Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE (Open Access)

Embryonic diapause in mammals and dormancy in embryonic stem cells with the European roe deer as experimental model

Vera A. van der Weijden A * , Anna B. Rüegg A * , Sandra M. Bernal-Ulloa A and Susanne E. Ulbrich A B
+ Author Affiliations
- Author Affiliations

A ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Universitaetstrasse 2, 8092 Zurich, Switzerland.

B Corresponding author. Email: seu@ethz.ch

Reproduction, Fertility and Development 33(2) 76-81 https://doi.org/10.1071/RD20256
Published: 8 January 2021

Journal Compilation © IETS 2021 Open Access CC BY-NC-ND

Abstract

In species displaying embryonic diapause, the developmental pace of the embryo is either temporarily and reversibly halted or largely reduced. Only limited knowledge on its regulation and the inhibition of cell proliferation extending pluripotency is available. In contrast with embryos from other diapausing species that reversibly halt during diapause, embryos of the roe deer Capreolus capreolus slowly proliferate over a period of 4–5 months to reach a diameter of approximately 4 mm before elongation. The diapausing roe deer embryos present an interesting model species for research on preimplantation developmental progression. Based on our and other research, we summarise the available knowledge and indicate that the use of embryonic stem cells (ESCs) would help to increase our understanding of embryonic diapause. We report on known molecular mechanisms regulating embryonic diapause, as well as cellular dormancy of pluripotent cells. Further, we address the promising application of ESCs to study embryonic diapause, and highlight the current knowledge on the cellular microenvironment regulating embryonic diapause and cellular dormancy.

Keywords: dormancy, embryonic diapause, embryonic stem cells, European roe deer Capreolus capreolus.


References

Aitken, R. J. (1974). Delayed implantation in roe deer (Capreolus capreolus). J. Reprod. Fertil. 39, 225–233.
Delayed implantation in roe deer (Capreolus capreolus).Crossref | GoogleScholarGoogle Scholar | 4851283PubMed |

Allen, W. R., and Stewart, F. (2001). Equine placentation. Reprod. Fertil. Dev. 13, 623–634.
Equine placentation.Crossref | GoogleScholarGoogle Scholar | 11999314PubMed |

Andersen, R., and Linnell, J. D. (1996). Variation in maternal investment in a small cervid; the effects of cohort, sex, litter size and time of birth in roe deer (Capreolus capreolus) fawns. Oecologia 109, 74–79.
Variation in maternal investment in a small cervid; the effects of cohort, sex, litter size and time of birth in roe deer (Capreolus capreolus) fawns.Crossref | GoogleScholarGoogle Scholar | 28307615PubMed |

Arrell, V. L., Day, B. N., and Prather, R. S. (1991). The transition from maternal to zygotic control of development occurs during the 4-cell stage in the domestic pig, Sus scrofa: quantitative and qualitative aspects of protein synthesis. Biol. Reprod. 44, 62–68.
The transition from maternal to zygotic control of development occurs during the 4-cell stage in the domestic pig, Sus scrofa: quantitative and qualitative aspects of protein synthesis.Crossref | GoogleScholarGoogle Scholar |

Avruch, J., Long, X., Ortiz-Vega, S., Rapley, J., Papageorgiou, A., and Dai, N. (2009). Amino acid regulation of TOR complex 1. Am. J. Physiol. Endocrinol. Metab. 296, E592–E602.
Amino acid regulation of TOR complex 1.Crossref | GoogleScholarGoogle Scholar | 18765678PubMed |

Badinga, L., Michel, F. J., Fields, M. J., Sharp, D. C., and Simmen, R. C. (1994). Pregnancy-associated endometrial expression of antileukoproteinase gene is correlated with epitheliochorial placentation. Mol. Reprod. Dev. 38, 357–363.
Pregnancy-associated endometrial expression of antileukoproteinase gene is correlated with epitheliochorial placentation.Crossref | GoogleScholarGoogle Scholar | 7980943PubMed |

Bischoff, T. L. W. (1854). ‘Die Entwicklungsgeschichte des Rehes.’ (J. Bicker’sche Buchhandlung: Giessen.)

