Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Effects of treatment with a microRNA mimic or inhibitor on the developmental competence, quality, epigenetic status and gene expression of buffalo (Bubalus bubalis) somatic cell nuclear transfer embryos

S. Sah A , A. K. Sharma A , S. K. Singla A , M. K. Singh https://orcid.org/0000-0003-4644-4443 A , M. S. Chauhan A , R. S. Manik A and P. Palta https://orcid.org/0000-0001-7021-8660 A B
+ Author Affiliations
- Author Affiliations

A Embryo Biotechnology Laboratory, Animal Biotechnology Centre, Indian Council of Agricultural Research–National Dairy Research Institute, GT Road, Karnal, Haryana, 132001 India.

B Corresponding author. Email: prabhatpalta@yahoo.com

Reproduction, Fertility and Development 32(5) 508-521 https://doi.org/10.1071/RD19084
Submitted: 1 March 2019  Accepted: 17 August 2019   Published: 21 January 2020

Abstract

Expression levels of 13 microRNAs (miRNAs) were compared between buffalo blastocysts produced by somatic cell nuclear transfer through hand-made cloning and IVF to improve cloning efficiency. Expression of miR-22, miR-145, miR-374a and miR-30c was higher, whereas that of miR-29b, miR-101, miR-302b, miR-34a, miR-21 and miR-25 was lower, in nuclear transferred (NT) than IVF embryos; the expression of miR-200b, miR-26a and miR-128 was similar between the two groups. Based on these, miR-145, which is involved in the regulation of pluripotency, was selected for further investigation of NT embryos. miR-145 expression was lowest at the 2-cell stage, increased through the 4-cell stage and was highest at the 8-cell or morula stage in a pattern that was similar between NT and IVF embryos. miR-145 expression was higher in NT than IVF embryos at all stages examined. Treatment of reconstructed embryos 1 h after electrofusion with an inhibitor of miR-145 for 1 h decreased the apoptotic index and increased the blastocyst rate, total cell number, ratio of cells in the inner cell mass to trophectoderm, global levels of acetylation of histone 3 at lysine 18 and expression of Krueppel-like factor 4 (KLF4), octamer-binding transcription factor 4 (OCT4) and SRY (sex determining region Y)-box 2 (SOX2) in blastocysts. Treatment with an miR-145 mimic had the opposite effects. In conclusion, treatment of NT embryos with an miR-145 inhibitor improves the developmental competence and quality, and increases histone acetylation and expression of pluripotency-related genes.

Graphical Abstract Image

Additional keywords: apoptosis, cloning, hand-made cloning, IVF.


References

Bartel, D. P. (2009). MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233.
MicroRNAs: target recognition and regulatory functions.Crossref | GoogleScholarGoogle Scholar | 19167326PubMed |

Beyhan, Z., Forsberg, E. J., Eilertsen, K. J., Kent-First, M., and First, N. L. (2007). Gene expression in bovine nuclear transfer embryos in relation to donor cell efficiency in producing live offspring. Mol. Reprod. Dev. 74, 18–27.
Gene expression in bovine nuclear transfer embryos in relation to donor cell efficiency in producing live offspring.Crossref | GoogleScholarGoogle Scholar | 16941691PubMed |

Boiani, M., Eckardt, S., Leu, N. A., Schöler, H. R., and McLaughlin, K. J. (2003). Pluripotency deficit in clones overcome by clone–clone aggregation: epigenetic complementation? EMBO J. 22, 5304–5312.
Pluripotency deficit in clones overcome by clone–clone aggregation: epigenetic complementation?Crossref | GoogleScholarGoogle Scholar | 14517267PubMed |

Boyer, L. A., Plath, K., Zeitlinger, J., Brambrink, T., Medeiros, L. A., Lee, T. I., Levine, S. S., Wernig, M., Tajonar, A., Ray, M. K., and Bell, G. W. (2006). Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441, 349–353.
Polycomb complexes repress developmental regulators in murine embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 16625203PubMed |

Breton, A., Bourhis, D. le, Audouard, C., Vignon, X., and Lelievre, J. M. (2010). Nuclear profiles of H3 histones trimethylated on Lys27 in bovine (Bos taurus) embryos obtained after in vitro fertilization or somatic cell nuclear transfer. J. Reprod. Dev. 56, 379–388.
Nuclear profiles of H3 histones trimethylated on Lys27 in bovine (Bos taurus) embryos obtained after in vitro fertilization or somatic cell nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 20431250PubMed |

Cai, J., Guan, H., Fang, L., Yang, Y., Zhu, X., Yuan, J., Wu, J., and Li, M. (2013). MicroRNA-374a activates Wnt/β-catenin signaling to promote breast cancer metastasis. J. Clin. Invest. 123, 566–579.
MicroRNA-374a activates Wnt/β-catenin signaling to promote breast cancer metastasis.Crossref | GoogleScholarGoogle Scholar | 23321667PubMed |

