Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Establishment of a stem Leydig cell line capable of 11-ketotestosterone production

Qin Huang A , Zhuo Yang A , Jie Wang A , Yubing Luo A , Changle Zhao A , Minghui Li A , Hesheng Xiao A , Wenjing Tao A , Deshou Wang A B and Jing Wei https://orcid.org/0000-0002-8064-7634 A B
+ Author Affiliations
- Author Affiliations

A Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education; Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, 400715 Chongqing, China.

B Corresponding authors. Emails: wdeshou@swu.edu.cn; lalsos@swu.edu.cn

Reproduction, Fertility and Development 32(16) 1271-1281 https://doi.org/10.1071/RD20171
Submitted: 1 July 2020  Accepted: 2 October 2020   Published: 6 November 2020

Abstract

The deficiency or insufficiency of androgen can trigger a range of reproductive diseases as well as other symptoms. Stem Leydig cells (SLCs) are critical for the formation and maintenance of a functional androgen-producing cell (Leydig cell, LC) population throughout adult male life. However, to date, our knowledge about SLCs is poor. Here we report the derivation and characterisation of a clonal stem LC line (designated as TSL) capable of 11- ketotestosterone (11-KT) production from a 3-month-old Nile tilapia (Oreochromis niloticus) testis. The cells retained stable proliferation after 77 generations with normal karyotype and growth factor dependency. They expressed platelet-derived growth factor receptor-α (pdgfrα), nestin and chicken ovalbumin upstream promoter transcription factor II (coup-tfIIa), which are characteristic of SLCs. Upon induction in defined medium, TSLs could undergo differentiation into steroidogenically active LCs and produce 11-KT. When implanted into recipient Nile tilapia testes from which endogenous LCs had been eliminated by ethane dimethanesulphonate (EDS) treatment, the PKH26-labelled TSLs could colonise the interstitium, subsequently express steroidogenic genes and restore 11-KT production. Taken together, our data suggest that TSLs possess the ability of continuous proliferation and potential of differentiation into functional LCs in vitro and in vivo. To the best of our knowledge TSL might represent the first stem LC line capable of 11-KT production to date. Our study may offer new opportunities for investigating the self-renewal of SLCs and steroidogenesis in vitro, and provide an invaluable in vitro model for investigating endocrine disruptors.

Graphical Abstract Image

Keywords: 11-ketotestosterone, 11-KT, androgen, cell culture, Leydig cell, SLC, stem cell, steroid hormone.


References

Akingbemi, B. T., Ge, R., Klinefelter, G. R., Zirkin, B. R., and Hardy, M. P. (2004). Phthalate-induced Leydig cell hyperplasia is associated with multiple endocrine disturbances. Proc. Natl. Acad. Sci. USA 101, 775–780.
Phthalate-induced Leydig cell hyperplasia is associated with multiple endocrine disturbances.Crossref | GoogleScholarGoogle Scholar | 14715905PubMed |

Arora, H., Zuttion, M. S. S. R., Nahar, B., Lamb, D., Hare, J. M., and Ramasamy, R. (2019). Subcutaneous Leydig stem cell autograft: a promising strategy to increase serum testosterone. Stem Cells Transl. Med. 8, 58–65.
Subcutaneous Leydig stem cell autograft: a promising strategy to increase serum testosterone.Crossref | GoogleScholarGoogle Scholar | 30280521PubMed |

Borg, B. (1994). Androgens in Teleost fishes. Comp. Biochem. Physiol. C Pharmacol. Toxicol. Endocrinol. 109, 219–245.
Androgens in Teleost fishes.Crossref | GoogleScholarGoogle Scholar |

Chen, H., Huhtaniemi, I., and Zirkin, B. R. (1996). Depletion and repopulation of Leydig cells in the testes of aging brown Norway rats. Endocrinology 137, 3447–3452. https://doi.org/10.1210/endo.137.8.8754773

Chen, H., Wang, Y., Ge, R., and Zirkin, B. R. (2017). Leydig cell stem cells: identification, proliferation and differentiation. Mol. Cell. Endocrinol. 445, 65–73.
Leydig cell stem cells: identification, proliferation and differentiation.Crossref | GoogleScholarGoogle Scholar | 27743991PubMed |

de Rooij, D. G., and Van Bragt, M. P. (2004). Leydig cells: testicular side population harbors transplantable Leydig stem cells. Endocrinology 145, 4009–4010.
Leydig cells: testicular side population harbors transplantable Leydig stem cells.Crossref | GoogleScholarGoogle Scholar | 15321946PubMed |

