Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Deletion of lncRNA5512 has no effect on spermatogenesis and reproduction in mice

Yu Zhu https://orcid.org/0000-0001-5403-0174 A * , Yu Lin A * , Yue He A , Hanshu Wang A , Shitao Chen A , Zhenhua Li A , Ning Song B C and Fei Sun https://orcid.org/0000-0002-0870-8375 A C
+ Author Affiliations
- Author Affiliations

A International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, 910 Hengshan Road, Xuhui District, Shanghai 200030, China.

B Shanghai Key Laboratory of Reproductive Medicine, School of Medicine, Shanghai Jiao Tong University, 280 South Chongqing Road, Huangpu District, Shanghai 200025, China.

C Corresponding authors. Email: sunfei@shsmu.edu.cn; ningsong@shsmu.edu.cn

Reproduction, Fertility and Development 32(7) 706-713 https://doi.org/10.1071/RD19246
Submitted: 5 July 2019  Accepted: 21 November 2019   Published: 26 March 2020

Abstract

Long non-coding (lnc) RNAs are a series of RNAs longer than 200 nucleotides that do not code for protein products. Whole-genome expression profiles of lncRNAs suggest that they play important roles in spermatogenesis because they are particularly abundant in testes. However, most of their characteristics and functions remain unclear. The aim of this study was to define the function of lncRNA5512, which is abundant in spermatocytes and round spermatids, in mouse fertility in vivo. To investigate this we generated lncRNA5512-knockout mice by clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) 9 technology. Knockout mice showed normal spermatogenesis and fertility, and had no detectable abnormalities. This indicates that lncRNA5512 does not affect mouse fertility despite its high expression in the testes. Its specific localisation in spermatocytes and round spermatids suggests that it could be a useful marker for the identification of spermatocytes and round spermatids in mouse testes.

Graphical Abstract Image

Additional keywords: clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) 9, long non-coding RNA.


References

Anguera, M. C., Ma, W., Clift, D., Namekawa, S., Kelleher, R. J., and Lee, J. T. (2011). Tsx produces a long noncoding RNA and has general functions in the germline, stem cells, and brain. PLoS Genet. 7, e1002248.
Tsx produces a long noncoding RNA and has general functions in the germline, stem cells, and brain.Crossref | GoogleScholarGoogle Scholar | 21912526PubMed |

Bao, J., Wu, J., Schuster, A. S., Hennig, G. W., and Yan, W. (2013). Expression profiling reveals developmentally regulated lncRNA repertoire in the mouse male germline. Biol. Reprod. 89, 107.
Expression profiling reveals developmentally regulated lncRNA repertoire in the mouse male germline.Crossref | GoogleScholarGoogle Scholar | 24048575PubMed |

Björk, J. K., Sandqvist, A., Elsing, A. N., Kotaja, N., and Sistonen, L. (2010). miR-18, a member of Oncomir-1, targets heat shock transcription factor 2 in spermatogenesis. Development 137, 3177–3184.
miR-18, a member of Oncomir-1, targets heat shock transcription factor 2 in spermatogenesis.Crossref | GoogleScholarGoogle Scholar | 20724452PubMed |

Bunch, H., Lawney, B. P., Burkholder, A., Ma, D., Zheng, X., Motola, S., Fargo, D. C., Levine, S. S., Wang, Y. E., and Hu, G. (2016). RNA polymerase II promoter-proximal pausing in mammalian long non-coding genes. Genomics 108, 64–77.
RNA polymerase II promoter-proximal pausing in mammalian long non-coding genes.Crossref | GoogleScholarGoogle Scholar | 27432546PubMed |

Carninci, P., and Hayashizaki, Y. (1999). High-efficiency full-length cDNA cloning. Methods Enzymol. 303, 19–44.
High-efficiency full-length cDNA cloning.Crossref | GoogleScholarGoogle Scholar | 10349636PubMed |