Boroviak, T., Loos, R., Lombard, P., Okahara, J., Behr, R., Sasaki, E., Nichols, J., Smith, A., and Bertone, P. (2015). Lineage-specific profiling delineates the emergence and progression of naive pluripotency in mammalian embryogenesis. Dev. Cell 35, 366–382.
Lineage-specific profiling delineates the emergence and progression of naive pluripotency in mammalian embryogenesis.Crossref | GoogleScholarGoogle Scholar | 26555056PubMed |

Bulut-Karslioglu, A., Biechele, S., Jin, H., Macrae, T. A., Hejna, M., Gertsenstein, M., Song, J. S., and Ramalho-Santos, M. (2016). Inhibition of mTOR induces a paused pluripotent state. Nature 540, 119–123.
Inhibition of mTOR induces a paused pluripotent state.Crossref | GoogleScholarGoogle Scholar | 27880763PubMed |

Cha, J., Sun, X., Bartos, A., Fenelon, J., Lefevre, P., Daikoku, T., Shaw, G., Maxson, R., Murphy, B. D., Renfree, M. B., and Dey, S. K. (2013). A new role for muscle segment homeobox genes in mammalian embryonic diapause. Open Biol. 3, 130035.
A new role for muscle segment homeobox genes in mammalian embryonic diapause.Crossref | GoogleScholarGoogle Scholar | 23615030PubMed |

Chang, T. C., Zeitels, L. R., Hwang, H. W., Chivukula, R. R., Wentzel, E. A., Dews, M., Jung, J., Gao, P., Dang, C. V., Beer, M. A., Thomas-Tikhonenko, A., and Mendell, J. T. (2009). Lin-28B transactivation is necessary for Myc-mediated let-7 repression and proliferation. Proc. Natl Acad. Sci. USA 106, 3384–3389.
Lin-28B transactivation is necessary for Myc-mediated let-7 repression and proliferation.Crossref | GoogleScholarGoogle Scholar | 19211792PubMed |

Chen, J. R., Cheng, J. G., Shatzer, T., Sewell, L., Hernandez, L., and Stewart, C. L. (2000). Leukemia inhibitory factor can substitute for nidatory estrogen and is essential to inducing a receptive uterus for implantation but is not essential for subsequent embryogenesis. Endocrinology 141, 4365–4372.
Leukemia inhibitory factor can substitute for nidatory estrogen and is essential to inducing a receptive uterus for implantation but is not essential for subsequent embryogenesis.Crossref | GoogleScholarGoogle Scholar | 11108244PubMed |

Cheong, A. W., Pang, R. T., Liu, W. M., Kottawatta, K. S., Lee, K. F., and Yeung, W. S. (2014). MicroRNA Let-7a and dicer are important in the activation and implantation of delayed implanting mouse embryos. Hum. Reprod. 29, 750–762.
MicroRNA Let-7a and dicer are important in the activation and implantation of delayed implanting mouse embryos.Crossref | GoogleScholarGoogle Scholar | 24419497PubMed |

Davidson, L. M., and Coward, K. (2016). Molecular mechanisms of membrane interaction at implantation. Birth Defects Res. C Embryo Today 108, 19–32.
Molecular mechanisms of membrane interaction at implantation.Crossref | GoogleScholarGoogle Scholar | 26969610PubMed |

Drews, B., Rudolf Vegas, A., van der Weijden, V. A., Milojevic, V., Hankele, A. K., Schuler, G., and Ulbrich, S. E. (2019). Do ovarian steroid hormones control the resumption of embryonic growth following the period of diapause in roe deer (Capreolus capreolus)? Reprod. Biol. 19, 149–157.
Do ovarian steroid hormones control the resumption of embryonic growth following the period of diapause in roe deer (Capreolus capreolus)?Crossref | GoogleScholarGoogle Scholar | 31147267PubMed |

Drews, B., Ulbrich, S. E., Rudolf Vegas, A., Jewgenow, K., Zahmel, J., Roellig, K., Ortmann, S., Hildebrandt, T. B., and Goeritz, F. (2020). Gliding into diapause: early embryo development in roe deer (Capreolus capreolus). Biosci. Proc. 10, ISEDISED12.
Gliding into diapause: early embryo development in roe deer (Capreolus capreolus).Crossref | GoogleScholarGoogle Scholar |

Dyachok, J., Earnest, S., Iturraran, E. N., Cobb, M. H., and Ross, E. M. (2016). Amino acids regulate mTORC1 by an obligate two-step mechanism. J. Biol. Chem. 291, 22414–22426.
Amino acids regulate mTORC1 by an obligate two-step mechanism.Crossref | GoogleScholarGoogle Scholar | 27587390PubMed |