Fan, Z., Liu, L., Huang, X., Zhao, Y., Zhou, L., Wang, D., and Wei, J. (2017). Establishment and growth responses of Nile tilapia embryonic stem-like cell lines under feeder-free condition. Dev. Growth Differ. 59, 83–93.
Establishment and growth responses of Nile tilapia embryonic stem-like cell lines under feeder-free condition.Crossref | GoogleScholarGoogle Scholar | 28230233PubMed |

Ge, R. S., Dong, Q., Sottas, C. M., Papadopoulos, V., Zirkin, B. R., and Hardy, M. P. (2006). In search of rat stem Leydig cells: identification, isolation, and lineage-specific development. Proc. Natl. Acad. Sci. USA 103, 2719–2724.
In search of rat stem Leydig cells: identification, isolation, and lineage-specific development.Crossref | GoogleScholarGoogle Scholar | 16467141PubMed |

Glasauer, S. M., and Neuhauss, S. C. (2014). Whole-genome duplication in teleost fishes and its evolutionary consequences. Mol. Genet. Genomics 289, 1045–1060.
Whole-genome duplication in teleost fishes and its evolutionary consequences.Crossref | GoogleScholarGoogle Scholar | 25092473PubMed |

Gray, L. E., Klinefelter, G., Kelce, W., Laskey, J., Ostby, J., and Ewing, L. (1995). Hamster Leydig cells are less sensitive to ethane dimethanesulfonate when compared to rat Leydig cells both in vivo and in vitro. Toxicol. Appl. Pharmacol. 130, 248–256.
Hamster Leydig cells are less sensitive to ethane dimethanesulfonate when compared to rat Leydig cells both in vivo and in vitro.Crossref | GoogleScholarGoogle Scholar | 7871538PubMed |

Hall, P. F., Irby, D. C., and De Kretser, D. M. (1969). Conversion of cholesterol to androgens by rat testes: comparison of interstitial cells and seminiferous tubules. Endocrinology 84, 488–496.
Conversion of cholesterol to androgens by rat testes: comparison of interstitial cells and seminiferous tubules.Crossref | GoogleScholarGoogle Scholar |

Hong, Y., Winkler, C., and Schartl, M. (1998). Efficiency of cell culture derivation from blastula embryos and of chimera formation in the medaka (Oryzias latipes) depends on donor genotype and passage number. Dev. Genes Evol. 208, 595–602.
Efficiency of cell culture derivation from blastula embryos and of chimera formation in the medaka (Oryzias latipes) depends on donor genotype and passage number.Crossref | GoogleScholarGoogle Scholar |

Hong, Y., Liu, T. M., Zhao, H. B., Xu, H. Y., Wang, W. J., Liu, R., Chen, T. S., Deng, J. R., and Gui, J. F. (2004). Establishment of a normal medakafish spermatogonial cell line capable of sperm production in vitro. Proc. Natl. Acad. Sci. USA 101, 8011–8016.
Establishment of a normal medakafish spermatogonial cell line capable of sperm production in vitro.Crossref | GoogleScholarGoogle Scholar | 15141090PubMed |

Jiang, M. H., Cai, B., Tuo, Y., Wang, J., Zang, Z. J., Tu, X., Gao, Y., Su, Z., Li, W., Li, G., Zhang, M., Jiao, J., Wan, Z., Deng, C., Lahn, B. T., and Xiang, A. P. (2014). Characterization of Nestin-positive stem Leydig cells as a potential source for the treatment of testicular Leydig cell dysfunction. Cell Res. 24, 1466–1485.
Characterization of Nestin-positive stem Leydig cells as a potential source for the treatment of testicular Leydig cell dysfunction.Crossref | GoogleScholarGoogle Scholar | 25418539PubMed |

