Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
REVIEW

Assisted breeding technology in the saltwater crocodile Crocodylus porosus: a review and look to the future

Stephen D. Johnston https://orcid.org/0000-0002-0290-5458 A H , John Lever B , Robby McLeod B , Edward Qualischefski A C , Monica Madrigal-Valverde D E and Brett Nixon https://orcid.org/0000-0003-2745-8188 F G
+ Author Affiliations
- Author Affiliations

A School of Agriculture and Food Sciences, The University of Queensland, Gatton, Qld 4343, Australia.

B Koorana Crocodile Farm, Coowonga, Qld 4072, Australia.

C Ecosystem Health Unit, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, 1920 Coffey Road, Columbus, OH 43210, USA.

D Costa Rica Institute of Technology, School of Agronomy, San Carlos Campus, 223-21001, Alajuela, Costa Rica.

E Animal Science Department, University of Costa Rica, Campus Rodrigo Facio, 1501-2060, San José, Costa Rica.

F Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, NSW 2308, Australia.

G Hunter Medical Research Institute, Pregnancy and Reproduction Program, New Lambton Heights, NSW 2305, Australia.

H Corresponding author. Email: s.johnston1@uq.edu.au

Reproduction, Fertility and Development 33(9) 503-518 https://doi.org/10.1071/RD20217
Submitted: 20 August 2020  Accepted: 1 November 2020   Published: 15 February 2021

Abstract

This review reports the current status of artificial breeding technology in the Crocodylia and the future requirements for the establishment of AI in the saltwater crocodile. Although there are challenges regarding safe restraint and immobilisation, semen collection of the saltwater crocodile by manual stimulation has proven effective in yielding sufficient volume and sperm concentrations for empirical and molecular analyses of sperm preservation and physiology. Nevertheless, there is still much to learn with respect to fundamental anatomy, physiology and behaviour in both sexes, but particularly in the female. Although lessons can be learned from successful AI in the alligator, the details of this research are not readily accessible. Future research needs to focus on the proximate factors of seasonality and the underlying control of the female’s annual reproductive cycle; this will require novel and innovative ways to collect blood samples without causing stress or injury, and ideally a dedicated crocodile research breeding colony. Because the saltwater crocodile is a farmed species, there is likely to be sufficient impetus for the application of assisted breeding technology to drive future productivity in the industry. These developments will also have benefits for the genetic and reproductive management of endangered captive populations.

Graphical Abstract Image

Keywords: artificial insemination, crocodile farming, crocodilian conservation, cryopreservation, reproductive anatomy, reproductive models, reproductive physiology, reptile, semen collection, semen preservation.


References

Althouse, G. (2007). Artificial insemination. In ‘Comparative Reproductive Biology’. (Eds H. Schatten and G. M. Constantinescu.) pp. 159–169. (Blackwell Publishing: Oxford, UK.)

Bagwill, A., Sever, D., and Elsey, R. M. (2009). Seasonal variation of the oviduct of the American alligator, Alligator mississippiensis (Reptilia: Crocodylia). J. Morphol. 270, 702–713.
Seasonal variation of the oviduct of the American alligator, Alligator mississippiensis (Reptilia: Crocodylia).Crossref | GoogleScholarGoogle Scholar | 19206152PubMed |

Barth, A. D., and Bowman, P. A. (1988). Determination of the best practical method of thawing bovine semen. Can. Vet. J. 29, 366–369.
| 17423027PubMed |

Berg, C. (2012). An amphibian model for studies of developmental reproductive toxicity. In ‘Developmental Toxicology: Methods and Protocols, Methods in Molecular Biology’. (Eds C. Harris and J. M. Hansen.) pp. 73–83. (Humana Press: Totowa.)

Blackburn, D. G. (2018). Reproduction in reptiles. In ‘Encyclopedia of Reproduction’. 2nd edn. (Eds M. K. Skinner and P. Swanson.) pp. 573–578. (Elsevier Press: Cambridge.)

