, Y., Li, R., and Zhao, R. (2014). Microvescicle-shuttled miR-130b reduces fat deposition in recipient primary cultured porcine adipocytes by inhibiting PPAR-γ expression. J. Cell. Physiol. 229, 631–639.
| Microvescicle-shuttled miR-130b reduces fat deposition in recipient primary cultured porcine adipocytes by inhibiting PPAR-γ expression.Crossref | GoogleScholarGoogle Scholar | 24311275PubMed |
Parillo, F., Maranesi, M., Mignini, F., Marinelli, L., Di Stefano, A., Boiti, C., and Zerani, M. (2014). Evidence for a dopamine intrinsic direct role in the regulation of the ovary reproductive function: in vitro study on rabbit corpora lutea. PLoS One 9, e104797.
| Evidence for a dopamine intrinsic direct role in the regulation of the ovary reproductive function: in vitro study on rabbit corpora lutea.Crossref | GoogleScholarGoogle Scholar | 25148384PubMed |
Pedreros, M., Ratto, M., and Guerra, M. (2011). Expression of functional melatonin MT(1) receptors in equine luteal cells: in vitro effects of melatonin on progesterone secretion. Reprod. Fertil. Dev. 23, 417–423.
| Expression of functional melatonin MT(1) receptors in equine luteal cells: in vitro effects of melatonin on progesterone secretion.Crossref | GoogleScholarGoogle Scholar | 21426859PubMed |
Priya, N., Sarcar, S., Sen Majumdar, A., and SundarRaj, S. (2014). Explant culture: a simple, reproducible, efficient and economic technique for isolation of mesenchymal stromal cells from human adipose tissue and lipoaspirate. J. Tissue Eng. Regen. Med. 8, 706–716.
| Explant culture: a simple, reproducible, efficient and economic technique for isolation of mesenchymal stromal cells from human adipose tissue and lipoaspirate.Crossref | GoogleScholarGoogle Scholar | 22837175PubMed |
Radio, N. M., Doctor, J. S., and Witt-Enderby, P. A. (2006). Melatonin enhances alkaline phosphatase activity in differentiating human adult mesenchymal stem cells grown in osteogenic medium via MT2 melatonin receptors and the MEK/ERK (1/2) signaling cascade. J. Pineal Res. 40, 332–342.
| Melatonin enhances alkaline phosphatase activity in differentiating human adult mesenchymal stem cells grown in osteogenic medium via MT2 melatonin receptors and the MEK/ERK (1/2) signaling cascade.Crossref | GoogleScholarGoogle Scholar | 16635021PubMed |
Reynolds, L. P., Grazul-Bilska, A. T., and Redmer, D. A. (2000). Angiogenesis in the corpus luteum. Endocrine 12, 1–9.
| Angiogenesis in the corpus luteum.Crossref | GoogleScholarGoogle Scholar | 10855683PubMed |
Sawada, M., and Carlson, J. C. (1996). Intracellular regulation of progesterone secretion by the superoxide radical in the rat corpus luteum. Endocrinology 137, 1580–1584.
| Intracellular regulation of progesterone secretion by the superoxide radical in the rat corpus luteum.Crossref | GoogleScholarGoogle Scholar | 8612488PubMed |
Scarinci, E., Tropea, A., Notaristefano, G., Arena, V., Alesiani, O., Fabozzi, S. M., Lanzone, A., and Apa, R. (2019). Hormone of darkness. and human reproductive process: direct regulatory role of melatonin in human corpus luteum. J. Endocrinol. Invest. 42, 1191–1197.
| Hormone of darkness. and human reproductive process: direct regulatory role of melatonin in human corpus luteum.Crossref | GoogleScholarGoogle Scholar | 30912058PubMed |
Shi, J. M., Tian, X. Z., Zhou, G. B., Wang, L., Gao, C., Zhu, S. E., Zeng, S. M., Tian, J. H., and Liu, G. S. (2009). Melatonin exists in porcine follicular fluid and improves in vitro maturation and parthenogenetic development of porcine oocytes. J. Pineal Res. 47, 318–323.
| Melatonin exists in porcine follicular fluid and improves in vitro maturation and parthenogenetic development of porcine oocytes.Crossref | GoogleScholarGoogle Scholar | 19817971PubMed |
Sirotkin, A. V. (1994). Direct influence of melatonin on steroid, nonapeptide hormones, and cyclic nucleotide secretion by granulosa cells isolated from porcine ovaries. J. Pineal Res. 17, 112–117.