Jin, Y. H., Davie, A., and Migaud, H. (2019). Expression pattern of nanos, piwil, dnd, vasa and pum genes during ontogenic development in Nile tilapia Oreochromis niloticus. Gene 688, 62–70.
Expression pattern of nanos, piwil, dnd, vasa and pum genes during ontogenic development in Nile tilapia Oreochromis niloticus.Crossref | GoogleScholarGoogle Scholar | 30503393PubMed |

Kerr, J. B., Donachie, K., and Rommerts, F. F. (1985). Selective destruction and regeneration of rat Leydig cells in vivo. A new method for the study of seminiferous tubular-interstitial tissue interaction. Cell and Tissue Research 242, 145–156. https://doi.org/10.1007/bf00225571

Kilcoyne, K. R., Smith, L. B., Atanassova, N., Macpherson, S., McKinnell, C., van den Driesche, S., Jobling, M. S., Chambers, T. J., De Gendt, K., Verhoeven, G., O’Hara, L., Platts, S., Renato de Franca, L., Lara, N. L., Anderson, R. A., and Sharpe, R. M. (2014). Fetal programming of adult Leydig cell function by androgenic effects on stem/progenitor cells. Proc. Natl. Acad. Sci. USA 111, E1924–E1932.
Fetal programming of adult Leydig cell function by androgenic effects on stem/progenitor cells.Crossref | GoogleScholarGoogle Scholar | 24753613PubMed |

Kobayashi, T., Kajiura-Kobayashi, H., and Nagahama, Y. (2000). Differential expression of vasa homologue gene in the germ cells during oogenesis and spermatogenesis in a teleost fish, tilapia, Oreochromis niloticus. Mech. Dev. 99, 139–142.
Differential expression of vasa homologue gene in the germ cells during oogenesis and spermatogenesis in a teleost fish, tilapia, Oreochromis niloticus.Crossref | GoogleScholarGoogle Scholar | 11091081PubMed |

Lacerda, S. M., Batlouni, S. R., Costa, G. M., Segatelli, T. M., Quirino, B. R., Queiroz, B. M., Kalapothakis, E., and Franca, L. R. (2010). A new and fast technique to generate offspring after germ cells transplantation in adult fish: the Nile tilapia (Oreochromis niloticus) model. PLoS One 5, e10740.
A new and fast technique to generate offspring after germ cells transplantation in adult fish: the Nile tilapia (Oreochromis niloticus) model.Crossref | GoogleScholarGoogle Scholar | 20505774PubMed |

Laskey, J. W., Kelce, W. R., Klinefelter, G. R., Gray, L. E., and Ewing, L. L. (1994a). Distribution of [14C]ethane dimethanesulfonate in immature and adult male rats following an acute exposure. Fundam. Appl. Toxicol. 22, 319–327.
Distribution of [14C]ethane dimethanesulfonate in immature and adult male rats following an acute exposure.Crossref | GoogleScholarGoogle Scholar | 8050628PubMed |

Laskey, J. W., Klinefelter, G. R., Kelce, W. R., and Ewing, L. L. (1994b). Effects of ethane dimethanesulfonate (EDS) on adult and immature rabbit Leydig cells: comparison with EDS-treated rat Leydig cells. Biol. Reprod. 50, 1151–1160.
Effects of ethane dimethanesulfonate (EDS) on adult and immature rabbit Leydig cells: comparison with EDS-treated rat Leydig cells.Crossref | GoogleScholarGoogle Scholar | 8025172PubMed |

Lee, E. H., Oh, J. H., Lee, Y. S., Park, H. J., Choi, M. S., Park, S. M., Kang, S. J., and Yoon, S. (2012). Gene expression analysis of toxicological pathways in TM3 Leydig cell lines treated with ethane dimethanesulfonate. J. Biochem. Mol. Toxicol. 26, 213–223.
Gene expression analysis of toxicological pathways in TM3 Leydig cell lines treated with ethane dimethanesulfonate.Crossref | GoogleScholarGoogle Scholar | 22711419PubMed |

Li, M., Sun, Y., Zhao, J., Shi, H., Zeng, S., Ye, K., Jiang, D., Zhou, L., Sun, L., Tao, W., Nagahama, Y., Kocher, T. D., and Wang, D. (2015). A tandem duplicate of anti-Müllerian hormone with a missense SNP on the Y chromosome is essential for male sex determination in Nile tilapia, Oreochromis niloticus. PLoS Genet. 11, e1005678.
A tandem duplicate of anti-Müllerian hormone with a missense SNP on the Y chromosome is essential for male sex determination in Nile tilapia, Oreochromis niloticus.Crossref | GoogleScholarGoogle Scholar | 26588702PubMed |