Browne, R. K., Li, H., Robertson, H., Uteshev, V. K., Shishova, N. V., McGinnity, D., Nofs, S., Figiel, C. R., Mansour, N., Lloyd, R., Agnew, D., Carleton, C. L., Wu, M., and Gakhova, E. N. (2011). Reptile and amphibian conservation through gene banking and other reproduction technologies. Russ. J. Herpetol. 18, 165–174.

Buhi, W. C., Alvarez, I. M., Binelli, M., Walworth, E. S., and Guillette, L. J. (1999). Identification and characterization of proteins synthetised de novo and secreted by the reproductive tract of the American alligator, Alligator mississippiensis. J. Reprod. Fertil. 115, 201–213.
Identification and characterization of proteins synthetised de novo and secreted by the reproductive tract of the American alligator, Alligator mississippiensis.Crossref | GoogleScholarGoogle Scholar | 10434925PubMed |

Cardeilhac, P. T., Puckett, H. M., DeSena, R. R., and Larsen, R. E. (1982). Progress in artificial insemination of the alligator. In ‘Proceedings of the 2nd Annual Alligator Production Conference’, dates February 11-12 + year 1982, city Gainesville, state Florida, country USA. (Eds P. Cardeilhac, T. Lane, R. Larsen) pp. 44–46. (University of Florida.)

Cardeilhac, P. T., Larsen, R. T., Godwin, F., Godwin, M., and Peters, D. K. (1988). Reproductive biology and artificial insemination of the American alligator. In ‘International Association for Aquatic Animal Medicine, Poster Presentation, Proceedings of 19th Conference Online’, Volume 19, Baltimore, MD, USA. (Ed. M. S. Stoskopf) Available at: https://www.vin.com/doc/?id=3979935 [verified 2 November 2020].

Clulow, J., and Clulow, S. (2016). Cryopreservation and other assisted reproductive technologies for the conservation of threatened amphibians and reptiles: bringing ARTs up to speed. Reprod. Fertil. Dev. 28, 1116–1132.
Cryopreservation and other assisted reproductive technologies for the conservation of threatened amphibians and reptiles: bringing ARTs up to speed.Crossref | GoogleScholarGoogle Scholar |

Comizzoli, P., and Holt, W. V. (2019). Breakthroughs and new horizons in reproductive biology of rare and endangered animal species. Biol. Reprod. 101, 514–525.
Breakthroughs and new horizons in reproductive biology of rare and endangered animal species.Crossref | GoogleScholarGoogle Scholar | 30772911PubMed |

Della Togna, G., Howell, L. G., Clulow, J., Langhorne, C. J., Marcec-Greaves, R., and Calatayud, N. E. (2020). Evaluating amphibian biobanking and reproduction for captive breeding programs according to the Amphibian Conservation Action Plan objectives. Theriogenology 150, 412–431.
Evaluating amphibian biobanking and reproduction for captive breeding programs according to the Amphibian Conservation Action Plan objectives.Crossref | GoogleScholarGoogle Scholar | 32127175PubMed |

Elsey, R. M., Joanen, T., McNease, L., and Lance, V. (1990). Stress and plasma corticosterone levels in the American alligator – relationships with stocking density and nesting success. Comp. Biochem. Physiol. A Physiol. 95, 55–63.
Stress and plasma corticosterone levels in the American alligator – relationships with stocking density and nesting success.Crossref | GoogleScholarGoogle Scholar |

Elsey, R. M., Lance, V. A., Joanen, T., and McNease, L. (1991). Acute stress suppresses plasma estradiol levels in female alligators (Alligator mississippiensis). Comp. Biochem. Physiol. A Physiol. 100, 649–651.
Acute stress suppresses plasma estradiol levels in female alligators (Alligator mississippiensis).Crossref | GoogleScholarGoogle Scholar |

Evans, G., and Maxwell, W. M. C. (1987). ‘Salamon’s Artificial Insemination of Sheep and Goats.’ (Butterworths: Sydney.)

