Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Potential physiological involvement of nesfatin-1 in regulating swine granulosa cell functions

R. Ciccimarra A , S. Bussolati A , F. Grasselli A , S. Grolli A , M. Paolucci B and G. Basini https://orcid.org/0000-0003-1571-7023 A C
+ Author Affiliations
- Author Affiliations

A Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126, Parma, Italy.

B Dipartimento di Scienze e Tecnologie, Via De Sanctis snc, Università del Sannio, 82100, Benevento, Italy.

C Corresponding author. Email: basini@unipr.it

Reproduction, Fertility and Development 32(3) 274-283 https://doi.org/10.1071/RD19134
Submitted: 16 April 2019  Accepted: 16 July 2019   Published: 31 October 2019

Abstract

Nesfatin-1 has recently been indicated as a pleiotropic molecule that is primarily involved in the metabolic regulation of reproductive functions acting at hypothalamic level. The aim of this study was to explore the local action of nesfatin-1 in swine ovarian follicles. Nucleobindin 2 (NUCB2) was verified using real-time quantitative polymerase chain reaction in swine granulosa cells from different sized follicles and nesfatin-1 was localised by immunohistochemistry in sections of the whole porcine ovary. The effects of different concentrations of nesfatin-1  on cell growth, steroidogenesis and the redox status of granulosa cells were determined in vitro. In addition, the effects of nesfatin-1 were evaluated in an angiogenesis bioassay because vessel growth is essential for ovarian follicle function. Immunohistochemistry revealed intense positivity for nesfatin-1 in swine granulosa cells in follicles at all developmental stages. Expression of the gene encoding the precursor protein NUCB2 was higher in granulosa cells from large rather than from medium and small follicles. Further, nesfatin-1 stimulated cell proliferation and progesterone production and interfered with redox status by modifying nitric oxide production and non-enzyme scavenging activity in granulosa cells from large follicles. Moreover, nesfatin-1 exhibited a stimulatory effect on angiogenesis. This study demonstrates, for the first time, that nesfatin-1 is physiologically present in the swine ovarian follicle, where it may impair granulosa cell functions.

Additional keywords: nitric oxide, 17β-oestradiol, ovarian follicle, progesterone, superoxide anion.


References

Aydin, S. (2013). Multi-functional peptide hormone NUCB2/nesfatin-1. Endocrine 44, 312–325.
Multi-functional peptide hormone NUCB2/nesfatin-1.Crossref | GoogleScholarGoogle Scholar | 23526235PubMed |

Banerjee, S., and Chaturvedi, C. M. (2015). Nesfatin-1: localization and expression in avian gonads and its modulation by temporal phase relation of neural oscillations in female Japanese quail, Coturnix coturnix japonica. Gen. Comp. Endocrinol. 224, 205–215.
Nesfatin-1: localization and expression in avian gonads and its modulation by temporal phase relation of neural oscillations in female Japanese quail, Coturnix coturnix japonica.Crossref | GoogleScholarGoogle Scholar | 26319133PubMed |

Basini, G., and Grasselli, F. (2015). Nitric oxide in follicle development and oocyte competence. Reproduction 150, R1–R9.
Nitric oxide in follicle development and oocyte competence.Crossref | GoogleScholarGoogle Scholar | 25792567PubMed |

Basini, G., and Tamanini, C. (2000). Selenium stimulates estradiol production in bovine granulosa cells: possible involvement of nitric oxide. Domest. Anim. Endocrinol. 18, 1–17.
Selenium stimulates estradiol production in bovine granulosa cells: possible involvement of nitric oxide.Crossref | GoogleScholarGoogle Scholar | 10701760PubMed |

Basini, G., Bussolati, S., Santini, S. E., and Grasselli, F. (2008a). Reactive oxygen species and anti-oxidant defences in swine follicular fluids. Reprod. Fertil. Dev. 20, 269–274.
Reactive oxygen species and anti-oxidant defences in swine follicular fluids.Crossref | GoogleScholarGoogle Scholar | 18255016PubMed |