Canovas, S., Cibelli, J. B., and Ross, P. J. (2012). Jumonji domain-containing protein 3 regulates histone 3 lysine 27 methylation during bovine preimplantation development. Proc. Natl Acad. Sci. USA 109, 2400–2405.
Jumonji domain-containing protein 3 regulates histone 3 lysine 27 methylation during bovine preimplantation development.Crossref | GoogleScholarGoogle Scholar | 22308433PubMed |

Castro, F. O., Sharbati, S., Rodrı’guez-Alvarez, L. L., Cox, J. F., Hultschig, C., and Einspanier, R. (2010). MicroRNA expression profiling of elongated cloned and in vitro-fertilized bovine embryos. Theriogenology 73, 71–85.
MicroRNA expression profiling of elongated cloned and in vitro-fertilized bovine embryos.Crossref | GoogleScholarGoogle Scholar | 19836069PubMed |

Chung, N., Bogliotti, Y. S., Ding, W., Vilarino, M., Takahashi, K., Chitwood, J. L., Schultz, R. M., and Ross, P. J. (2017). Active H3K27me3 demethylation by KDM6B is required for normal development of bovine preimplantation embryos. Epigenetics 12, 1048–1056.
Active H3K27me3 demethylation by KDM6B is required for normal development of bovine preimplantation embryos.Crossref | GoogleScholarGoogle Scholar | 29160132PubMed |

Cui, X. S., Xu, Y. N., Shen, X. H., Zhang, L. Q., Zhang, J. B., and Kim, N. H. (2011). Trichostatin A modulates apoptotic-related gene expression and improves embryo viability in cloned bovine embryos. Cell. Reprogram. 13, 179–189.
Trichostatin A modulates apoptotic-related gene expression and improves embryo viability in cloned bovine embryos.Crossref | GoogleScholarGoogle Scholar | 21473694PubMed |

Cui, S. Y., Wang, R., and Chen, L. B. (2014). MicroRNA-145: a potent tumour suppressor that regulates multiple cellular pathways. J. Cell. Mol. Med. 18, 1913–1926.
MicroRNA-145: a potent tumour suppressor that regulates multiple cellular pathways.Crossref | GoogleScholarGoogle Scholar | 25124875PubMed |

Denis, H., Ndlovu, M. N., and Fuks, F. (2011). Regulation of mammalian DNA methyltransferases: a route to new mechanisms. EMBO Rep. 12, 647–656.
Regulation of mammalian DNA methyltransferases: a route to new mechanisms.Crossref | GoogleScholarGoogle Scholar | 21660058PubMed |

Erhardt, S., Su, I. H., Schneider, R., Barton, S., Bannister, A. J., Perez-Burgos, L., Jenuwein, T., Kouzarides, T., Tarakhovsky, A., and Surani, M. A. (2003). Consequences of the depletion of zygotic and embryonic enhancer of zeste 2 during preimplantation mouse development. Development 130, 4235–4248.
Consequences of the depletion of zygotic and embryonic enhancer of zeste 2 during preimplantation mouse development.Crossref | GoogleScholarGoogle Scholar | 12900441PubMed |

Gilchrist, G. C., Tscherner, A., Nalpathamkalam, T., Merico, D., and LaMarre, J. (2016). MicroRNA expression during bovine oocyte maturation and fertilization. Int. J. Mol. Sci. 17, 396.
MicroRNA expression during bovine oocyte maturation and fertilization.Crossref | GoogleScholarGoogle Scholar | 26999121PubMed |

Hossain, M. M., Salilew-Wondim, D., Schellander, K., and Tesfaye, D. (2012). The role of microRNAs in mammalian oocytes and embryos. Anim. Reprod. Sci. 134, 36–44.
The role of microRNAs in mammalian oocytes and embryos.Crossref | GoogleScholarGoogle Scholar | 22921265PubMed |

Huang, Y., Xie, W., Yao, C., Han, Y., Tan, G., Zhou, Y., Zhu, J., Pang, D., Li, Z., and Tang, X. (2014). Pluripotent-related gene expression analyses in single porcine recloned embryo. Biotechnol. Lett. 36, 1161–1169.
Pluripotent-related gene expression analyses in single porcine recloned embryo.Crossref | GoogleScholarGoogle Scholar | 24563300PubMed |

Im, G. S., Seo, J. S., Hwang, I. S., Kim, D. H., Kim, S. W., Yang, B. C., Yang, B. S., Lai, L., and Prather, R. S. (2006). Development and apoptosis of preimplantation porcine nuclear transfer embryos activated with different combination of chemicals. Mol. Reprod. Dev. 73, 1094–1101.
Development and apoptosis of preimplantation porcine nuclear transfer embryos activated with different combination of chemicals.Crossref | GoogleScholarGoogle Scholar | 16736528PubMed |

Kaur, H., Babu, B. R., and Maiti, S. (2007). Perspectives on chemistry and therapeutic applications of locked nucleic acid (LNA). Chem. Rev. 107, 4672–4697.
Perspectives on chemistry and therapeutic applications of locked nucleic acid (LNA).Crossref | GoogleScholarGoogle Scholar | 17944519PubMed |