Evans, M. J., and Kaufman, M. H. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154–156.
| 7242681PubMed |

Fenelon, J. C., and Murphy, B. D. (2017). Inhibition of polyamine synthesis causes entry of the mouse blastocyst into embryonic diapause. Biol. Reprod. 97, 119–132.
Inhibition of polyamine synthesis causes entry of the mouse blastocyst into embryonic diapause.Crossref | GoogleScholarGoogle Scholar | 28637295PubMed |

Fenelon, J. C., Banerjee, A., and Murphy, B. D. (2014). Embryonic diapause: development on hold. Int. J. Dev. Biol. 58, 163–174.
Embryonic diapause: development on hold.Crossref | GoogleScholarGoogle Scholar | 25023682PubMed |

Fenelon, J. C., Shaw, G., Frankenberg, S. R., Murphy, B. D., and Renfree, M. B. (2017). Embryo arrest and reactivation: potential candidates controlling embryonic diapause in the tammar wallaby and minkdagger. Biol. Reprod. 96, 877–894.
Embryo arrest and reactivation: potential candidates controlling embryonic diapause in the tammar wallaby and minkdagger.Crossref | GoogleScholarGoogle Scholar | 28379301PubMed |

Flach, G., Johnson, M. H., Braude, P. R., Taylor, R. A., and Bolton, V. N. (1982). The transition from maternal to embryonic control in the 2-cell mouse embryo. EMBO J. 1, 681–686.
The transition from maternal to embryonic control in the 2-cell mouse embryo.Crossref | GoogleScholarGoogle Scholar | 7188357PubMed |

Focardi, S., Pelliccioni, E., Petrucco, R., and Toso, S. (2002). Spatial patterns and density dependence in the dynamics of a roe deer (Capreolus capreolus) population in central Italy. Oecologia 130, 411–419.
Spatial patterns and density dependence in the dynamics of a roe deer (Capreolus capreolus) population in central Italy.Crossref | GoogleScholarGoogle Scholar | 28547048PubMed |

Foster, D. A., Yellen, P., Xu, L., and Saqcena, M. (2010). Regulation of G1 cell cycle progression: distinguishing the restriction point from a nutrient-sensing cell growth checkpoint(s). Genes Cancer 1, 1124–1131.
Regulation of G1 cell cycle progression: distinguishing the restriction point from a nutrient-sensing cell growth checkpoint(s).Crossref | GoogleScholarGoogle Scholar | 21779436PubMed |

Fu, Z., Wang, B., Wang, S., Wu, W., Wang, Q., Chen, Y., Kong, S., Lu, J., Tang, Z., Ran, H., Tu, Z., He, B., Zhang, S., Chen, Q., Jin, W., Duan, E., Wang, H., Wang, Y. L., Li, L., Wang, F., Gao, S., and Wang, H. (2014). Integral proteomic analysis of blastocysts reveals key molecular machinery governing embryonic diapause and reactivation for implantation in mice. Biol. Reprod. 90, 52.
Integral proteomic analysis of blastocysts reveals key molecular machinery governing embryonic diapause and reactivation for implantation in mice.Crossref | GoogleScholarGoogle Scholar | 24451987PubMed |

Fulka, H., St John, J. C., Fulka, J., and Hozak, P. (2008). Chromatin in early mammalian embryos: achieving the pluripotent state. Differentiation 76, 3–14.
Chromatin in early mammalian embryos: achieving the pluripotent state.Crossref | GoogleScholarGoogle Scholar | 18093226PubMed |

Gaillard, J. M., Delorme, D., and Jullien, J. M. (1993). Effects of cohort, sex, and birth date on body development of roe deer (Capreolus capreolus) fawns. Oecologia 94, 57–61.
Effects of cohort, sex, and birth date on body development of roe deer (Capreolus capreolus) fawns.Crossref | GoogleScholarGoogle Scholar | 28313858PubMed |

Graf, A., Krebs, S., Zakhartchenko, V., Schwalb, B., Blum, H., and Wolf, E. (2014). Fine mapping of genome activation in bovine embryos by RNA sequencing. Proc. Natl Acad. Sci. USA 111, 4139–4144.
Fine mapping of genome activation in bovine embryos by RNA sequencing.Crossref | GoogleScholarGoogle Scholar | 24591639PubMed |