Basini, G., Bussolati, S., Santini, S. E., Bianchi, F., Careri, M., Mangia, A., Musci, M., and Grasselli, F. (2008b). Hydroxyestrogens inhibit angiogenesis in swine ovarian follicles. J. Endocrinol. 199, 127–135.
Hydroxyestrogens inhibit angiogenesis in swine ovarian follicles.Crossref | GoogleScholarGoogle Scholar | 18662972PubMed |

Basini, G., Bussolati, S., Santini, S. E., and Grasselli, F. (2010). The impact of the phyto-oestrogen genistein on swine granulosa cell function. J. Anim. Physiol. Anim. Nutr. (Berl.) 94, e374–e382.
The impact of the phyto-oestrogen genistein on swine granulosa cell function.Crossref | GoogleScholarGoogle Scholar |

Basini, G., Cortimiglia, C., Baioni, L., Bussolati, S., Grolli, S., Ramoni, R., and Grasselli, F. (2011). The axonal guidance factor netrin-1 as a potential modulator of swine follicular function. Mol. Cell. Endocrinol. 331, 41–48.
The axonal guidance factor netrin-1 as a potential modulator of swine follicular function.Crossref | GoogleScholarGoogle Scholar | 20696210PubMed |

Basini, G., Bianchi, F., Bussolati, S., Baioni, L., Ramoni, R., Grolli, S., Conti, V., Bianchi, F., and Grasselli, F. (2012a). Atrazine disrupts steroidogenesis, VEGF and NO production in swine granulosa cells. Ecotoxicol. Environ. Saf. 85, 59–63.
Atrazine disrupts steroidogenesis, VEGF and NO production in swine granulosa cells.Crossref | GoogleScholarGoogle Scholar | 22999709PubMed |

Basini, G., Baioni, L., Bussolati, S., Grasselli, F., Daquino, C., Spatafora, C., and Tringali, C. (2012b). Antiangiogenic properties of an unusual benzo[k,l]xanthene lignan derived from CAPE (caffeic acid phenethyl ester). Invest. New Drugs 30, 186–190.
Antiangiogenic properties of an unusual benzo[k,l]xanthene lignan derived from CAPE (caffeic acid phenethyl ester).Crossref | GoogleScholarGoogle Scholar | 20924642PubMed |

Basini, G., Baioni, L., Bussolati, S., Grolli, S., and Grasselli, F. (2014a). Prolactin is a potential physiological modulator of swine ovarian follicle function. Regul. Pept. 189, 22–30.
Prolactin is a potential physiological modulator of swine ovarian follicle function.Crossref | GoogleScholarGoogle Scholar | 24530842PubMed |

Basini, G., Spatafora, C., Tringali, C., Bussolati, S., and Grasselli, F. (2014b). Effects of a ferulate-derived dihydrobenzofuran neolignan on angiogenesis, steroidogenesis, and redox status in a swine cell model. J. Biomol. Screen. 19, 1282–1289.
Effects of a ferulate-derived dihydrobenzofuran neolignan on angiogenesis, steroidogenesis, and redox status in a swine cell model.Crossref | GoogleScholarGoogle Scholar | 24916413PubMed |

Basini, G., Bussolati, S., Ciccimarra, R., and Grasselli, F. (2017a). Melatonin potentially acts directly on swine ovary by modulating granulosa cell function and angiogenesis. Reprod. Fertil. Dev. 29, 2305–2312.
Melatonin potentially acts directly on swine ovary by modulating granulosa cell function and angiogenesis.Crossref | GoogleScholarGoogle Scholar | 28366192PubMed |

Basini, G., Bussolati, S., Grolli, S., Ramoni, R., and Grasselli, F. (2017b). Bisphenol A interferes with swine vascular endothelial cell functions. Can. J. Physiol. Pharmacol. 95, 365–371.
Bisphenol A interferes with swine vascular endothelial cell functions.Crossref | GoogleScholarGoogle Scholar | 28051323PubMed |

