Assessing equine embryo developmental competency by time-lapse image analysis
Kelsey E. Brooks A * , Brittany L. Daughtry A B * , Elizabeth Metcalf C , Keith Masterson C , David Battaglia C , Lina Gao D , Byung Park D and Shawn L. Chavez A C E F GA Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR 97006, USA.
B Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University School of Medicine, Portland, OR 97239, USA.
C Department of Obstetrics and Gynecology, Oregon Health and Science University School of Medicine, Portland, OR 97239, USA.
D Bioinformatics and Biostatistics Core, Oregon National Primate Research Center, Beaverton, OR 97006, USA.
E Department of Physiology and Pharmacology, Oregon Health and Science University School of Medicine, Portland, OR 97239, USA.
F Department of Biomedical Engineering, Oregon Health and Science University School of Medicine, Portland, OR 97239, USA.
G Corresponding author. Email: chavesh@ohsu.edu
Reproduction, Fertility and Development 31(12) 1840-1850 https://doi.org/10.1071/RD19254
Submitted: 2 July 2019 Accepted: 31 October 2019 Published: 25 November 2019
Abstract
The timing of early mitotic events during preimplantation embryo development is important for subsequent embryogenesis in many mammalian species, including mouse and human, but, to date, no study has closely examined mitotic timing in equine embryos from oocytes obtained by ovum pick-up. Here, cumulus–oocyte complexes were collected by transvaginal follicular aspiration, matured in vitro and fertilised via intracytoplasmic sperm injection. Each fertilised oocyte was cultured up to the blastocyst stage and monitored by time-lapse imaging for the measurement of cell cycle intervals and identification of morphological criteria indicative of developmental potential. Of the 56 fertilised oocytes, 35 initiated mitosis and 11 progressed to the blastocyst stage. Analysis of the first three mitotic divisions in embryos that formed blastocysts determined that typical blastocyst timing (median ± IQR) is 30.0 ± 17.5 min, 8.8 ± 1.7 h and 0.6 ± 1.4 h respectively. Frequent cellular fragmentation, multipolar divisions and blastomere exclusion suggested that equine embryos likely contend with a high incidence of chromosomal missegregation. Indeed, chromosome-containing micronuclei and multinuclei with extensive DNA damage were observed throughout preimplantation embryogenesis. This indicates that time-lapse image analysis may be used as a non-invasive method to assess equine embryo quality in future studies.
Additional keywords: blastomere, cytokinesis, IVF, micronuclei, mitosis, preimplantation.
References
Athayde Wirka, K., Chen, A. A., Conaghan, J., Ivani, K., Gvakharia, M., Behr, B., Suraj, V., Tan, L., and Shen, S. (2014). Atypical embryo phenotypes identified by time-lapse microscopy: high prevalence and association with embryo development. Fertil. Steril. 101, 1637–1648.e1.| Atypical embryo phenotypes identified by time-lapse microscopy: high prevalence and association with embryo development.Crossref | GoogleScholarGoogle Scholar | 24726214PubMed |
Azzarello, A., Hoest, T., and Mikkelsen, A. L. (2012). The impact of pronuclei morphology and dynamicity on live birth outcome after time-lapse culture. Hum. Reprod. 27, 2649–2657.
| The impact of pronuclei morphology and dynamicity on live birth outcome after time-lapse culture.Crossref | GoogleScholarGoogle Scholar | 22740496PubMed |
Balakier, H., Sojecki, A., Motamedi, G., and Librach, C. (2016). Impact of multinucleated blastomeres on embryo developmental competence, morphokinetics, and aneuploidy. Fertil. Steril. 106, 608–614e2.
| Impact of multinucleated blastomeres on embryo developmental competence, morphokinetics, and aneuploidy.Crossref | GoogleScholarGoogle Scholar | 27206619PubMed |
Basile, N., Nogales Mdel, C., Bronet, F., Florensa, M., Riqueiros, M., Rodrigo, L., Garcia-Velasco, J., and Meseguer, M. (2014). Increasing the probability of selecting chromosomally normal embryos by time-lapse morphokinetics analysis. Fertil. Steril. 101, 699–704.e1.