Carninci, P., Shibata, Y., Hayatsu, N., Sugahara, Y., Shibata, K., Itoh, M., Konno, H., Okazaki, Y., Muramatsu, M., and Hayashizaki, Y. (2000). Normalization and subtraction of cap-trapper-selected cDNAs to prepare full-length cDNA libraries for rapid discovery of new genes. Genome Res. 10, 1617–1630.
Normalization and subtraction of cap-trapper-selected cDNAs to prepare full-length cDNA libraries for rapid discovery of new genes.Crossref | GoogleScholarGoogle Scholar | 11042159PubMed |

Carninci, P., Kasukawa, T., Katayama, S., Gough, J., Frith, M. C., Maeda, N., Oyama, R., Ravasi, T., Lenhard, B., Wells, C., Kodzius, R., Shimokawa, K., Bajic, V. B., Brenner, S. E., Batalov, S., Forrest, A. R., Zavolan, M., Davis, M. J., Wilming, L. G., Aidinis, V., et al. (2005). The transcriptional landscape of the mammalian genome. Science 309, 1559–1563.
The transcriptional landscape of the mammalian genome.Crossref | GoogleScholarGoogle Scholar | 16141072PubMed |

Chalmel, F., Lardenois, A., Evrard, B., Rolland, A. D., Sallou, O., Dumargne, M. C., Coiffec, I., Collin, O., Primig, M., and Jegou, B. (2014). High-resolution profiling of novel transcribed regions during rat spermatogenesis. Biol. Reprod. 91, 5.
High-resolution profiling of novel transcribed regions during rat spermatogenesis.Crossref | GoogleScholarGoogle Scholar | 24740603PubMed |

Chodroff, R. A., Goodstadt, L., Sirey, T. M., Oliver, P. L., Davies, K. E., Green, E. D., Molnar, Z., and Ponting, C. P. (2010). Long noncoding RNA genes: conservation of sequence and brain expression among diverse amniotes. Genome Biol. 11, R72.
Long noncoding RNA genes: conservation of sequence and brain expression among diverse amniotes.Crossref | GoogleScholarGoogle Scholar | 20624288PubMed |

Clark, M. B., and Mattick, J. S. (2011). Long noncoding RNAs in cell biology. Semin. Cell Dev. Biol. 22, 366–376.
Long noncoding RNAs in cell biology.Crossref | GoogleScholarGoogle Scholar | 21256239PubMed |

Derrien, T., Johnson, R., Bussotti, G., Tanzer, A., Djebali, S., Tilgner, H., Guernec, G., Martin, D., Merkel, A., Knowles, D. G., Lagarde, J., Veeravalli, L., Ruan, X., Ruan, Y., Lassmann, T., Carninci, P., Brown, J. B., Lipovich, L., Gonzalez, J. M., Thomas, M., et al. (2012). The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 22, 1775–1789.
The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression.Crossref | GoogleScholarGoogle Scholar | 22955988PubMed |

Hermo, L., Pelletier, R. M., Cyr, D. G., and Smith, C. E. (2010). Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 1: background to spermatogenesis, spermatogonia, and spermatocytes. Microsc. Res. Tech. 73, 241–278.
Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 1: background to spermatogenesis, spermatogonia, and spermatocytes.Crossref | GoogleScholarGoogle Scholar | 19941293PubMed |

Hong, S. H., Kwon, J. T., Kim, J., Jeong, J., Kim, J., Lee, S., and Cho, C. (2018). Profiling of testis-specific long noncoding RNAs in mice. BMC Genomics 19, 539.
Profiling of testis-specific long noncoding RNAs in mice.Crossref | GoogleScholarGoogle Scholar | 30012089PubMed |