Basini, G., Bussolati, S., Grolli, S., Ramoni, R., Conti, V., Quintavalla, F., and Grasselli, F. (2018a). Platelets are involved in in vitro swine granulosa cell luteinization and angiogenesis. Anim. Reprod. Sci. 188, 51–56.
Platelets are involved in in vitro swine granulosa cell luteinization and angiogenesis.Crossref | GoogleScholarGoogle Scholar | 29174088PubMed |

Basini, G., Ciccimarra, R., Bussolati, S., Grolli, S., Ragionieri, L., Ravanetti, F., Botti, M., Gazza, F., Cacchioli, A., Di Lecce, R., Cantoni, A. M., and Grasselli, F. (2018b). Orexin A in swine corpus luteum. Domest. Anim. Endocrinol. 64, 38–48.
Orexin A in swine corpus luteum.Crossref | GoogleScholarGoogle Scholar | 29733985PubMed |

Berni, M., Gigante, P., Bussolati, S., Grasselli, F., Grolli, S., Ramoni, R., and Basini, G. (2019). Bisphenol S, a bisphenol A alternative, impairs swine ovarian and adipose cell functions. Domest. Anim. Endocrinol. 66, 48–56.
Bisphenol S, a bisphenol A alternative, impairs swine ovarian and adipose cell functions.Crossref | GoogleScholarGoogle Scholar | 30439591PubMed |

Bielli, A., Scioli, M. G., Mazzaglia, D., Doldo, E., and Orlandi, A. (2015). Antioxidants and vascular health. Life Sci. 143, 209–216.
Antioxidants and vascular health.Crossref | GoogleScholarGoogle Scholar | 26585821PubMed |

Brzozowski, T., Magierowska, K., Magierowski, M., Ptak-Belowska, A., Pajdo, R., Kwiecien, S., Olszanecki, R., and Korbut, R. (2017). Recent advances in the gastric mucosal protection against stress-induced gastric lesions. Importance of renin–angiotensin vasoactive metabolites, gaseous mediators and appetite peptides. Curr. Pharm. Des. 23, 3910–3922.
Recent advances in the gastric mucosal protection against stress-induced gastric lesions. Importance of renin–angiotensin vasoactive metabolites, gaseous mediators and appetite peptides.Crossref | GoogleScholarGoogle Scholar | 28228069PubMed |

Celik, O., Aydin, S., Celik, N., and Yilmaz, M. (2015). Peptides: basic determinants of reproductive functions. Peptides 72, 34–43.
Peptides: basic determinants of reproductive functions.Crossref | GoogleScholarGoogle Scholar | 26074346PubMed |

Ciccimarra, R., Bussolati, S., Grasselli, F., Grolli, S., Ragionieri, L., Ravanetti, F., Botti, M., Gazza, F., Cacchioli, A., Di Lecce, R., Cantoni, A. M., and Basini, G. (2018). Orexin system in swine ovarian follicles. Domest. Anim. Endocrinol. 62, 49–59.
Orexin system in swine ovarian follicles.Crossref | GoogleScholarGoogle Scholar | 29053993PubMed |

Comninos, A. N., Jayasena, C. N., and Dhillo, W. S. (2014). The relationship between gut and adipose hormones, and reproduction. Hum. Reprod. Update 20, 153–174.
The relationship between gut and adipose hormones, and reproduction.Crossref | GoogleScholarGoogle Scholar | 24173881PubMed |

Dong, Y. L., and Yallampalli, C. (1996). Interaction between nitric oxide and prostaglandin E2 pathways in pregnant rat uteri. Am. J. Physiol. 270, E471–E476.
| 8638695PubMed |

Dore, R., Levata, L., Lehnert, H., and Schulz, C. (2017). Nesfatin-1: functions and physiology of a novel regulatory peptide. J. Endocrinol. 232, R45–R65.
Nesfatin-1: functions and physiology of a novel regulatory peptide.Crossref | GoogleScholarGoogle Scholar | 27754932PubMed |