| Increasing the probability of selecting chromosomally normal embryos by time-lapse morphokinetics analysis.Crossref | GoogleScholarGoogle Scholar | 24424365PubMed |
Campbell, A., Fishel, S., Bowman, N., Duffy, S., Sedler, M., and Thornton, S. (2013). Retrospective analysis of outcomes after IVF using an aneuploidy risk model derived from time-lapse imaging without PGS. Reprod. Biomed. Online 27, 140–146.
| Retrospective analysis of outcomes after IVF using an aneuploidy risk model derived from time-lapse imaging without PGS.Crossref | GoogleScholarGoogle Scholar | 23683847PubMed |
Chavez, S. L., Loewke, K. E., Han, J., Moussavi, F., Colls, P., Munne, S., Behr, B., and Reijo Pera, R. A. (2012). Dynamic blastomere behaviour reflects human embryo ploidy by the four-cell stage. Nat. Commun. 3, 1251.
| Dynamic blastomere behaviour reflects human embryo ploidy by the four-cell stage.Crossref | GoogleScholarGoogle Scholar | 23212380PubMed |
Chawla, M., Fakih, M., Shunnar, A., Bayram, A., Hellani, A., Perumal, V., Divakaran, J., and Budak, E. (2015). Morphokinetic analysis of cleavage stage embryos and its relationship to aneuploidy in a retrospective time-lapse imaging study. J. Assist. Reprod. Genet. 32, 69–75.
| Morphokinetic analysis of cleavage stage embryos and its relationship to aneuploidy in a retrospective time-lapse imaging study.Crossref | GoogleScholarGoogle Scholar | 25395178PubMed |
Chen, A. A., Tan, L., Suraj, V., Reijo Pera, R., and Shen, S. (2013). Biomarkers identified with time-lapse imaging: discovery, validation, and practical application. Fertil. Steril. 99, 1035–1043.
| Biomarkers identified with time-lapse imaging: discovery, validation, and practical application.Crossref | GoogleScholarGoogle Scholar | 23499001PubMed |
Choi, Y. H., Harding, H. D., Hartman, D. L., Obermiller, A. D., Kurosaka, S., McLaughlin, K. J., and Hinrichs, K. (2009). The uterine environment modulates trophectodermal POU5F1 levels in equine blastocysts. Reproduction 138, 589–599.
| The uterine environment modulates trophectodermal POU5F1 levels in equine blastocysts.Crossref | GoogleScholarGoogle Scholar | 19525365PubMed |
Crasta, K., Ganem, N. J., Dagher, R., Lantermann, A. B., Ivanova, E. V., Pan, Y., Nezi, L., Protopopov, A., Chowdhury, D., and Pellman, D. (2012). DNA breaks and chromosome pulverization from errors in mitosis. Nature 482, 53–58.
| DNA breaks and chromosome pulverization from errors in mitosis.Crossref | GoogleScholarGoogle Scholar | 22258507PubMed |
Cruz, M., Garrido, N., Herrero, J., Perez-Cano, I., Munoz, M., and Meseguer, M. (2012). Timing of cell division in human cleavage-stage embryos is linked with blastocyst formation and quality. Reprod. Biomed. Online 25, 371–381.
| Timing of cell division in human cleavage-stage embryos is linked with blastocyst formation and quality.Crossref | GoogleScholarGoogle Scholar | 22877944PubMed |
Dal Canto, M., Coticchio, G., Mignini Renzini, M., De Ponti, E., Novara, P. V., Brambillasca, F., Comi, R., and Fadini, R. (2012). Cleavage kinetics analysis of human embryos predicts development to blastocyst and implantation. Reprod. Biomed. Online 25, 474–480.
| Cleavage kinetics analysis of human embryos predicts development to blastocyst and implantation.Crossref | GoogleScholarGoogle Scholar | 22995750PubMed |
Daughtry, B. L., and Chavez, S. L. (2016). Chromosomal instability in mammalian pre-implantation embryos: potential causes, detection methods, and clinical consequences. Cell Tissue Res. 363, 201–225.