Li, X., Wang, Z., Jiang, Z., Guo, J., Zhang, Y., Li, C., Chung, J., Folmer, J., Liu, J., Lian, Q., Ge, R., Zirkin, B. R., and Chen, H. (2016). Regulation of seminiferous tubule-associated stem Leydig cells in adult rat testes. Proc. Natl. Acad. Sci. USA 113, 2666–2671.
Regulation of seminiferous tubule-associated stem Leydig cells in adult rat testes.Crossref | GoogleScholarGoogle Scholar | 26929346PubMed |

Lobo, M. V., Arenas, M. I., Alonso, F. J., Gomez, G., Bazan, E., Paino, C. L., Fernandez, E., Fraile, B., Paniagua, R., Moyano, A., and Caso, E. (2004). Nestin, a neuroectodermal stem cell marker molecule, is expressed in Leydig cells of the human testis and in some specific cell types from human testicular tumours. Cell Tissue Res. 316, 369–376.
Nestin, a neuroectodermal stem cell marker molecule, is expressed in Leydig cells of the human testis and in some specific cell types from human testicular tumours.Crossref | GoogleScholarGoogle Scholar | 15127288PubMed |

Luu-The, V. (2013). Assessment of steroidogenesis and steroidogenic enzyme functions. J. Steroid Biochem. Mol. Biol. 137, 176–182.
Assessment of steroidogenesis and steroidogenic enzyme functions.Crossref | GoogleScholarGoogle Scholar | 23770321PubMed |

Molenaar, R., de Rooij, D. G., Rommerts, F. F., Reuvers, P. J., and van der Molen, H. J. (1985). Specific destruction of Leydig cells in mature rats after in vivo administration of ethane dimethyl sulfonate. Biol. Reprod. 33, 1213–1222.
Specific destruction of Leydig cells in mature rats after in vivo administration of ethane dimethyl sulfonate.Crossref | GoogleScholarGoogle Scholar | 3000465PubMed |

Morris, I. D., Phillips, D. M., and Bardin, C. W. (1986). Ethylene dimethanesulfonate destroys Leydig cells in the rat testis. Endocrinology 118, 709–719. https://doi.org/10.1210/endo-118-2-709

Morris, A. J., Taylor, M. F., and Morris, I. D. (1997). Leydig cell apoptosis in response to ethane dimethanesulphonate after both in vivo and in vitro treatment. J. Androl. 18, 274–280.
Leydig cell apoptosis in response to ethane dimethanesulphonate after both in vivo and in vitro treatment.Crossref | GoogleScholarGoogle Scholar | 9203055PubMed |

Nematollahi, M. A., van Pelt-Heerschap, H., Atsma, W., and Komen, J. (2012). High levels of corticosterone, and gene expression of star, cyp17a2, hsd3b, cyp21, hsd11b2 during acute stress in common carp with interrenal hyperplasia. Gen. Comp. Endocrinol. 176, 252–258.
High levels of corticosterone, and gene expression of star, cyp17a2, hsd3b, cyp21, hsd11b2 during acute stress in common carp with interrenal hyperplasia.Crossref | GoogleScholarGoogle Scholar | 22333211PubMed |

Odeh, H. M., Kleinguetl, C., Ge, R., Zirkin, B. R., and Chen, H. (2014). Regulation of the proliferation and differentiation of Leydig stem cells in the adult testis. Biol. Reprod. 90, 123.
Regulation of the proliferation and differentiation of Leydig stem cells in the adult testis.Crossref | GoogleScholarGoogle Scholar | 24740597PubMed |

Olsson, P. E., Berg, A. H., von Hofsten, J., Grahn, B., Hellqvist, A., Larsson, A., Karlsson, J., Modig, C., Borg, B., and Thomas, P. (2005). Molecular cloning and characterization of a nuclear androgen receptor activated by 11-ketotestosterone. Reprod. Biol. Endocrinol. 3, 37.
Molecular cloning and characterization of a nuclear androgen receptor activated by 11-ketotestosterone.Crossref | GoogleScholarGoogle Scholar | 16107211PubMed |