Fitri, W. N., Wahid, H., Rinalfi, P. T., Rosnina, Y., Raj, D., Donny, Y., Qayyum, L., and Malek, A. A. A. (2018). Digital massage for semen collection, evaluation and extension in Malaysian estuarine crocodile (Crocodylus porosus). Aquaculture 483, 169–172.
Digital massage for semen collection, evaluation and extension in Malaysian estuarine crocodile (Crocodylus porosus).Crossref | GoogleScholarGoogle Scholar |

Fitri, W. N., Wahid, H., Rinalfi, P. T., Raj, D., Donny, Y., Qayyum, L., and Malek, A. A. A. (2020). Spermatozoa morphometry and ultrastructure in estuarine crocodile (Crocodylus porosus). Asian Pac. J. Reprod. 9, 104–108.
Spermatozoa morphometry and ultrastructure in estuarine crocodile (Crocodylus porosus).Crossref | GoogleScholarGoogle Scholar |

Fleming, G. J., and Skurski, M. L. (2012). Behavioral training of reptiles for medical procedures. In ‘Fowler’s Zoo and Wild Animal Medicine’, Volume 7. (Eds R. E. Miller and M. Fowler.) pp. 212–216. (Elsevier Saunders: St Louis.)

Fukuda, Y., and Saalfeld, K. (2014). Abundance of saltwater crocodile hatching is related to rainfall in the preceding wet season in northern Australia. Herpetologica 70, 439–448.
Abundance of saltwater crocodile hatching is related to rainfall in the preceding wet season in northern Australia.Crossref | GoogleScholarGoogle Scholar |

Gist, D. H., Hess, R. A., and Thurston, R. J. (1992). Cytoplasmic droplets of painted turtle spermatozoa. J. Morphol. 214, 153–158.
Cytoplasmic droplets of painted turtle spermatozoa.Crossref | GoogleScholarGoogle Scholar | 23865099PubMed |

Gist, D. H., Bagwill, A., Lance, V., Sever, D. M., and Elsey, R. M. (2008). Sperm storage in the oviduct of the alligator. J. Exp. Zool. 309A, 581–587.
Sperm storage in the oviduct of the alligator.Crossref | GoogleScholarGoogle Scholar |

Gosálvez, J., López‐Fernández, C., Fernández, J. L., and Johnston, S. (2020). Microencapsulation of human spermatozoa increases membrane stability and DNA longevity. Andrologia , .
Microencapsulation of human spermatozoa increases membrane stability and DNA longevity.Crossref | GoogleScholarGoogle Scholar | 33355946PubMed |

Gosálvez, J., López-Fernández, C., and Johnston, S. D. (2016). Whole extra-charged DNA spermatozoa in the saltwater crocodile (Crocodylus porous) ejaculate. Herpetol. J. 26, 313–316.

Gribbins, K. M., Siegel, D. S., Anzalone, M. L., Jackson, D. P., Venable, K. J., Rheubert, J. L., and Elsey, R. M. (2010). Ultrastructure of spermiogenesis in the American alligator, Alligator mississippiensis (Reptilia, Crocodylia, Alligatoridae). J. Morphol. 271, 1260–1271.
Ultrastructure of spermiogenesis in the American alligator, Alligator mississippiensis (Reptilia, Crocodylia, Alligatoridae).Crossref | GoogleScholarGoogle Scholar | 20715150PubMed |

Grigg, G., and Kirshner, D. (2015). ‘Biology and Evolution of Crocodylians.’ (CSIRO Publishing: Melbourne.)

Guillette, L. J., Jr, and Milnes, M. (2001). Recent observations on the reproductive physiology and toxicology of crocodilians. In ‘Crocodilian Biology and Evolution’. (Eds G. C. Grigg, F. Seebacher, and C. E. Franklin.) pp. 199–213. (Surrey Beatty and Sons: Sydney.)

Guillette, L. J., Jr, Cree, A., and Rooney, A. A. (1995). Biology of stress: interactions with reproduction, immunology and intermediary metabolism. In ‘Health and Welfare of Captive Reptiles’. (Eds C. Warwick, F. L. Frye, and J. B. Murphy.) pp. 32–81. (Chapman and Hall: New York.)