Duffy, D. M., Ko, C., Jo, M., Brannstrom, M., and Curry, T. E (2019). Ovulation: parallels with inflammatory processes. Endocr Rev. 40, 369–416.
Ovulation: parallels with inflammatory processes.Crossref | GoogleScholarGoogle Scholar | 30496379PubMed |

Gao, X., Zhang, K., Song, M., Li, X., Luo, L., Tian, Y., Zhang, Y., Li, Y., Zhang, X., Ling, Y., Fang, F., and Liu, Y. (2016). Role of Nesfatin-1 in the reproductive axis of male rat. Sci. Rep. 6, 32877.
Role of Nesfatin-1 in the reproductive axis of male rat.Crossref | GoogleScholarGoogle Scholar | 27599613PubMed |

Garcia-Garcia, R. M. (2012). Integrative control of energy balance and reproduction in females. ISRN Vet. Sci. 2012, 121389.
Integrative control of energy balance and reproduction in females.Crossref | GoogleScholarGoogle Scholar | 23762577PubMed |

Gatta, C., Russo, F., Russolillo, M. G., Varricchio, E., Paolucci, M., Castaldo, L., Lucini, C., de Girolamo, P., Cozzi, B., and Maruccio, L. (2014). The orexin system in the enteric nervous system of the bottlenose dolphin (Tursiops truncatus) PLoS One 9, e105009.
The orexin system in the enteric nervous system of the bottlenose dolphin (Tursiops truncatus)Crossref | GoogleScholarGoogle Scholar | 25144456PubMed |

Gatta, C., De Felice, E., D’Angelo, L., Maruccio, L., Leggieri, A., Lucini, C., Palladino, A., Paolucci, M., Scocco, P., Varricchio, E., and de Girolamo, P. (2018). The case study of nesfatin-1 in the pancreas of Tursiops truncatus. Front. Physiol. 9, 1845.
The case study of nesfatin-1 in the pancreas of Tursiops truncatus.Crossref | GoogleScholarGoogle Scholar | 30618845PubMed |

Gigante, P., Berni, M., Bussolati, S., Grasselli, F., Grolli, S., Ramoni, R., and Basini, G. (2018). Glyphosate affects swine ovarian and adipose stromal cell functions. Anim. Reprod. Sci. 195, 185–196.
Glyphosate affects swine ovarian and adipose stromal cell functions.Crossref | GoogleScholarGoogle Scholar | 29843941PubMed |

Goebel-Stengel, M., and Wang, L. (2013). Central and peripheral expression and distribution of NUCB2/nesfatin-1. Curr. Pharm. Des. 19, 6935–6940.
Central and peripheral expression and distribution of NUCB2/nesfatin-1.Crossref | GoogleScholarGoogle Scholar | 23537079PubMed |

Grasselli, F., Baratta, M., and Tamanini, C. (1993). Effects of GnRH analogue (buserelin) infused via osmotic minipumps on pituitary and ovarian activity of prepubertal heifers. Anim. Reprod. Sci. 32, 153–161.
Effects of GnRH analogue (buserelin) infused via osmotic minipumps on pituitary and ovarian activity of prepubertal heifers.Crossref | GoogleScholarGoogle Scholar |

Grasselli, F., Basini, G., Tirelli, M., Cavalli, V., Bussolati, S., and Tamanini, C. (2003). Angiogenic activity of porcine granulosa cells co-cultured with endothelial cells in a microcarrier-based three-dimensional fibrin gel. J. Physiol. Pharmacol. 54, 361–370.
| 14566075PubMed |

Jiang, G., Wang, M., Wang, L., Chen, H., Chen, Z., Guo, J., Weng, X., and Liu, X. (2015). The protective effect of nesfatin-1 against renal ischemia–reperfusion injury in rats. Ren. Fail. 37, 882–889.
The protective effect of nesfatin-1 against renal ischemia–reperfusion injury in rats.Crossref | GoogleScholarGoogle Scholar | 25707521PubMed |