Peterson, M. D., Belakovskiy, A., McGrath, R., and Yarrow, J. F. (2018). Testosterone deficiency, weakness, and multimorbidity in men. Sci. Rep. 8, 5897.
Testosterone deficiency, weakness, and multimorbidity in men.Crossref | GoogleScholarGoogle Scholar | 29651127PubMed |

Qin, J., Tsai, M. J., and Tsai, S. Y. (2008). Essential roles of COUP-TFII in Leydig cell differentiation and male fertility. PLoS One 3, e3285.
Essential roles of COUP-TFII in Leydig cell differentiation and male fertility.Crossref | GoogleScholarGoogle Scholar | 18818749PubMed |

Rafael, D. (2008). Tilapia farming: a global review (1924–2004). Asia Life Sci. 17, 207–229.

Shima, Y., Miyabayashi, K., Sato, T., Suyama, M., Ohkawa, Y., Doi, M., Okamura, H., and Suzuki, K. (2018). Fetal Leydig cells dedifferentiate and serve as adult Leydig stem cells. Development 145, dev169136.
Fetal Leydig cells dedifferentiate and serve as adult Leydig stem cells.Crossref | GoogleScholarGoogle Scholar | 30518625PubMed |

Sriraman, V., Sairam, M. R., and Rao, A. J. (2003). Evaluation of relative roles of LH and FSH in regulation of differentiation of Leydig cells using an ethane 1,2-dimethylsulfonate-treated adult rat model. J Endocrinol 176, 151–161.
Evaluation of relative roles of LH and FSH in regulation of differentiation of Leydig cells using an ethane 1,2-dimethylsulfonate-treated adult rat model.Crossref | GoogleScholarGoogle Scholar | 12525259PubMed |

Teerds, K. J., de Rooij, D. G., Rommerts, F. F., and Wensing, C. J. (1988). The regulation of the proliferation and differentiation of rat Leydig cell precursor cells after EDS administration or daily HCG treatment. J. Androl. 9, 343–351.
The regulation of the proliferation and differentiation of rat Leydig cell precursor cells after EDS administration or daily HCG treatment.Crossref | GoogleScholarGoogle Scholar | 2853150PubMed |

Tokarz, J., Moller, G., Hrabe de Angelis, M., and Adamski, J. (2015). Steroids in teleost fishes: a functional point of view. Steroids 103, 123–144.
Steroids in teleost fishes: a functional point of view.Crossref | GoogleScholarGoogle Scholar | 26102270PubMed |

Traish, A. M. (2014). Adverse health effects of testosterone deficiency (TD) in men. Steroids 88, 106–116.
Adverse health effects of testosterone deficiency (TD) in men.Crossref | GoogleScholarGoogle Scholar | 24942084PubMed |

van den Driesche, S., Walker, M., McKinnell, C., Scott, H. M., Eddie, S. L., Mitchell, R. T., Seckl, J. R., Drake, A. J., Smith, L. B., Anderson, R. A., and Sharpe, R. M. (2012). Proposed role for COUP-TFII in regulating fetal Leydig cell steroidogenesis, perturbation of which leads to masculinization disorders in rodents. PLoS One 7, e37064.
Proposed role for COUP-TFII in regulating fetal Leydig cell steroidogenesis, perturbation of which leads to masculinization disorders in rodents.Crossref | GoogleScholarGoogle Scholar | 22615892PubMed |

Wei, J., Qi, W., Zhou, Y., Zhang, X., Dong, R., Zhou, L., and Wang, D. (2014). Establishment and characterization of an ovarian cell line from Southern catfish (Silurus meridionalis). Fish Physiol. Biochem. 40, 1383–1391.
Establishment and characterization of an ovarian cell line from Southern catfish (Silurus meridionalis).Crossref | GoogleScholarGoogle Scholar | 24671650PubMed |