Guillette, L. J., Woodward, A. R., Crain, D. A., Masson, G. R., Palmer, B. D., Cox, M. C., You-Xiang, Q., and Orlando, E. F. (1997). The reproductive cycle of the female American alligator (Alligator mississippiensis). Gen. Comp. Endocrinol. 108, 87–101.
The reproductive cycle of the female American alligator (Alligator mississippiensis).Crossref | GoogleScholarGoogle Scholar | 9378277PubMed |

Hale, M. D., Cloy-McCoy, J. A., Doheny, B. M., and Parrot, B. B. (2018). Reproductive biology of crocodilians. In ‘Encyclopedia of Reproduction’. 2nd edn. (Ed. S. Skinner.) pp. 648–653. (Academic Press: Amsterdam).

Hamlin, H. J, Lowers, R. H., and Guillette, L. J. (2011). Seasonal androgen cycles in adult male American alligators (Alligator mississippiensis) from a barrier island population. Biol. Reprod. 85, 1108–1113.
Seasonal androgen cycles in adult male American alligators (Alligator mississippiensis) from a barrier island population.Crossref | GoogleScholarGoogle Scholar | 21816848PubMed |

Herrick, J. R. (2019). Assisted reproductive technologies for endangered species conservation: developing sophisticated protocols with limited access to animals with unique reproductive mechanisms. Biol. Reprod. 100, 1158–1170.
Assisted reproductive technologies for endangered species conservation: developing sophisticated protocols with limited access to animals with unique reproductive mechanisms.Crossref | GoogleScholarGoogle Scholar | 30770538PubMed |

Herrler, A., Eisner, S., Bach, V., Weissenborn, U., and Beier, H. M. (2006). Cryopreservation of spermatozoa in alginic acid capsules. Fertil. Steril. 85, 208–213.
Cryopreservation of spermatozoa in alginic acid capsules.Crossref | GoogleScholarGoogle Scholar | 16412755PubMed |

Huchzermeyer, F. W. (2003). ‘Crocodiles: Biology, Husbandry and Diseases.’ (CABI Publishing: Cambridge, MA.)

Isberg, S. R., Nicholas, F. W., Thomson, P. C., Barker, S. G., Manolis, S. C., and Moran, C. (2003). Defining breeding objectives for saltwater crocodile genetic improvement programs. Proc. Adv. Anim. Breed. Gen. 15, 166–169.

Isberg, S. R., Thomson, P. C., Nicholas, F. W., Barker, S. G., and Moran, C. (2005a). Quantitative analysis of production traits in saltwater crocodiles (Crocodylus porosus): I. Reproduction traits. J. Anim. Breed. Genet. 122, 361–369.
Quantitative analysis of production traits in saltwater crocodiles (Crocodylus porosus): I. Reproduction traits.Crossref | GoogleScholarGoogle Scholar | 16274419PubMed |

Isberg, S. R., Thomson, P. C., Nicholas, F. W., Barker, S. G., and Moran, C. (2005b). Quantitative analysis of production traits in saltwater crocodiles (Crocodylus porosus): II. Age at slaughter. J. Anim. Breed. Genet. 122, 370–377.
Quantitative analysis of production traits in saltwater crocodiles (Crocodylus porosus): II. Age at slaughter.Crossref | GoogleScholarGoogle Scholar | 16274420PubMed |

Isberg, S. R., Thomson, P. C., Nicholas, F. W., Barker, S. G., and Moran, C. (2006a). Quantitative analysis of production traits in saltwater crocodiles (Crocodylus porosus): III. Juvenile survival. J. Anim. Breed. Genet. 123, 44–47.
Quantitative analysis of production traits in saltwater crocodiles (Crocodylus porosus): III. Juvenile survival.Crossref | GoogleScholarGoogle Scholar | 16420264PubMed |