| Chromosomal instability in mammalian pre-implantation embryos: potential causes, detection methods, and clinical consequences.Crossref | GoogleScholarGoogle Scholar | 26590822PubMed |
Daughtry, B. L., and Chavez, S. L. (2018). Time-lapse imaging for the detection of chromosomal abnormalities in primate preimplantation embryos. Methods Mol. Biol. 1769, 293–317.
| Time-lapse imaging for the detection of chromosomal abnormalities in primate preimplantation embryos.Crossref | GoogleScholarGoogle Scholar | 29564832PubMed |
Daughtry, B. L., Rosenkrantz, J. L., Lazar, N. H., Fei, S. S., Redmayne, N., Torkenczy, K. A., Adey, A., Yan, M., Gao, L., Park, B., Nevonen, K. A., Carbone, L., and Chavez, S. L. (2019). Single-cell sequencing of primate preimplantation embryos reveals chromosome elimination via cellular fragmentation and blastomere exclusion. Genome Res. 29, 367–382.
| Single-cell sequencing of primate preimplantation embryos reveals chromosome elimination via cellular fragmentation and blastomere exclusion.Crossref | GoogleScholarGoogle Scholar | 30683754PubMed |
Del Carmen Nogales, M., Bronet, F., Basile, N., Martinez, E. M., Linan, A., Rodrigo, L., and Meseguer, M. (2017). Type of chromosome abnormality affects embryo morphology dynamics. Fertil. Steril. 107, 229–235e2.
| Type of chromosome abnormality affects embryo morphology dynamics.Crossref | GoogleScholarGoogle Scholar | 27816230PubMed |
Desai, N., Goldberg, J. M., Austin, C., and Falcone, T. (2018). Are cleavage anomalies, multinucleation, or specific cell cycle kinetics observed with time-lapse imaging predictive of embryo developmental capacity or ploidy? Fertil. Steril. 109, 665–674.
| Are cleavage anomalies, multinucleation, or specific cell cycle kinetics observed with time-lapse imaging predictive of embryo developmental capacity or ploidy?Crossref | GoogleScholarGoogle Scholar | 29452698PubMed |
Foss, R., Ortis, H., and Hinrichs, K. (2013). Effect of potential oocyte transport protocols on blastocyst rates after intracytoplasmic sperm injection in the horse. Equine Vet. J. Suppl. 45, 39–43.
| Effect of potential oocyte transport protocols on blastocyst rates after intracytoplasmic sperm injection in the horse.Crossref | GoogleScholarGoogle Scholar |
Gardner, D. K., Lane, M., Stevens, J., Schlenker, T., and Schoolcraft, W. B. (2000). Blastocyst score affects implantation and pregnancy outcome: towards a single blastocyst transfer. Fertil. Steril. 73, 1155–1158.
| Blastocyst score affects implantation and pregnancy outcome: towards a single blastocyst transfer.Crossref | GoogleScholarGoogle Scholar | 10856474PubMed |
Hardarson, T., Lofman, C., Coull, G., Sjogren, A., Hamberger, L., and Edwards, R. G. (2002). Internalization of cellular fragments in a human embryo: time-lapse recordings. Reprod. Biomed. Online 5, 36–38.
| Internalization of cellular fragments in a human embryo: time-lapse recordings.Crossref | GoogleScholarGoogle Scholar | 12470543PubMed |
Hatch, E. M., Fischer, A. H., Deerinck, T. J., and Hetzer, M. W. (2013). Catastrophic nuclear envelope collapse in cancer cell micronuclei. Cell 154, 47–60.
| Catastrophic nuclear envelope collapse in cancer cell micronuclei.Crossref | GoogleScholarGoogle Scholar | 23827674PubMed |
Hinrichs, K., Choi, Y. H., Walckenaer, B. E., Varner, D. D., and Hartman, D. L. (2007). In vitro-produced equine embryos: production of foals after transfer, assessment by differential staining and effect of medium calcium concentrations during culture. Theriogenology 68, 521–529.