Hamatani, T., Daikoku, T., Wang, H., Matsumoto, H., Carter, M. G., Ko, M. S., and Dey, S. K. (2004). Global gene expression analysis identifies molecular pathways distinguishing blastocyst dormancy and activation. Proc. Natl Acad. Sci. USA 101, 10326–10331.
Global gene expression analysis identifies molecular pathways distinguishing blastocyst dormancy and activation.Crossref | GoogleScholarGoogle Scholar | 15232000PubMed |

Hussein, A. M., Wang, Y., Mathieu, J., Margaretha, L., Song, C., Jones, D. C., Cavanaugh, C., Miklas, J. W., Mahen, E., Showalter, M. R., Ruzzo, W. L., Fiehn, O., Ware, C. B., Blau, C. A., and Ruohola-Baker, H. (2020). Metabolic control over mTOR-dependent diapause-like state. Dev. Cell 52, 236–250.
Metabolic control over mTOR-dependent diapause-like state.Crossref | GoogleScholarGoogle Scholar | 31991105PubMed |

Jewell, J. L., and Guan, K. L. (2013). Nutrient signaling to mTOR and cell growth. Trends Biochem. Sci. 38, 233–242.
Nutrient signaling to mTOR and cell growth.Crossref | GoogleScholarGoogle Scholar | 23465396PubMed |

Kamemizu, C., and Fujimori, T. (2019). Distinct dormancy progression depending on embryonic regions during mouse embryonic diapause. Biol. Reprod. 100, 1204–1214.
Distinct dormancy progression depending on embryonic regions during mouse embryonic diapause.Crossref | GoogleScholarGoogle Scholar | 30715198PubMed |

Kim, Y. C., and Guan, K. L. (2015). mTOR: a pharmacologic target for autophagy regulation. J. Clin. Invest. 125, 25–32.
mTOR: a pharmacologic target for autophagy regulation.Crossref | GoogleScholarGoogle Scholar | 25654547PubMed |

Lambert, R. T., Ashworth, C. J., Beattie, L., Gebbie, F. E., Hutchinson, J. S., Kyle, D. J., and Racey, P. A. (2001). Temporal changes in reproductive hormones and conceptus-endometrial interactions during embryonic diapause and reactivation of the blastocyst in European roe deer (Capreolus capreolus). Reproduction 121, 863–871.
Temporal changes in reproductive hormones and conceptus-endometrial interactions during embryonic diapause and reactivation of the blastocyst in European roe deer (Capreolus capreolus).Crossref | GoogleScholarGoogle Scholar | 11373172PubMed |

Lee, J. E., Oh, H. A., Song, H., Jun, J. H., Roh, C. R., Xie, H., Dey, S. K., and Lim, H. J. (2011). Autophagy regulates embryonic survival during delayed implantation. Endocrinology 152, 2067–2075.
Autophagy regulates embryonic survival during delayed implantation.Crossref | GoogleScholarGoogle Scholar | 21363932PubMed |

Lefèvre, P. L. C., Palin, M.-F., Beaudry, D., Dobias-Goff, M., Desmarais, J. A., Llerena, E. M., and Murphy, B. D. (2011). Uterine signaling at the emergence of the embryo from obligate diapause. Am. J. Physiol. Endocrinol. Metab. 300, E800–E808.
Uterine signaling at the emergence of the embryo from obligate diapause.Crossref | GoogleScholarGoogle Scholar |

Liu, L., Michowski, W., Inuzuka, H., Shimizu, K., Nihira, N. T., Chick, J. M., Li, N., Geng, Y., Meng, A. Y., Ordureau, A., Kolodziejczyk, A., Ligon, K. L., Bronson, R. T., Polyak, K., Harper, J. W., Gygi, S. P., Wei, W., and Sicinski, P. (2017). G1 cyclins link proliferation, pluripotency and differentiation of embryonic stem cells. Nat. Cell Biol. 19, 177–188.
G1 cyclins link proliferation, pluripotency and differentiation of embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 28192421PubMed |

Lonergan, P., Fair, T., Forde, N., and Rizos, D. (2016). Embryo development in dairy cattle. Theriogenology 86, 270–277.
Embryo development in dairy cattle.Crossref | GoogleScholarGoogle Scholar | 27158131PubMed |

Martin, G. R. (1981). Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl Acad. Sci. USA 78, 7634–7638.
Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells.Crossref | GoogleScholarGoogle Scholar | 6950406PubMed |