Isberg, S. R., Thomson, P. C., Nicholas, F. W., Barker, S. G., and Moran, C. (2006b). Quantitative analysis of production traits in saltwater crocodiles (Crocodylus porosus): IV. Number of scale rows. J. Anim. Breed. Genet. 123, 48–55.
Quantitative analysis of production traits in saltwater crocodiles (Crocodylus porosus): IV. Number of scale rows.Crossref | GoogleScholarGoogle Scholar | 16420265PubMed |

Jamieson, B. G. M. (2007). Avian spermatozoa: structure and phylogeny. In ‘Reproductive Biology and Phylogeny of Birds’. Volume 6A and B. (Ed. B. G. M. Jamieson.) pp. 349–511. (Science Publishers: Enfield.)

Jamieson, B. G. M., Scheltinga, D. M., and Tucker, A. D. (1997). The ultrastructure of spermatozoa of the Australian freshwater crocodile, Crocodylus johnstoni Krefft, 1873 (Crocodylidae, Reptilia). J. Submicrosc. Cytol. Pathol. 29, 265–274.

Johnston, S. (2019). Challenges associated with the development and transfer of assisted breeding technology in marsupials and monotremes: lessons from the koala, wombat and short-beaked echidna. Reprod. Fertil. Dev. 31, 1305–1314.
Challenges associated with the development and transfer of assisted breeding technology in marsupials and monotremes: lessons from the koala, wombat and short-beaked echidna.Crossref | GoogleScholarGoogle Scholar | 30991015PubMed |

Johnston, S. D., MacCallum, C., Blyde, D., McClean, R., Lisle, A., and Holt, W. V. (2006). An investigation into the similarities and differences governing the cryopreservation success of koala (Phascolarctos cinereus: Goldfuss) and common wombat (Vombatus ursinus: Shaw) spermatozoa. Cryobiology 53, 218–228.
An investigation into the similarities and differences governing the cryopreservation success of koala (Phascolarctos cinereus: Goldfuss) and common wombat (Vombatus ursinus: Shaw) spermatozoa.Crossref | GoogleScholarGoogle Scholar | 16889764PubMed |

Johnston, S. D., Smith, B., Pyne, M., Stenzel, D., and Holt, W. V. (2007). One-sided ejaculation of echidna sperm bundles. Am. Nat. 170, E162–E164.
One-sided ejaculation of echidna sperm bundles.Crossref | GoogleScholarGoogle Scholar | 18171162PubMed |

Johnston, S., Lever, J., McLeod, R., Oishi, M., and Collins, S. (2014a). ‘Development of Breeding Techniques in the Crocodile Industry.’ (Rural Industries Research and Development Corporation: Canberra.)

Johnston, S. D., Lever, J., McLeod, R., Oishi, M., Qualischefski, E., Omanga, C., Leitner, M., Price, R., Barker, L., Kamau, K., Gaughan, J., and D’Occhio, M. (2014b). Semen collection and seminal characteristics of the Australian saltwater crocodile (Crocodylus porosus). Aquaculture 422–423, 25–35.
Semen collection and seminal characteristics of the Australian saltwater crocodile (Crocodylus porosus).Crossref | GoogleScholarGoogle Scholar |

Johnston, S. D., Lever, J., McLeod, R., Qualischefski, E., Brabazon, S., Walton, S., and Collins, S. N. (2014c). Extension, osmotic tolerance and cryopreservation of saltwater crocodile (Crocodylus porosus) spermatozoa. Aquaculture 426–427, 213–221.
Extension, osmotic tolerance and cryopreservation of saltwater crocodile (Crocodylus porosus) spermatozoa.Crossref | GoogleScholarGoogle Scholar |

Johnston, S. D., Lopez-Fernandez, C., Arroyo, F., Fernandez, J. L., and Gosalvez, J. (2017a). The assessment of sperm DNA fragmentation in the saltwater crocodile (Crocodylus porosus). Reprod. Fertil. Dev. 29, 630–636.
The assessment of sperm DNA fragmentation in the saltwater crocodile (Crocodylus porosus).Crossref | GoogleScholarGoogle Scholar | 26462595PubMed |