Jiang, S., Zhou, W., Zhang, X., Wang, D., Zhu, H., Hong, M., Gong, Y., Ye, J., and Fang, F. (2016). Developmental expression and distribution of nesfatin-1/NUCB2 in the canine digestive system. Acta Histochem. 118, 90–96.
Developmental expression and distribution of nesfatin-1/NUCB2 in the canine digestive system.Crossref | GoogleScholarGoogle Scholar | 26643216PubMed |

Kim, J., and Yang, H. (2012). Nesfatin-1 as a new potent regulator in reproductive system. Dev. Reprod. 16, 253–264.
Nesfatin-1 as a new potent regulator in reproductive system.Crossref | GoogleScholarGoogle Scholar | 25949098PubMed |

Kim, J. H., Youn, M. R., Bang, S. Y., Sim, J. Y., Kang, H. R., and Yang, H. W. (2010). Expression of nesfatin-1/NUCB2 and its binding site in mouse ovary. Dev. Reprod. 14, 287–295.

Kim, J. H., Lee, K. R., Kim, H. K., No, S. H., Yoo, H. M., Moon, C. I., and Yang, H. W. (2011). 17β-Estradiol regulates the expression of nesfatin-1/NUCB2 in mouse uterus. Dev. Reprod. 15, 349–357.

Kim, J., Chung, Y., Kim, H., Im, E., Lee, H., and Yang, H. (2014). The tissue distribution of nesfatin-1/NUCB2 in mouse. Dev. Reprod. 18, 301–309.
The tissue distribution of nesfatin-1/NUCB2 in mouse.Crossref | GoogleScholarGoogle Scholar | 25949201PubMed |

Lents, C. A., Barb, C. R., Hausman, G. J., Nonneman, D., Heidorn, N. I., Cisse, R. S., and Azain, M. J. (2013). Effects of nesfatin-1 on food intake and LH secretion in prepubertal gilts and genomic association of the porcine NUCB2 gene with growth traits. Domest. Anim. Endocrinol. 45, 89–97.
Effects of nesfatin-1 on food intake and LH secretion in prepubertal gilts and genomic association of the porcine NUCB2 gene with growth traits.Crossref | GoogleScholarGoogle Scholar | 23820242PubMed |

Mathew, H., Castracane, V. D., and Mantzoros, C. (2018). Adipose tissue and reproductive health. Metabolism. 86, 18–32.
Adipose tissue and reproductive health.Crossref | GoogleScholarGoogle Scholar | 29155136PubMed |

Navarro, V. M., and Kaiser, U. B. (2013). Metabolic influences on neuroendocrine regulation of reproduction. Curr Opin Endocrinol Diabetes Obes. 20, 335–341.
Metabolic influences on neuroendocrine regulation of reproduction.Crossref | GoogleScholarGoogle Scholar | 23807606PubMed |

Oh-I, S., Shimizu, H., Satoh, T., Okada, S., Adachi, S., Inoue, K., Eguchi, H., Yamamoto, M., Imaki, T., Hashimoto, K., Tsuchiya, T., Monden, T., Horiguchi, K., Yamada, M., and Mori, M. (2006). Identification of nesfatin-1 as a satiety molecule in the hypothalamus. Nature 443, 709–712.
Identification of nesfatin-1 as a satiety molecule in the hypothalamus.Crossref | GoogleScholarGoogle Scholar | 17036007PubMed |

Prinz, P., and Stengel, A. (2016). Nesfatin-1: current status as a peripheral hormone and future prospects. Curr. Opin. Pharmacol. 31, 19–24.
Nesfatin-1: current status as a peripheral hormone and future prospects.Crossref | GoogleScholarGoogle Scholar | 27589696PubMed |