Hosono, Y., Niknafs, Y. S., Prensner, J. R., Iyer, M. K., Dhanasekaran, S. M., Mehra, R., Pitchiaya, S., Tien, J., Escara-Wilke, J., Poliakov, A., Chu, S. C., Saleh, S., Sankar, K., Su, F., Guo, S., Qiao, Y., Freier, S. M., Bui, H. H., Cao, X., Malik, R., et al. (2017). Oncogenic role of THOR, a conserved cancer/testis long non-coding RNA. Cell 171, 1559–1572.e20.
Oncogenic role of THOR, a conserved cancer/testis long non-coding RNA.Crossref | GoogleScholarGoogle Scholar | 29245011PubMed |

Iguchi, N., Tobias, J. W., and Hecht, N. B. (2006). Expression profiling reveals meiotic male germ cell mRNAs that are translationally up- and down-regulated. Proc. Natl Acad. Sci. USA 103, 7712–7717.
Expression profiling reveals meiotic male germ cell mRNAs that are translationally up- and down-regulated.Crossref | GoogleScholarGoogle Scholar | 16682651PubMed |

Jarroux, J., Morillon, A., and Pinskaya, M. (2017). History, discovery, and classification of lncRNAs. Adv. Exp. Med. Biol. 1008, 1–46.
History, discovery, and classification of lncRNAs.Crossref | GoogleScholarGoogle Scholar | 28815535PubMed |

Katayama, S., Tomaru, Y., Kasukawa, T., Waki, K., Nakanishi, M., Nakamura, M., Nishida, H., Yap, C. C., Suzuki, M., Kawai, J., Suzuki, H., Carninci, P., Hayashizaki, Y., Wells, C., Frith, M., Ravasi, T., Pang, K. C., Hallinan, J., Mattick, J., Hume, D. A., et al. (2005). Antisense transcription in the mammalian transcriptome. Science 309, 1564–1566.
Antisense transcription in the mammalian transcriptome.Crossref | GoogleScholarGoogle Scholar | 16141073PubMed |

Kawai, J., Shinagawa, A., Shibata, K., Yoshino, M., Itoh, M., Ishii, Y., Arakawa, T., Hara, A., Fukunishi, Y., Konno, H., Adachi, J., Fukuda, S., Aizawa, K., Izawa, M., Nishi, K., Kiyosawa, H., Kondo, S., Yamanaka, I., Saito, T., Okazaki, Y., et al. (2001). Functional annotation of a full-length mouse cDNA collection. Nature 409, 685–690.
Functional annotation of a full-length mouse cDNA collection.Crossref | GoogleScholarGoogle Scholar | 11217851PubMed |

Kerr, G. E., Young, J. C., Horvay, K., Abud, H. E., and Loveland, K. L. (2014). Regulated Wnt/beta-catenin signaling sustains adult spermatogenesis in mice. Biol. Reprod. 90, 3.
Regulated Wnt/beta-catenin signaling sustains adult spermatogenesis in mice.Crossref | GoogleScholarGoogle Scholar | 24258210PubMed |

Lee, T. L., Pang, A. L., Rennert, O. M., and Chan, W. Y. (2009). Genomic landscape of developing male germ cells. Birth Defects Res. C Embryo Today 87, 43–63.
Genomic landscape of developing male germ cells.Crossref | GoogleScholarGoogle Scholar | 19306351PubMed |

Lin, M. F., Jungreis, I., and Kellis, M. (2011). PhyloCSF: a comparative genomics method to distinguish protein coding and non-coding regions. Bioinformatics. 27, i275–i282.
PhyloCSF: a comparative genomics method to distinguish protein coding and non-coding regions.Crossref | GoogleScholarGoogle Scholar | 21685081PubMed |

Liu, W., Wang, L., Zhao, W., Song, G., Xu, R., Wang, G., Wang, F., Li, W., Lian, J., Tian, H., Wang, X., and Sun, F. (2014). Phosphorylation of CDK2 at threonine 160 regulates meiotic pachytene and diplotene progression in mice. Dev. Biol. 392, 108–116.
Phosphorylation of CDK2 at threonine 160 regulates meiotic pachytene and diplotene progression in mice.Crossref | GoogleScholarGoogle Scholar | 24797635PubMed |