McLaren, A. (1968). A study of balstocysts during delay and subsequent implantation in lactating mice. J. Endocrinol. 42, 453–463.
A study of balstocysts during delay and subsequent implantation in lactating mice.Crossref | GoogleScholarGoogle Scholar | 4179775PubMed |

Meng, D., Yang, Q., Wang, H., Melick, C. H., Navlani, R., Frank, A. R., and Jewell, J. L. (2020). Glutamine and asparagine activate mTORC1 independently of Rag GTPases. J. Biol. Chem. 295, 2890–2899.
Glutamine and asparagine activate mTORC1 independently of Rag GTPases.Crossref | GoogleScholarGoogle Scholar | 32019866PubMed |

Miles, J. R., McDaneld, T. G., Wiedmann, R. T., Cushman, R. A., Echternkamp, S. E., Vallet, J. L., and Smith, T. P. (2012). MicroRNA expression profile in bovine cumulus–oocyte complexes: possible role of let-7 and miR-106a in the development of bovine oocytes. Anim. Reprod. Sci. 130, 16–26.
MicroRNA expression profile in bovine cumulus–oocyte complexes: possible role of let-7 and miR-106a in the development of bovine oocytes.Crossref | GoogleScholarGoogle Scholar | 22269106PubMed |

Niakan, K. K., Han, J., Pedersen, R. A., Simon, C., and Pera, R. A. R. (2012). Human pre-implantation embryo development. Development 139, 829.
Human pre-implantation embryo development.Crossref | GoogleScholarGoogle Scholar | 22318624PubMed |

Nichols, J., Davidson, D., Taga, T., Yoshida, K., Chambers, I., and Smith, A. (1996). Complementary tissue-specific expression of LIF and LIF-receptor mRNAs in early mouse embryogenesis. Mech. Dev. 57, 123–131.
Complementary tissue-specific expression of LIF and LIF-receptor mRNAs in early mouse embryogenesis.Crossref | GoogleScholarGoogle Scholar | 8843390PubMed |

Nichols, J., Chambers, I., Taga, T., and Smith, A. (2001). Physiological rationale for responsiveness of mouse embryonic stem cells to gp130 cytokines. Development 128, 2333–2339.
| 11493552PubMed |

Niwa, H. (2007). How is pluripotency determined and maintained? Development 134, 635.
How is pluripotency determined and maintained?Crossref | GoogleScholarGoogle Scholar | 17215298PubMed |

Oki, T., Nishimura, K., Kitaura, J., Togami, K., Maehara, A., Izawa, K., Sakaue-Sawano, A., Niida, A., Miyano, S., Aburatani, H., Kiyonari, H., Miyawaki, A., and Kitamura, T. (2014). A novel cell-cycle-indicator, mVenus–p27K−, identifies quiescent cells and visualizes G0–G1 transition. Sci. Rep. 4, 4012.
A novel cell-cycle-indicator, mVenus–p27K, identifies quiescent cells and visualizes G0–G1 transition.Crossref | GoogleScholarGoogle Scholar | 24500246PubMed |

Paria, B. C., Lim, H., Wang, X. N., Liehr, J., Das, S. K., and Dey, S. K. (1998). Coordination of differential effects of primary estrogen and catecholestrogen on two distinct targets mediates embryo implantation in the mouse. Endocrinology 139, 5235–5246.
Coordination of differential effects of primary estrogen and catecholestrogen on two distinct targets mediates embryo implantation in the mouse.Crossref | GoogleScholarGoogle Scholar | 9832464PubMed |

Ptak, G. E., Tacconi, E., Czernik, M., Toschi, P., Modlinski, J. A., and Loi, P. (2012). Embryonic diapause is conserved across mammals. PLoS One 7, e33027.
Embryonic diapause is conserved across mammals.Crossref | GoogleScholarGoogle Scholar | 22427933PubMed |

Renfree, M. B., and Fenelon, J. C. (2017). The enigma of embryonic diapause. Development 144, 3199–3210.
The enigma of embryonic diapause.Crossref | GoogleScholarGoogle Scholar | 28928280PubMed |

Rosario, G. X., and Stewart, C. L. (2016). The multifaceted actions of leukaemia inhibitory factor in mediating uterine receptivity and embryo implantation. Am. J. Reprod. Immunol. 75, 246–255.
The multifaceted actions of leukaemia inhibitory factor in mediating uterine receptivity and embryo implantation.Crossref | GoogleScholarGoogle Scholar | 26817565PubMed |