Wei, J., Fan, Z., Yang, Z., Zhou, Y., Da, F., Zhou, L., Tao, W., and Wang, D. (2018a). Leukemia inhibitory factor is essential for the self-renewal of embryonic stem cells from Nile tilapia (Oreochromis niloticus) through Stat3 signaling. Stem Cells Dev. 27, 123–132.
Leukemia inhibitory factor is essential for the self-renewal of embryonic stem cells from Nile tilapia (Oreochromis niloticus) through Stat3 signaling.Crossref | GoogleScholarGoogle Scholar | 29161958PubMed |

Wei, J., Huang, X. H., Fan, Z. H., Yang, Z., Da, F., Tao, W. J., Zhou, L. Y., and Wang, D. S. (2018b). Promoter activity and regulation of the Pou5f1 homolog from a teleost, Nile tilapia. Gene 642, 277–283.
Promoter activity and regulation of the Pou5f1 homolog from a teleost, Nile tilapia.Crossref | GoogleScholarGoogle Scholar |

Wei, L., Li, X., Li, M., Tang, Y., Wei, J., and Wang, D. (2019). Dmrt1 directly regulates the transcription of the testis-biased Sox9b gene in Nile tilapia (Oreochromis niloticus). Gene 687, 109–115.
Dmrt1 directly regulates the transcription of the testis-biased Sox9b gene in Nile tilapia (Oreochromis niloticus).Crossref | GoogleScholarGoogle Scholar | 30415011PubMed |

Xiaohuan, H., Zhao, Y., Liu, L. Y., Fan, Z. H., Zhou, L. Y., Wang, Z. J., Wei, L., Wang, D. S., and Wei, J. (2016). Characterization of the POU5F1 homologue in Nile tilapia: from expression pattern to biological activity. Stem Cells Dev. 25, 1386–1395.
Characterization of the POU5F1 homologue in Nile tilapia: from expression pattern to biological activity.Crossref | GoogleScholarGoogle Scholar | 27473876PubMed |

Xie, Q. P., He, X., Sui, Y. N., Chen, L. L., Sun, L. N., and Wang, D. S. (2016). Haploinsufficiency of SF-1 causes female to male sex reversal in Nile tilapia, Oreochromis niloticus. Endocrinology 157, 2500–2514.
Haploinsufficiency of SF-1 causes female to male sex reversal in Nile tilapia, Oreochromis niloticus.Crossref | GoogleScholarGoogle Scholar | 27046435PubMed |

Ye, L., Li, X., Li, L., Chen, H., and Ge, R. S. (2017). Insights into the development of the adult Leydig cell lineage from stem Leydig cells. Front. Physiol. 8, 430.
Insights into the development of the adult Leydig cell lineage from stem Leydig cells.Crossref | GoogleScholarGoogle Scholar | 28701961PubMed |

Yu, X., Wu, L., Xie, L., Yang, S., Charkraborty, T., Shi, H., Wang, D., and Zhou, L. (2014). Characterization of two paralogous StAR genes in a teleost, Nile tilapia (Oreochromis niloticus). Mol. Cell. Endocrinol. 392, 152–162.
Characterization of two paralogous StAR genes in a teleost, Nile tilapia (Oreochromis niloticus).Crossref | GoogleScholarGoogle Scholar | 24859646PubMed |

Yu, S., Zhang, P., Dong, W., Zeng, W., and Pan, C. (2017). Identification of stem Leydig cells derived from pig testicular interstitium. Stem Cells Int. 2017, 2740272.
Identification of stem Leydig cells derived from pig testicular interstitium.Crossref | GoogleScholarGoogle Scholar | 28243257PubMed |

Zhang, M., Wang, J., Deng, C., Jiang, M. H., Feng, X., Xia, K., Li, W., Lai, X., Xiao, H., Ge, R. S., Gao, Y., and Xiang, A. P. (2017). Transplanted human p75-positive stem Leydig cells replace disrupted Leydig cells for testosterone production. Cell Death Dis. 8, e3123.
Transplanted human p75-positive stem Leydig cells replace disrupted Leydig cells for testosterone production.Crossref | GoogleScholarGoogle Scholar | 29233979PubMed |

Zirkin, B. R., and Papadopoulos, V. (2018). Leydig cells: formation, function and regulation. Biol. Reprod. 99, 101–111.
Leydig cells: formation, function and regulation.Crossref | GoogleScholarGoogle Scholar | 29566165PubMed |