Johnston, S. D., Qualischefski, E., Cooper, J., McLeod, R., Lever, J., Nixon, B., Anderson, A. L., Hobbs, R., Gosalvez, J., Lopez-Fernandez, C., and Keeley, T. (2017b). Cryopreservation of saltwater crocodile (Crocodylus porosus) spermatozoa. Reprod. Fertil. Dev. 29, 2235–2244.
Cryopreservation of saltwater crocodile (Crocodylus porosus) spermatozoa.Crossref | GoogleScholarGoogle Scholar | 28356183PubMed |

Lance, V. A. (1987). Hormonal control of reproduction in crocodiles. In ‘Wildlife Management: Crocodiles and Alligators’. (Eds G. J. W. Webb, S. C. Manolis, and P. J. Whitehead). pp. 409–415. (Surrey Beatty and Sons: Sydney.)

Lance, V. A. (1989). Reproductive cycle of the American alligator. Am. Zool. 29, 999–1018.
Reproductive cycle of the American alligator.Crossref | GoogleScholarGoogle Scholar |

Lance, V. A., Rostal, D. C., Elsey, R. M., and Trosclair, P. L. (2009). Ultrasonography of reproductive structures and hormonal correlates of follicular development in female American alligators, Alligator mississippiensis, in southwest Louisiana. Gen. Comp. Endocrinol. 162, 251–256.
Ultrasonography of reproductive structures and hormonal correlates of follicular development in female American alligators, Alligator mississippiensis, in southwest Louisiana.Crossref | GoogleScholarGoogle Scholar | 19344723PubMed |

Larsen, R. E., and Cardeilhac, P. T. (1981). Collection and maintenance of semen for artificial insemination. In ‘Proceedings of the 1st Annual Alligator Production Conference’, 12–13 February 1981, Gainesville, Florida, USA. (Eds P. T. Cardeilhac, T. Lane, R. Larsen.) pp. 100–106. (University of Florida.)

Larsen, R. E., and Cardeilhac, P. T. (1996). Collection of spermatozoa from leucistic (white) alligators. In ‘International Association for Aquatic Animal Medicine, Archive’ Availabe at: https://www.vin.com/apputil/content/defaultadv1.aspx?pId=11257&catId=32259&id=3864191

Larsen, R. E., Cardeilhac, P. T., and Lane, T. (1984). Semen extenders for artificial insemination in the American alligator. Aquaculture 42, 141–149.
Semen extenders for artificial insemination in the American alligator.Crossref | GoogleScholarGoogle Scholar |

Larsen, R. E., Verdade, L. M., Meirelles, C. F., and Lavorenti, A. (1992). Broad-nosed caiman (Caiman latirostris) semen collection, evaluation, and maintenance in diluents. In ‘Proceedings of the 11th Working Meeting of the Crocodile Specialist Group’, 2–7 August 1992, Victor Falls, Zimbabwe. pp. 270–276. (The World Conservation Union: Gland, Switzerland.)

Liu, L. S., Zhao, L. Y., Wang, S. H., and Jiang, J. P. (2016). Research proceedings on amphibian model organisms. Dongwuxue Yanjiu 37, 237–245.
| 27469255PubMed |

Madrigal-Valverde, M., Castro-Morales, O., Valverde, A., Johnston, S., Gadea-Rivas, A., and Lents, M. P. (2018). New protocol for semen collection in crocodilians. In ‘Proceedings of the 3rd Annual Meeting of the Brazilian Association of Animal Andrology’, 8–9 June 2018, Minas Gerais, Brazil. pp. 172–175. (Federal University of Mato Grosso do Sul: Mato Grosso do Sul, Brazil.)

Miles, L., and Isberg, S. (2010). Linkage mapping and quantitative trait loci (QTL) analysis in saltwater crocodiles. RIRDC Publication no. 10/152. Available at: https://www.agrifutures.com.au/wp-content/uploads/publications/10-152.pdf [verified 2 November 2020].