Rüegg, A. B., Bernal-Ulloa, S. M., Moser, F., Rutzen, I., and Ulbrich, S. E. (2020). Trophectoderm and embryoblast proliferate at slow pace in the course of embryonic diapause in the roe deer (Capreolus capreolus). Biosci. Proc. 10, ISEDISED13.
Trophectoderm and embryoblast proliferate at slow pace in the course of embryonic diapause in the roe deer (Capreolus capreolus).Crossref | GoogleScholarGoogle Scholar |

Sancak, Y., Bar-Peled, L., Zoncu, R., Markhard, A. L., Nada, S., and Sabatini, D. M. (2010). Ragulator–Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141, 290–303.
Ragulator–Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids.Crossref | GoogleScholarGoogle Scholar | 20381137PubMed |

Scognamiglio, R., Cabezas-Wallscheid, N., Thier, M. C., Altamura, S., Reyes, A., Prendergast, A. M., Baumgartner, D., Carnevalli, L. S., Atzberger, A., Haas, S., von Paleske, L., Boroviak, T., Worsdorfer, P., Essers, M. A., Kloz, U., Eisenman, R. N., Edenhofer, F., Bertone, P., Huber, W., van der Hoeven, F., Smith, A., and Trumpp, A. (2016a). Myc depletion induces a pluripotent dormant state mimicking diapause. Cell 164, 668–680.
Myc depletion induces a pluripotent dormant state mimicking diapause.Crossref | GoogleScholarGoogle Scholar | 26871632PubMed |

Scognamiglio, R., Cabezas-Wallscheid, N., Thier, M. C., Altamura, S., Reyes, A., Prendergast, Á. M., Baumgärtner, D., Carnevalli, L. S., Atzberger, A., Haas, S., von Paleske, L., Boroviak, T., Wörsdörfer, P., Essers, M. A. G., Kloz, U., Eisenman, R. N., Edenhofer, F., Bertone, P., Huber, W., van der Hoeven, F., Smith, A., and Trumpp, A. (2016b). Myc depletion induces a pluripotent dormant state mimicking diapause. Cell 164, 668–680.
Myc depletion induces a pluripotent dormant state mimicking diapause.Crossref | GoogleScholarGoogle Scholar | 26871632PubMed |

Sherman, M. I., and Barlow, P. W. (1972). Deoxyribonucleic acid content in delayed mouse blastocysts. J. Reprod. Fertil. 29, 123–126.
Deoxyribonucleic acid content in delayed mouse blastocysts.Crossref | GoogleScholarGoogle Scholar | 5016999PubMed |

Short, R. V., and Hay, M. F. (1966) Delayed implantation in the roe deer Capreolus capreolus. In ‘Comparative Biology of Reproduction in Mammals’. (Ed. I. W. Rowlands.) pp. 173–194. (Academic Press: New York.)

Simmet, K., Zakhartchenko, V., Philippou-Massier, J., Blum, H., Klymiuk, N., and Wolf, E. (2018a). OCT4/POU5F1 is required for NANOG expression in bovine blastocysts. Proc. Natl Acad. Sci. USA 115, 2770–2775.
OCT4/POU5F1 is required for NANOG expression in bovine blastocysts.Crossref | GoogleScholarGoogle Scholar | 29483258PubMed |

Simmet, K., Zakhartchenko, V., and Wolf, E. (2018b). Comparative aspects of early lineage specification events in mammalian embryos – insights from reverse genetics studies. Cell Cycle 17, 1688–1695.
Comparative aspects of early lineage specification events in mammalian embryos – insights from reverse genetics studies.Crossref | GoogleScholarGoogle Scholar | 29995579PubMed |

Sousa, M. I., Correia, B., Rodrigues, A. S., and Ramalho-Santos, J. (2020). Metabolic characterization of a paused-like pluripotent state. Biochim Biophys Acta 1864, 129612.
Metabolic characterization of a paused-like pluripotent state.Crossref | GoogleScholarGoogle Scholar |

Surani, M. A. (1975). Zona pellucida denudation, blastocyst proliferation and attachment in the rat. J. Embryol. Exp. Morphol. 33, 343–353.
| 1176850PubMed |