| Direct influence of melatonin on steroid, nonapeptide hormones, and cyclic nucleotide secretion by granulosa cells isolated from porcine ovaries.Crossref | GoogleScholarGoogle Scholar | 7897582PubMed |
Slominski, A. T., Hardeland, R., Zmijewski, M. A., Slominski, R. M., Reiter, R. J., and Paus, R. (2018). Melatonin: a cutaneous perspective on its production, metabolism, and functions. J. Invest. Dermatol. 138, 490–499.
| Melatonin: a cutaneous perspective on its production, metabolism, and functions.Crossref | GoogleScholarGoogle Scholar | 29428440PubMed |
Smolinska, N., Kiezun, M., Dobrzyn, K., Szeszko, K., Maleszka, A., and Kaminski, T. (2015). Expression of the orexin system in the porcine uterus, conceptus and trophoblast during early pregnancy. Animal 9, 1820–1831.
| Expression of the orexin system in the porcine uterus, conceptus and trophoblast during early pregnancy.Crossref | GoogleScholarGoogle Scholar | 26133101PubMed |
Soares, J. M., Masana, M. I., Erşahin, C., and Dubocovich, M. L. (2003). Functional melatonin receptors in rat ovaries at various stages of the estrous cycle. J. Pharmacol. Exp. Ther. 306, 694–702.
| Functional melatonin receptors in rat ovaries at various stages of the estrous cycle.Crossref | GoogleScholarGoogle Scholar | 12721330PubMed |
Tamura, H., Nakamura, Y., Korkmaz, A., Manchester, L. C., Tan, D. X., Sugino, N., and Reiter, R. J. (2009). Melatonin and the ovary: physiological and pathophysiological implications. Fertil. Steril. 92, 328–343.
| Melatonin and the ovary: physiological and pathophysiological implications.Crossref | GoogleScholarGoogle Scholar | 18804205PubMed |
Tamura, H., Takasaki, A., Taketani, T., Tanabe, M., Kizuka, F., Lee, L., Tamura, I., Maekawa, R., Aasada, H., Yamagata, Y., and Sugino, N. (2013). Melatonin as a free radical scavenger in the ovarian follicle. Endocr. J. 60, 1–13.
| Melatonin as a free radical scavenger in the ovarian follicle.Crossref | GoogleScholarGoogle Scholar | 23171705PubMed |
Tamura, H., Takasaki, A., Taketani, T., Tanabe, M., Lee, L., Tamura, I., Maekawa, R., Aasada, H., Yamagata, Y., and Sugino, N. (2014). Melatonin and female reproduction. J. Obstet. Gynaecol. Res. 40, 1–11.
| Melatonin and female reproduction.Crossref | GoogleScholarGoogle Scholar | 24118696PubMed |
Tan, D. X., Manchester, L. C., Terron, M. P., Flores, L. J., and Reiter, R. J. (2007). One molecule, many derivatives: a never-ending interaction of melatonin with reactive oxygen and nitrogen species? J. Pineal Res. 42, 28–42.
| One molecule, many derivatives: a never-ending interaction of melatonin with reactive oxygen and nitrogen species?Crossref | GoogleScholarGoogle Scholar | 17198536PubMed |
Tenorio, F. D., Simões Mde, J., Teixeira, V. W., and Teixeira, Á. A. (2015). Effects of melatonin and prolactin in reproduction: review of literature. Rev. Assoc. Med. Bras. 61, 269–274.
| Effects of melatonin and prolactin in reproduction: review of literature.Crossref | GoogleScholarGoogle Scholar | 26248251PubMed |
Teplitz, G. M., Lorenzo, M. S., Maruri, A., Cruzans, P. R., Carou, M. C., and Lombardo, D. M. (2020). Coculture of porcine cumulus-oocyte complexes with porcine luteal cells during IVM: effect on oocyte maturation and embryo development. Reprod. Fertil. Dev , .
| Coculture of porcine cumulus-oocyte complexes with porcine luteal cells during IVM: effect on oocyte maturation and embryo development.Crossref | GoogleScholarGoogle Scholar | 33080170PubMed |
Ukeda, H., Shimamura, T., Tsubouchi, M., Harada, Y., Nakay, Y., and Sawamura, M. (2002). Spectrophotometric assay of superoxide anion formed in Maillard reaction based on highly water-soluble tetrazolium salt. Anal. Sci. 18, 1151–1154.
| Spectrophotometric assay of superoxide anion formed in Maillard reaction based on highly water-soluble tetrazolium salt.Crossref | GoogleScholarGoogle Scholar | 12400664PubMed |
Wang, H., Pu, Y., Luo, L., Li, Y., Zhang, Y., and Cao, Z. (2018). Membrane receptor-independent inhibitory effect of melatonin on androgen production in porcine theca cells. Theriogenology 118, 63–71.