Ragionieri, L., Ravanetti, F., Di Lecce, R., Botti, M., Ciccimarra, R., Bussolati, S., Basini, G., Gazza, F., and Cacchioli, A. (2018). Immunolocalization of orexin A and its receptors in the different structures of the porcine ovary. Ann. Anat. 218, 214–226.
Immunolocalization of orexin A and its receptors in the different structures of the porcine ovary.Crossref | GoogleScholarGoogle Scholar | 29738835PubMed |

Ramesh, N., Mortazavi, S., and Unniappan, S. (2016). Nesfatin-1 stimulates cholecystokinin and suppresses peptide YY expression and secretion in mice. Biochem. Biophys. Res. Commun. 472, 201–208.
Nesfatin-1 stimulates cholecystokinin and suppresses peptide YY expression and secretion in mice.Crossref | GoogleScholarGoogle Scholar | 26920055PubMed |

Ranjan, A., Choubey, M., Yada, T., and Krishna, A. (2019). Direct effects of neuropeptide nesfatin-1 on testicular spermatogenesis and steroidogenesis of the adult mice. Gen. Comp. Endocrinol. 271, 49–60.
Direct effects of neuropeptide nesfatin-1 on testicular spermatogenesis and steroidogenesis of the adult mice.Crossref | GoogleScholarGoogle Scholar | 30391240PubMed |

Roa, J., and Tena-Sempere, M. (2014). Connecting metabolism and reproduction: roles of central energy sensors and key molecular mediators. Mol. Cell. Endocrinol. 397, 4–14.
Connecting metabolism and reproduction: roles of central energy sensors and key molecular mediators.Crossref | GoogleScholarGoogle Scholar | 25289807PubMed |

Scaramuzzi, R. J., Campbell, B. K., Downing, J. A., Kendall, N. R., Khalid, M., Muñoz-Gutiérrez, M., and Somchit, A. (2006). A review of the effects of supplementary nutrition in the ewe on the concentrations of reproductive and metabolic hormones and the mechanisms that regulate folliculogenesis and ovulation rate. Reprod. Nutr. Dev. 46, 339–354.
A review of the effects of supplementary nutrition in the ewe on the concentrations of reproductive and metabolic hormones and the mechanisms that regulate folliculogenesis and ovulation rate.Crossref | GoogleScholarGoogle Scholar | 16824444PubMed |

Schalla, M. A., and Stengel, A. (2018). Current understanding of the role of nesfatin-1. J. Endocr. Soc. 2, 1188–1206.
Current understanding of the role of nesfatin-1.Crossref | GoogleScholarGoogle Scholar | 30302423PubMed |

Smolinska, N., Kiezun, M., Dobrzyn, K., Szeszko, K., Maleszka, A., and Kaminski, T. (2015). Expression of the orexin system in the porcine uterus, conceptus and trophoblast during early pregnancy. Animal 9, 1820–1831.
Expression of the orexin system in the porcine uterus, conceptus and trophoblast during early pregnancy.Crossref | GoogleScholarGoogle Scholar | 26133101PubMed |

Stengel, A., and Taché, Y. (2011). Minireview: nesfatin-1 – an emerging new player in the brain–gut, endocrine, and metabolic axis. Endocrinology 152, 4033–4038.
Minireview: nesfatin-1 – an emerging new player in the brain–gut, endocrine, and metabolic axis.Crossref | GoogleScholarGoogle Scholar | 21862618PubMed |

Stengel, A., Goebel, M., Yakubov, I., Wang, I., Witcher, D., Coskun, T., Tachè, Y., Sachs, G., and Lambrecht, N. W. G. (2009). Identification and characterization of nesfatin-1 immunoreactivity in endocrine cell types of the rat gastric oxyntic mucosa. Endocrinology 150, 232–238.
Identification and characterization of nesfatin-1 immunoreactivity in endocrine cell types of the rat gastric oxyntic mucosa.Crossref | GoogleScholarGoogle Scholar | 18818289PubMed |