Takahashi, K., and Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676.
Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors.Crossref | GoogleScholarGoogle Scholar | 16904174PubMed |

van der Weijden, V. A., and Ulbrich, S. E. (2020a). Embryonic diapause in roe deer: a model to unravel embryo–maternal communication during pre-implantation development in wildlife and livestock species. Theriogenology 158, 105–111.
Embryonic diapause in roe deer: a model to unravel embryo–maternal communication during pre-implantation development in wildlife and livestock species.Crossref | GoogleScholarGoogle Scholar | 32947063PubMed |

van der Weijden, V. A., and Ulbrich, S. E. (2020b). Embryonic diapause in the European roe deer (Capreolus capreolus). Biosci. Proc. 10, ISEDISED4.

van der Weijden, V. A., Bick, J., Bauersachs, S., Arnold, G. J., Frohlich, T., Drews, B., and Ulbrich, S. E. (2019a). Uterine fluid proteome changes during diapause and resumption of embryo development in roe deer. Reproduction 158, 13–24.
Uterine fluid proteome changes during diapause and resumption of embryo development in roe deer.Crossref | GoogleScholarGoogle Scholar | 30933930PubMed |

van der Weijden, V. A., Hankele, A. K., Rüegg, A. B., Schmicke, M., Rehm, K., Bigler, L., and Ulbrich, S. E. (2019b). Progestogen profiling over the course of diapause and resumption of embryo development in the European roe deer. SciMedicine Journal 1, 158–167.
Progestogen profiling over the course of diapause and resumption of embryo development in the European roe deer.Crossref | GoogleScholarGoogle Scholar |

van der Weijden, V. A., Puntar, B., Vegas, A. R., Milojevic, V., Schanzenbach, C. I., Kowalewski, M. P., Drews, B., and Ulbrich, S. E. (2019c). Endometrial luminal epithelial cells sense embryo elongation in the roe deer independent of interferon-tau. Biol. Reprod. 101, 882–892.
Endometrial luminal epithelial cells sense embryo elongation in the roe deer independent of interferon-tau.Crossref | GoogleScholarGoogle Scholar | 31317179PubMed |

van Velthoven, C. T. J., and Rando, T. A. (2019). Stem cell quiescence: dynamism, restraint, and cellular idling. Cell Stem Cell 24, 213–225.
Stem cell quiescence: dynamism, restraint, and cellular idling.Crossref | GoogleScholarGoogle Scholar |

Vera-Ramirez, L., and Hunter, K. W. (2017). Tumor cell dormancy as an adaptive cell stress response mechanism. F1000Res. 6, 2134.
Tumor cell dormancy as an adaptive cell stress response mechanism.Crossref | GoogleScholarGoogle Scholar | 29263786PubMed |

Viner-Breuer, R., Yilmaz, A., Benvenisty, N., and Goldberg, M. (2019). The essentiality landscape of cell cycle related genes in human pluripotent and cancer cells. Cell Div. 14, 15.
The essentiality landscape of cell cycle related genes in human pluripotent and cancer cells.Crossref | GoogleScholarGoogle Scholar | 31889988PubMed |

Waisman, A., Sevlever, F., Elías Costa, M., Cosentino, M. S., Miriuka, S. G., Ventura, A. C., and Guberman, A. S. (2019). Cell cycle dynamics of mouse embryonic stem cells in the ground state and during transition to formative pluripotency. Sci. Rep. 9, 8051.
Cell cycle dynamics of mouse embryonic stem cells in the ground state and during transition to formative pluripotency.Crossref | GoogleScholarGoogle Scholar | 31142785PubMed |

Weitlauf, H. M. (1974). Metabolic changes in the blastocysts of mice and rats during delayed implantation. J. Reprod. Fertil. 39, 213–224.
Metabolic changes in the blastocysts of mice and rats during delayed implantation.Crossref | GoogleScholarGoogle Scholar | 4604758PubMed |

Wolfson, R. L., and Sabatini, D. M. (2017). The dawn of the age of amino acid sensors for the mTORC1 pathway. Cell Metab. 26, 301–309.
The dawn of the age of amino acid sensors for the mTORC1 pathway.Crossref | GoogleScholarGoogle Scholar | 28768171PubMed |

Wu, J., Yamauchi, T., and Izpisua Belmonte, J. C. (2016). An overview of mammalian pluripotency. Development 143, 1644.
An overview of mammalian pluripotency.Crossref | GoogleScholarGoogle Scholar | 27190034PubMed |