| In vitro-produced equine embryos: production of foals after transfer, assessment by differential staining and effect of medium calcium concentrations during culture.Crossref | GoogleScholarGoogle Scholar | 17586036PubMed |
Hlinka, D., Kalatova, B., Uhrinova, I., Dolinska, S., Rutarova, J., Rezacova, J., Lazarovska, S., and Dudas, M. (2012). Time-lapse cleavage rating predicts human embryo viability. Physiol. Res. 61, 513–525.
| 22881225PubMed |
Kalatova, B., Jesenska, R., Hlinka, D., and Dudas, M. (2015). Tripolar mitosis in human cells and embryos: occurrence, pathophysiology and medical implications. Acta Histochem. 117, 111–125.
| Tripolar mitosis in human cells and embryos: occurrence, pathophysiology and medical implications.Crossref | GoogleScholarGoogle Scholar | 25554607PubMed |
Lemmen, J. G., Agerholm, I., and Ziebe, S. (2008). Kinetic markers of human embryo quality using time-lapse recordings of IVF/ICSI-fertilized oocytes. Reprod. Biomed. Online 17, 385–391.
| Kinetic markers of human embryo quality using time-lapse recordings of IVF/ICSI-fertilized oocytes.Crossref | GoogleScholarGoogle Scholar | 18765009PubMed |
Liu, Y., Chapple, V., Roberts, P., Ali, J., and Matson, P. (2014a). Time-lapse videography of human oocytes following intracytoplasmic sperm injection: events up to the first cleavage division. Reprod. Biol. 14, 249–256.
| Time-lapse videography of human oocytes following intracytoplasmic sperm injection: events up to the first cleavage division.Crossref | GoogleScholarGoogle Scholar | 25454490PubMed |
Liu, Y., Chapple, V., Roberts, P., and Matson, P. (2014b). Prevalence, consequence, and significance of reverse cleavage by human embryos viewed with the use of the Embryoscope time-lapse video system. Fertil. Steril. 102, 1295–1300e2.
| Prevalence, consequence, and significance of reverse cleavage by human embryos viewed with the use of the Embryoscope time-lapse video system.Crossref | GoogleScholarGoogle Scholar | 25225070PubMed |
Liu, S., Kwon, M., Mannino, M., Yang, N., Renda, F., Khodjakov, A., and Pellman, D. (2018). Nuclear envelope assembly defects link mitotic errors to chromothripsis. Nature 561, 551–555.
| Nuclear envelope assembly defects link mitotic errors to chromothripsis.Crossref | GoogleScholarGoogle Scholar | 30232450PubMed |
Luke, B., Brown, M. B., Stern, J. E., Jindal, S. K., Racowsky, C., and Ball, G. D. (2014). Using the Society for Assisted Reproductive Technology Clinic Outcome System morphological measures to predict live birth after assisted reproductive technology. Fertil. Steril. 102, 1338–1344.
| Using the Society for Assisted Reproductive Technology Clinic Outcome System morphological measures to predict live birth after assisted reproductive technology.Crossref | GoogleScholarGoogle Scholar | 25217871PubMed |
Lundin, K., Bergh, C., and Hardarson, T. (2001). Early embryo cleavage is a strong indicator of embryo quality in human IVF. Hum. Reprod. 16, 2652–2657.
| Early embryo cleavage is a strong indicator of embryo quality in human IVF.Crossref | GoogleScholarGoogle Scholar | 11726590PubMed |
Marzano, G., Mastrorocco, A., Zianni, R., Mangiacotti, M., Chiaravalle, A. E., Lacalandra, G. M., Minervini, F., Cardinali, A., Macciocca, M., Vicenti, R., Fabbri, R., Hinrichs, K., Dell’Aquila, M. E., and Martino, N. A. (2019). Altered morphokinetics in equine embryos from oocytes exposed to DEHP during IVM. Mol. Reprod. Dev. 86, 1388–1404.