Livak, K. J., and Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(–Delta Delta C(T)) method. Methods 25, 402–408.
Analysis of relative gene expression data using real-time quantitative PCR and the 2(–Delta Delta C(T)) method.Crossref | GoogleScholarGoogle Scholar | 11846609PubMed |

Luk, A. C., Chan, W. Y., Rennert, O. M., and Lee, T. L. (2014). Long noncoding RNAs in spermatogenesis: insights from recent high-throughput transcriptome studies. Reproduction 147, R131–R141.
Long noncoding RNAs in spermatogenesis: insights from recent high-throughput transcriptome studies.Crossref | GoogleScholarGoogle Scholar | 24713396PubMed |

Mattick, J. S., Amaral, P. P., Dinger, M. E., Mercer, T. R., and Mehler, M. F. (2009). RNA regulation of epigenetic processes. BioEssays 31, 51–59.
RNA regulation of epigenetic processes.Crossref | GoogleScholarGoogle Scholar | 19154003PubMed |

Mercer, T. R., Dinger, M. E., and Mattick, J. S. (2009). Long non-coding RNAs: insights into functions. Nat. Rev. Genet. 10, 155–159.
Long non-coding RNAs: insights into functions.Crossref | GoogleScholarGoogle Scholar | 19188922PubMed |

Nagano, T., and Fraser, P. (2011). No-nonsense functions for long noncoding RNAs. Cell 145, 178–181.
No-nonsense functions for long noncoding RNAs.Crossref | GoogleScholarGoogle Scholar | 21496640PubMed |

Ni, M. J., Hu, Z. H., Liu, Q., Liu, M. F., Lu, M. H., Zhang, J. S., Zhang, L., and Zhang, Y. L. (2011). Identification and characterization of a novel non-coding RNA involved in sperm maturation. PLoS One 6, e26053.
Identification and characterization of a novel non-coding RNA involved in sperm maturation.Crossref | GoogleScholarGoogle Scholar | 22022505PubMed |

Nishant, K. T., Ravishankar, H., and Rao, M. R. (2004). Characterization of a mouse recombination hot spot locus encoding a novel non-protein-coding RNA. Mol. Cell. Biol. 24, 5620–5634.
Characterization of a mouse recombination hot spot locus encoding a novel non-protein-coding RNA.Crossref | GoogleScholarGoogle Scholar | 15169920PubMed |

Okazaki, Y., Furuno, M., Kasukawa, T., Adachi, J., Bono, H., Kondo, S., Nikaido, I., Osato, N., Saito, R., Suzuki, H., Yamanaka, I., Kiyosawa, H., Yagi, K., Tomaru, Y., Hasegawa, Y., Nogami, A., Schonbach, C., Gojobori, T., Baldarelli, R., Hill, D. P., et al. (2002). Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature 420, 563–573.
Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs.Crossref | GoogleScholarGoogle Scholar | 12466851PubMed |

Prensner, J. R., and Chinnaiyan, A. M. (2011). The emergence of lncRNAs in cancer biology. Cancer Discov. 1, 391–407.
The emergence of lncRNAs in cancer biology.Crossref | GoogleScholarGoogle Scholar | 22096659PubMed |

Ramm, S. A., Scharer, L., Ehmcke, J., and Wistuba, J. (2014). Sperm competition and the evolution of spermatogenesis. Mol. Hum. Reprod. 20, 1169–1179.
Sperm competition and the evolution of spermatogenesis.Crossref | GoogleScholarGoogle Scholar | 25323971PubMed |

Shibata, K., Itoh, M., Aizawa, K., Nagaoka, S., Sasaki, N., Carninci, P., Konno, H., Akiyama, J., Nishi, K., Kitsunai, T., Tashiro, H., Itoh, M., Sumi, N., Ishii, Y., Nakamura, S., Hazama, M., Nishine, T., Harada, A., Yamamoto, R., Matsumoto, H., et al. (2000). RIKEN integrated sequence analysis (RISA) system – 384-format sequencing pipeline with 384 multicapillary sequencer. Genome Res. 10, 1757–1771.
RIKEN integrated sequence analysis (RISA) system – 384-format sequencing pipeline with 384 multicapillary sequencer.Crossref | GoogleScholarGoogle Scholar | 11076861PubMed |