Ullah, K., Ur Rahman, T., Wu, D. D., Lin, X. H., Liu, Y., Guo, X. Y., Leung, P. C. K., Zhang, R. J., Huang, H. F., and Sheng, J. Z. (2017). Phoenixin-14 concentrations are increased in association with luteinizing hormone and nesfatin-1 concentrations in women with polycystic ovary syndrome. Clin. Chim. Acta 471, 243–247.
Phoenixin-14 concentrations are increased in association with luteinizing hormone and nesfatin-1 concentrations in women with polycystic ovary syndrome.Crossref | GoogleScholarGoogle Scholar | 28624500PubMed |

Varricchio, E., Russolillo, M. G., Russo, F., Lombardi, V., Paolucci, M., and Maruccio, L. (2014). Expression and immunohistochemical detection of nesfatin-1 in the gastrointestinal tract of Casertana pig. Acta Histochem. 116, 583–587.
Expression and immunohistochemical detection of nesfatin-1 in the gastrointestinal tract of Casertana pig.Crossref | GoogleScholarGoogle Scholar | 24360975PubMed |

Wang, S., He, G., Chen, M., Zuo, T., Xu, W., and Liu, X. (2017). The role of antioxidant enzymes in the ovaries. Oxid. Med. Cell. Longev. 2017, 4371714.
The role of antioxidant enzymes in the ovaries.Crossref | GoogleScholarGoogle Scholar | 29181124PubMed |

Yamada, M., Horiguchi, K., Umezawa, R., Hashimoto, K., Satoh, T., Ozawa, A., Shibusawa, N., Monden, T., Okada, S., Shimizu, H., and Mori, M. (2010). Troglitazone, a ligand of peroxisome proliferator-activated receptor-{gamma}, stabilizes NUCB2 (Nesfatin) mRNA by activating the ERK1/2 pathway: isolation and characterization of the human NUCB2 gene. Endocrinology 151, 2494–2503.
Troglitazone, a ligand of peroxisome proliferator-activated receptor-{gamma}, stabilizes NUCB2 (Nesfatin) mRNA by activating the ERK1/2 pathway: isolation and characterization of the human NUCB2 gene.Crossref | GoogleScholarGoogle Scholar | 20427483PubMed |

Yuan, J. H., Chen, X., Dong, J., Zhang, D., Song, K., Zhang, Y., Wu, G. B., Hu, X. H., Jiang, Z. Y., and Chen, P. (2017). Nesfatin-1 in the lateral parabrachial nucleus inhibits food intake, modulates excitability of glucosensing neurons, and enhances UCP1 expression in brown adipose tissue. Front. Physiol. 8, 235.
Nesfatin-1 in the lateral parabrachial nucleus inhibits food intake, modulates excitability of glucosensing neurons, and enhances UCP1 expression in brown adipose tissue.Crossref | GoogleScholarGoogle Scholar | 28484396PubMed |

Zhang, A. Q., Li, X. L., Jiang, C. Y., Lin, L., Shi, R. H., Chen, J. D., and Oomura, Y. (2010). Expression of nesfatin-1/NUCB2 in rodent digestive system. World J. Gastroenterol. 16, 1735–1741.
Expression of nesfatin-1/NUCB2 in rodent digestive system.Crossref | GoogleScholarGoogle Scholar | 20380005PubMed |

Zhang, J. R., Lu, Q. B., Feng, W. B., Wang, H. P., Tang, Z. H., Cheng, H., Du, Q., Wang, Y. B., Li, K. X., and Sun, H. J. (2018). Nesfatin-1 promotes VSMC migration and neointimal hyperplasia by upregulating matrix metalloproteinases and downregulating PPARγ. Biomed. Pharmacother. 102, 711–717.
Nesfatin-1 promotes VSMC migration and neointimal hyperplasia by upregulating matrix metalloproteinases and downregulating PPARγ.Crossref | GoogleScholarGoogle Scholar | 29604590PubMed |