| Membrane receptor-independent inhibitory effect of melatonin on androgen production in porcine theca cells.Crossref | GoogleScholarGoogle Scholar | 29885642PubMed |
Woo, M. M., Tai, C. J., Kang, S. K., Nathwani, P. S., Pang, S. F., and Leung, P. K. J. (2001). Direct action of melatonin in human granulosa-luteal cells. J. Clin. Endocrinol. Metab. 86, 4789–4797.
| Direct action of melatonin in human granulosa-luteal cells.Crossref | GoogleScholarGoogle Scholar | 11600542PubMed |
Xiao, L., Hu, J., Zhao, X., Song, L., Zhang, Y., Dong, W., Zhang, Q., Ma, Y., and Li, F. (2018). Expression of melatonin and its related synthase and membrane receptors in the oestrous corpus luteum and corpus luteum verum of sheep. Reprod. Domest. Anim. 53, 1142–1148.
| Expression of melatonin and its related synthase and membrane receptors in the oestrous corpus luteum and corpus luteum verum of sheep.Crossref | GoogleScholarGoogle Scholar | 29943511PubMed |
Yoshioka, S., Abe, H., Sakumoto, R., and Okuda, K. (2013). Proliferation of luteal steroidogenic cells in cattle. PLoS One 8, e84186.
| Proliferation of luteal steroidogenic cells in cattle.Crossref | GoogleScholarGoogle Scholar | 24386349PubMed |
Zerani, M., Parillo, F., Brecchia, G., Guelfi, G., Dall’Aglio, C., Lilli, L., Maranesi, M., Gobbetti, A., and Boiti, C. (2010). Expression of type I GNRH receptor and in vivo and in vitro GNRH-I effects in corpora lutea of pseudopregnant rabbits. J. Endocrinol. 207, 289–300.
| Expression of type I GNRH receptor and in vivo and in vitro GNRH-I effects in corpora lutea of pseudopregnant rabbits.Crossref | GoogleScholarGoogle Scholar | 20880984PubMed |
Zerani, M., Catone, G., Quassinti, L., Maccari, E., Bramucci, M., Gobbetti, A., Maranesi, M., Boiti, C., and Parillo, F. (2011). In vitro effects of gonadotropin-releasing hormone (GnRH) on Leydig cells of adult alpaca (Lama pacos) testis: GnRH receptor immunolocalization, testosterone and prostaglandin synthesis, and cyclooxygenase activities. Domest. Anim. Endocrinol. 40, 51–59.
| In vitro effects of gonadotropin-releasing hormone (GnRH) on Leydig cells of adult alpaca (Lama pacos) testis: GnRH receptor immunolocalization, testosterone and prostaglandin synthesis, and cyclooxygenase activities.Crossref | GoogleScholarGoogle Scholar | 20961724PubMed |
Zhang, L., Su, P., Xu, C., Chen, C., Liang, A., Du, K., Peng, Y., and Huang, D. (2010). Melatonin inhibits adipogenesis and enhances osteogenesis of human mesenchymal stem cells by suppressing PPARc expression and enhancing Runx2 expression. J. Pineal Res. 49, 364–372.
| Melatonin inhibits adipogenesis and enhances osteogenesis of human mesenchymal stem cells by suppressing PPARc expression and enhancing Runx2 expression.Crossref | GoogleScholarGoogle Scholar | 20738756PubMed |
Zhang, W., Wang, Z., Zhang, L., Zhang, Z., Chen, J., Chen, W., and Tong, D. (2018). Melatonin stimulates the secretion of progesterone along with the expression of cholesterol side-chain cleavage enzyme (P450scc) and steroidogenic acute regulatory protein (StAR) in corpus luteum of pregnant sows. Theriogenology 108, 297–305.
| Melatonin stimulates the secretion of progesterone along with the expression of cholesterol side-chain cleavage enzyme (P450scc) and steroidogenic acute regulatory protein (StAR) in corpus luteum of pregnant sows.Crossref | GoogleScholarGoogle Scholar | 29277070PubMed |
Zhao, D., Yu, Y., Shen, Y., Liu, Q., Zhao, Z., Sharma, R., and Reiter, R. J. (2019). Melatonin synthesis and function: evolutionary history in animals and plants. Front. Endocrinol. 10, 249.
| Melatonin synthesis and function: evolutionary history in animals and plants.Crossref | GoogleScholarGoogle Scholar |
Zwirska-Korczala, K., Jochem, J., Adamczyk-Sowa, M., Sowa, P., Polaniak, R., Birkner, E., Latocha, M., Pilc, K., and Suchanek, R. (2005). Influence of melatonin on cell proliferation, antioxidative enzyme activities and lipid peroxidation in 3T3–L1 preadipocytes: an in vitro study. J. Physiol. Pharmacol. 56, 91–99.
| 16340042PubMed |