Milnes, M. R. (2011). Hormones and reproductive cycles in crocodilians. In ‘Hormones and Reproduction of Vertebrates’. Volume 3. (Eds D. O. Norris and K. H. Lopez.) pp. 305–319. (Academic Press: Amsterdam.)

Monfort, S. L. (2014). ‘Mayday mayday mayday’, the millennium ark is sinking! Adv. Exp. Med. Biol. 753, 15–31.
‘Mayday mayday mayday’, the millennium ark is sinking!Crossref | GoogleScholarGoogle Scholar | 25091904PubMed |

Moore, B. C., Uribe-Aranzábal, M. C., Boggs, A. S. P., and Guillette, L. J. (2008). Developmental morphology of the neonatal alligator (Alligator mississippiensis) ovary. J. Morphol. 269, 302–312.
Developmental morphology of the neonatal alligator (Alligator mississippiensis) ovary.Crossref | GoogleScholarGoogle Scholar | 17957708PubMed |

National Resource Management Ministerial Council (NRMMC) (2009). Code of practice on the humane treatment of wild and farmed Australian crocodiles. Available at: http://www.environment.gov.au/biodiversity/wildlife-trade/publications/crocodile-code-of-practice.html [verified 2 November 2020].

Nixon, B., Anderson, A. L., Smith, N. D., McLeod, R., and Johnston, S. D. (2016). The Australian saltwater crocodile (Crocodylus porosus) provides evidence that the capacitation of spermatozoa may extend beyond the mammalian lineage. Proc. Biol. Sci. 283, 20160495.
The Australian saltwater crocodile (Crocodylus porosus) provides evidence that the capacitation of spermatozoa may extend beyond the mammalian lineage.Crossref | GoogleScholarGoogle Scholar | 27147099PubMed |

Nixon, B., Johnston, S. D., Skerrett-Byrne, D. A., Anderson, A. L., Stanger, S. J., Bromfield, E. G., Martin, J. H., Hansbro, P. M., and Dun, M. D. (2019). Modification of crocodile spermatozoa refutes the tenet that post-testicular sperm maturation is restricted to mammals. Mol. Cell. Proteomics 18, S59–S76.
Modification of crocodile spermatozoa refutes the tenet that post-testicular sperm maturation is restricted to mammals.Crossref | GoogleScholarGoogle Scholar | 30072580PubMed |

Nixon, B., Anderson, A. L., Bromfield, E., Martin, J., Cafe, S. L., Skerrett-Byrne, D. A., Dun, M. D., Eamens, A. L., De Iuliis, G. N., and Johnston, S. D. (2021). Post-testicular sperm maturation in the saltwater crocodile Crocodylus porosus: assessing the temporal acquisition of sperm motility. Reprod. Fertil. Dev. , .
Post-testicular sperm maturation in the saltwater crocodile Crocodylus porosus: assessing the temporal acquisition of sperm motility.Crossref | GoogleScholarGoogle Scholar |

Olsson, M., and Madsen, T. (1998). Sexual selection and sperm competition in reptiles. In ‘Sperm Competition and Sexual Selection’. (Eds T. R. Birkhead and A. P. Møller.) pp. 503–578. (Academic Press: London.)

Olsson, A., and Phalen, D. (2012). Preliminary studies of chemical immobilization of captive juvenile estuarine (Crocodylus porosus) and Australian freshwater (C. johnstoni) crocodiles with medetomidine and reversal with atipamezole. Vet. Anaesth. Analg. 39, 345–356.
Preliminary studies of chemical immobilization of captive juvenile estuarine (Crocodylus porosus) and Australian freshwater (C. johnstoni) crocodiles with medetomidine and reversal with atipamezole.Crossref | GoogleScholarGoogle Scholar | 22642399PubMed |

Palmer, B. D., and Guillette, L. J. (1992). Alligators provide evidence for an archosaurian mode of oviparity. Biol. Reprod. 46, 39–47.
Alligators provide evidence for an archosaurian mode of oviparity.Crossref | GoogleScholarGoogle Scholar | 1547315PubMed |