Soreq, L., Guffanti, A., Salomonis, N., Simchovitz, A., Israel, Z., Bergman, H., and Soreq, H. (2014). Long non-coding RNA and alternative splicing modulations in Parkinson’s leukocytes identified by RNA sequencing. PLoS Comput. Biol. 10, e1003517.
Long non-coding RNA and alternative splicing modulations in Parkinson’s leukocytes identified by RNA sequencing.Crossref | GoogleScholarGoogle Scholar | 24651478PubMed |

Soumillon, M., Necsulea, A., Weier, M., Brawand, D., Zhang, X., Gu, H., Barthes, P., Kokkinaki, M., Nef, S., Gnirke, A., Dym, M., de Massy, B., Mikkelsen, T. S., and Kaessmann, H. (2013). Cellular source and mechanisms of high transcriptome complexity in the mammalian testis. Cell Rep. 3, 2179–2190.
Cellular source and mechanisms of high transcriptome complexity in the mammalian testis.Crossref | GoogleScholarGoogle Scholar | 23791531PubMed |

Sun, F., Oliver-Bonet, M., Liehr, T., Starke, H., Ko, E., Rademaker, A., Navarro, J., Benet, J., and Martin, R. H. (2004). Human male recombination maps for individual chromosomes. Am. J. Hum. Genet. 74, 521–531.
Human male recombination maps for individual chromosomes.Crossref | GoogleScholarGoogle Scholar | 14973780PubMed |

Wang, K. C., and Chang, H. Y. (2011). Molecular mechanisms of long noncoding RNAs. Mol. Cell 43, 904–914.
Molecular mechanisms of long noncoding RNAs.Crossref | GoogleScholarGoogle Scholar | 21925379PubMed |

Wen, K., Yang, L., Xiong, T., Di, C., Ma, D., Wu, M., Xue, Z., Zhang, X., Long, L., Zhang, W., Zhang, J., Bi, X., Dai, J., Zhang, Q., Lu, Z. J., and Gao, G. (2016). Critical roles of long noncoding RNAs in Drosophila spermatogenesis. Genome Res. 26, 1233–1244.
Critical roles of long noncoding RNAs in Drosophila spermatogenesis.Crossref | GoogleScholarGoogle Scholar | 27516619PubMed |

Wichman, L., Somasundaram, S., Breindel, C., Valerio, D. M., McCarrey, J. R., Hodges, C. A., and Khalil, A. M. (2017). Dynamic expression of long noncoding RNAs reveals their potential roles in spermatogenesis and fertility. Biol. Reprod. 97, 313–323.
Dynamic expression of long noncoding RNAs reveals their potential roles in spermatogenesis and fertility.Crossref | GoogleScholarGoogle Scholar | 29044429PubMed |

Yao, G., Yin, M., Lian, J., Tian, H., Liu, L., Li, X., and Sun, F. (2010). MicroRNA-224 is involved in transforming growth factor-beta-mediated mouse granulosa cell proliferation and granulosa cell function by targeting Smad4. Mol. Endocrinol. 24, 540–551.
MicroRNA-224 is involved in transforming growth factor-beta-mediated mouse granulosa cell proliferation and granulosa cell function by targeting Smad4.Crossref | GoogleScholarGoogle Scholar | 20118412PubMed |

Zhang, C., Gao, L., and Xu, E. Y. (2016). LncRNA, a new component of expanding RNA–protein regulatory network important for animal sperm development. Semin. Cell Dev. Biol. 59, 110–117.
LncRNA, a new component of expanding RNA–protein regulatory network important for animal sperm development.Crossref | GoogleScholarGoogle Scholar | 27345292PubMed |