| Altered morphokinetics in equine embryos from oocytes exposed to DEHP during IVM.Crossref | GoogleScholarGoogle Scholar | 31025442PubMed |
Meseguer, M., Herrero, J., Tejera, A., Hilligsoe, K. M., Ramsing, N. B., and Remohi, J. (2011). The use of morphokinetics as a predictor of embryo implantation. Hum. Reprod. 26, 2658–2671.
| The use of morphokinetics as a predictor of embryo implantation.Crossref | GoogleScholarGoogle Scholar | 21828117PubMed |
Minasi, M. G., Colasante, A., Riccio, T., Ruberti, A., Casciani, V., Scarselli, F., Spinella, F., Fiorentino, F., Varricchio, M. T., and Greco, E. (2016). Correlation between aneuploidy, standard morphology evaluation and morphokinetic development in 1730 biopsied blastocysts: a consecutive case series study. Hum. Reprod. 31, 2245–2254.
| Correlation between aneuploidy, standard morphology evaluation and morphokinetic development in 1730 biopsied blastocysts: a consecutive case series study.Crossref | GoogleScholarGoogle Scholar | 27591227PubMed |
Nakahara, T., Iwase, A., Goto, M., Harata, T., Suzuki, M., Ienaga, M., Kobayashi, H., Takikawa, S., Manabe, S., Kikkawa, F., and Ando, H. (2010). Evaluation of the safety of time-lapse observations for human embryos. J. Assist. Reprod. Genet. 27, 93–96.
| Evaluation of the safety of time-lapse observations for human embryos.Crossref | GoogleScholarGoogle Scholar | 20127164PubMed |
Payne, D., Flaherty, S. P., Barry, M. F., and Matthews, C. D. (1997). Preliminary observations on polar body extrusion and pronuclear formation in human oocytes using time-lapse video cinematography. Hum. Reprod. 12, 532–541.
| Preliminary observations on polar body extrusion and pronuclear formation in human oocytes using time-lapse video cinematography.Crossref | GoogleScholarGoogle Scholar | 9130755PubMed |
Pribenszky, C., Losonczi, E., Molnar, M., Lang, Z., Matyas, S., Rajczy, K., Molnar, K., Kovacs, P., Nagy, P., Conceicao, J., and Vajta, G. (2010). Prediction of in-vitro developmental competence of early cleavage-stage mouse embryos with compact time-lapse equipment. Reprod. Biomed. Online 20, 371–379.
| Prediction of in-vitro developmental competence of early cleavage-stage mouse embryos with compact time-lapse equipment.Crossref | GoogleScholarGoogle Scholar | 20089456PubMed |
Racowsky, C., Vernon, M., Mayer, J., Ball, G. D., Behr, B., Pomeroy, K. O., Wininger, D., Gibbons, W., Conaghan, J., and Stern, J. E. (2010). Standardization of grading embryo morphology. Fertil. Steril. 94, 1152–1153.
| Standardization of grading embryo morphology.Crossref | GoogleScholarGoogle Scholar | 20580357PubMed |
Rogakou, E. P., Pilch, D. R., Orr, A. H., Ivanova, V. S., and Bonner, W. M. (1998). DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J. Biol. Chem. 273, 5858–5868.
| DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139.Crossref | GoogleScholarGoogle Scholar | 9488723PubMed |
Rubio, I., Kuhlmann, R., Agerholm, I., Kirk, J., Herrero, J., Escriba, M. J., Bellver, J., and Meseguer, M. (2012). Limited implantation success of direct-cleaved human zygotes: a time-lapse study. Fertil. Steril. 98, 1458–1463.
| Limited implantation success of direct-cleaved human zygotes: a time-lapse study.Crossref | GoogleScholarGoogle Scholar | 22925687PubMed |
Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J. Y., White, D. J., Hartenstein, V., Eliceiri, K., Tomancak, P., and Cardona, A. (2012). Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682.