Perteghella, S., Vigani, B., Crivelli, B., Spinaci, M., Galeati, G., Bucci, D., Vigo, D., Torre, M. L., and Chlapanidas, T. (2015). Sperm encapsulation from 1985 to date: technology evolution and new challenges in swine reproduction. Reprod. Domest. Anim. 50, 98–102.
Sperm encapsulation from 1985 to date: technology evolution and new challenges in swine reproduction.Crossref | GoogleScholarGoogle Scholar | 26174926PubMed |

Rangel, P. L., and Gutierrez, C. G. (2014). Reproduction in hens: is testosterone necessary for the ovulatory process? Gen. Comp. Endocrinol. 203, 250–261.
Reproduction in hens: is testosterone necessary for the ovulatory process?Crossref | GoogleScholarGoogle Scholar | 24717810PubMed |

Saita, A., Comazzi, M., and Perrotta, E. (1987). Electron microscope study of spermiogenesis in Caiman crocodilus. Boll. Zool. 54, 307–318.
Electron microscope study of spermiogenesis in Caiman crocodilus.Crossref | GoogleScholarGoogle Scholar |

Shilton, C. M., Jerrett, I. V., Davis, S., Walsh, S., Benedict, S., Isberg, S. R., Webb, G. J. W., Manolis, C., Hyndman, T. H., Phalen, D., Brown, G. P., and Melville, L. (2016). Diagnostic investigation of new disease syndromes in farmed Australian saltwater crocodiles (Crocodylus porosus) reveals associations with herpesviral infection. J. Vet. Diagn. Invest. 28, 279–290.
Diagnostic investigation of new disease syndromes in farmed Australian saltwater crocodiles (Crocodylus porosus) reveals associations with herpesviral infection.Crossref | GoogleScholarGoogle Scholar | 27075848PubMed |

Silla, A. J., and Byrne, P. G. (2019). The role of reproductive technologies in amphibian conservation breeding programs. Annu. Rev. Anim. Biosci. 7, 499–519.
The role of reproductive technologies in amphibian conservation breeding programs.Crossref | GoogleScholarGoogle Scholar | 30359086PubMed |

Spiegel, R. A., Lane, T. J., Larsen, R. E., and Cardeilhac, P. T. (1984). Diazepam and succinyl choline for restraint of the American alligator. J. Am. Vet. Med. Assoc. 185, 1335–1336.
| 6511577PubMed |

Taplin, L. E. (1988). Osmoregulation in crocodilians. Biol. Rev. Camb. Philos. Soc. 63, 333–377.
Osmoregulation in crocodilians.Crossref | GoogleScholarGoogle Scholar |

UF Health Center Communications (1981). 14 Alligator eggs fertilized by artificial insemination. Gainsville Sun p. B4.

Uribe, M. C. A., and Guillette, L. R. (2000). Oogenesis and ovarian histology of the American alligator Alligator mississippiensis. J. Morphol. 245, 225–240.
Oogenesis and ovarian histology of the American alligator Alligator mississippiensis.Crossref | GoogleScholarGoogle Scholar |

Valverde, A., Madrigal-Valverde, M., Castro-Morales, O., Gadea-Rivas, A., Johnston, S., and Soler, C. (2019). Kinematic and head morphometric characterisation of spermatozoa from the Brown Caiman (Caiman crocodilus fuscus). Anim. Reprod. Sci. 207, 9–20.
Kinematic and head morphometric characterisation of spermatozoa from the Brown Caiman (Caiman crocodilus fuscus).Crossref | GoogleScholarGoogle Scholar | 31266600PubMed |

Varela Julia, M., and Mendez del Castillo, G. (1983). Methods of maintaining and breeding snakes in captivity. Toxicon 21, 469–472.
Methods of maintaining and breeding snakes in captivity.Crossref | GoogleScholarGoogle Scholar |

Webb, G., and Manolis, C. (1998). ‘Australian Crocodiles: A Natural History.’ (Reed New Holland: Sydney.)