| Fiji: an open-source platform for biological-image analysis.Crossref | GoogleScholarGoogle Scholar | 22743772PubMed |
Somfai, T., Inaba, Y., Aikawa, Y., Ohtake, M., Kobayashi, S., Konishi, K., and Imai, K. (2010). Relationship between the length of cell cycles, cleavage pattern and developmental competence in bovine embryos generated by in vitro fertilization or parthenogenesis. J. Reprod. Dev. 56, 200–207.
| Relationship between the length of cell cycles, cleavage pattern and developmental competence in bovine embryos generated by in vitro fertilization or parthenogenesis.Crossref | GoogleScholarGoogle Scholar | 20035110PubMed |
Sugimura, S., Akai, T., Somfai, T., Hirayama, M., Aikawa, Y., Ohtake, M., Hattori, H., Kobayashi, S., Hashiyada, Y., Konishi, K., and Imai, K. (2010). Time-lapse cinematography-compatible polystyrene-based microwell culture system: a novel tool for tracking the development of individual bovine embryos. Biol. Reprod. 83, 970–978.
| Time-lapse cinematography-compatible polystyrene-based microwell culture system: a novel tool for tracking the development of individual bovine embryos.Crossref | GoogleScholarGoogle Scholar | 20739661PubMed |
Sugimura, S., Akai, T., Hashiyada, Y., Somfai, T., Inaba, Y., Hirayama, M., Yamanouchi, T., Matsuda, H., Kobayashi, S., Aikawa, Y., Ohtake, M., Kobayashi, E., Konishi, K., and Imai, K. (2012). Promising system for selecting healthy in vitro-fertilized embryos in cattle. PLoS One 7, e36627.
| Promising system for selecting healthy in vitro-fertilized embryos in cattle.Crossref | GoogleScholarGoogle Scholar | 22590579PubMed |
Sundvall, L., Ingerslev, H. J., Breth Knudsen, U., and Kirkegaard, K. (2013). Inter- and intra-observer variability of time-lapse annotations. Hum. Reprod. 28, 3215–3221.
| Inter- and intra-observer variability of time-lapse annotations.Crossref | GoogleScholarGoogle Scholar | 24070998PubMed |
Treff, N. R., Krisher, R. L., Tao, X., Garnsey, H., Bohrer, C., Silva, E., Landis, J., Taylor, D., Scott, R. T., Woodruff, T. K., and Duncan, F. E. (2016). Next generation sequencing-based comprehensive chromosome screening in mouse polar bodies, oocytes, and embryos. Biol. Reprod. 94, 76.
| Next generation sequencing-based comprehensive chromosome screening in mouse polar bodies, oocytes, and embryos.Crossref | GoogleScholarGoogle Scholar | 26911429PubMed |
Weinerman, R., Feng, R., Ord, T. S., Schultz, R. M., Bartolomei, M. S., Coutifaris, C., and Mainigi, M. (2016). Morphokinetic evaluation of embryo development in a mouse model: functional and molecular correlates. Biol. Reprod. 94, 84.
| Morphokinetic evaluation of embryo development in a mouse model: functional and molecular correlates.Crossref | GoogleScholarGoogle Scholar | 26911427PubMed |
Wong, C. C., Loewke, K. E., Bossert, N. L., Behr, B., De Jonge, C. J., Baer, T. M., and Reijo Pera, R. A. (2010). Non-invasive imaging of human embryos before embryonic genome activation predicts development to the blastocyst stage. Nat. Biotechnol. 28, 1115–1121.
| Non-invasive imaging of human embryos before embryonic genome activation predicts development to the blastocyst stage.Crossref | GoogleScholarGoogle Scholar | 20890283PubMed |
Yang, Z., Zhang, J., Salem, S. A., Liu, X., Kuang, Y., Salem, R. D., and Liu, J. (2014). Selection of competent blastocysts for transfer by combining time-lapse monitoring and array CGH testing for patients undergoing preimplantation genetic screening: a prospective study with sibling oocytes. BMC Med. Genomics 7, 38.
| Selection of competent blastocysts for transfer by combining time-lapse monitoring and array CGH testing for patients undergoing preimplantation genetic screening: a prospective study with sibling oocytes.Crossref | GoogleScholarGoogle Scholar | 24954518PubMed |