Kirchhof, N., Carnwath, J. W., Lemme, E., Anastassiadis, K., Schöler, H., and Niemann, H. (2000). Expression pattern of Oct-4 in preimplantation embryos of different species. Biol. Reprod. 63, 1698–1705.
Expression pattern of Oct-4 in preimplantation embryos of different species.Crossref | GoogleScholarGoogle Scholar | 11090438PubMed |

Konno, Y., Dong, P., Xiong, Y., Suzuki, F., Lu, J., Cai, M., Watari, H., Mitamura, T., Hosaka, M., Hanley, S. J., and Kudo, M. (2014). MicroRNA-101 targets EZH2, MCL-1 and FOS to suppress proliferation, invasion and stem cell-like phenotype of aggressive endometrial cancer cells. Oncotarget 5, 6049–6062.
MicroRNA-101 targets EZH2, MCL-1 and FOS to suppress proliferation, invasion and stem cell-like phenotype of aggressive endometrial cancer cells.Crossref | GoogleScholarGoogle Scholar | 25153722PubMed |

Koo, D. B., Kang, Y. K., Choi, Y. H., Park, J. S., Kim, H. N., Oh, K. B., Son, D. S., Park, H., Lee, K. K., and Han, Y. M. (2002). Aberrant allocations of inner cell mass and trophectoderm cells in bovine nuclear transfer blastocysts. Biol. Reprod. 67, 487–492.
Aberrant allocations of inner cell mass and trophectoderm cells in bovine nuclear transfer blastocysts.Crossref | GoogleScholarGoogle Scholar | 12135886PubMed |

Lagah, S., Sood, T. J., Palta, P., Mukesh, M., Manik, R. S., Chauhan, M. S., and Singla, S. K. (2017). Next-generation sequencing discloses differences in microRNA expression profiles of buffalo (Bubalus bubalis) embryos produced by hand-made cloning and in vitro fertilization. Reprod. Fertil. Dev. 29, 123.
Next-generation sequencing discloses differences in microRNA expression profiles of buffalo (Bubalus bubalis) embryos produced by hand-made cloning and in vitro fertilization.Crossref | GoogleScholarGoogle Scholar |

Lagah, S. V., Sood, T. J., Palta, P., Mukesh, M., Chauhan, M. S., Manik, R. S., Singh, M. K., and Singla, S. K. (2019). Selection of reference miRNAs for relative quantitation in buffalo (Bubalus bubalis) blastocysts produced by hand-made cloning and in vitro fertilization. Cell. Reprogram. 21, 200–209.
Selection of reference miRNAs for relative quantitation in buffalo (Bubalus bubalis) blastocysts produced by hand-made cloning and in vitro fertilization.Crossref | GoogleScholarGoogle Scholar | 31199674PubMed |

Li, W., Xiong, Y., Wang, F., Liu, X., Gao, Y., Wang, Y., Zhang, Y., and Jin, Y. (2016). MicroRNA-145 inhibitor significantly improves the development of bovine somatic cell nuclear transfer embryos in vitro. Cell. Reprogram. 18, 230–236.
MicroRNA-145 inhibitor significantly improves the development of bovine somatic cell nuclear transfer embryos in vitro.Crossref | GoogleScholarGoogle Scholar | 27459582PubMed |

Liang, S., Nie, Z. W., Guo, J., Niu, Y. J., Shin, K. T., Ock, S. A., and Cui, X. S. (2018). Overexpression of microRNA-29b decreases expression of DNA methyltransferases and improves quality of the blastocysts derived from somatic cell nuclear transfer in cattle. Microsc. Microanal. 24, 29–37.
Overexpression of microRNA-29b decreases expression of DNA methyltransferases and improves quality of the blastocysts derived from somatic cell nuclear transfer in cattle.Crossref | GoogleScholarGoogle Scholar | 29485024PubMed |

Ling, X. H., Chen, Z. Y., Luo, H. W., Liu, Z. Z., Liang, Y. K., Chen, G. X., Jiang, F. N., and Zhong, W. D. (2016). BCL9, a coactivator for Wnt/β-catenin transcription, is targeted by miR-30c and is associated with prostate cancer progression. Oncol. Lett. 11, 2001–2008.
BCL9, a coactivator for Wnt/β-catenin transcription, is targeted by miR-30c and is associated with prostate cancer progression.Crossref | GoogleScholarGoogle Scholar | 26998113PubMed |

Livak, K. J., and Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(–Delta Delta C(T)) method. Methods 25, 402–408.
Analysis of relative gene expression data using real-time quantitative PCR and the 2(–Delta Delta C(T)) method.Crossref | GoogleScholarGoogle Scholar | 11846609PubMed |

Loi, P., Modlinskia, J. A., and Ptak, J. (2011). Interspecies somatic cell nuclear transfer: a salvage tool seeking first aid. Theriogenology 76, 217–228.
Interspecies somatic cell nuclear transfer: a salvage tool seeking first aid.Crossref | GoogleScholarGoogle Scholar | 21458046PubMed |

Lu, W., You, R., Yuan, X., Yang, T., Samuel, E. L., Marcano, D. C., Sikkema, W. K., Tour, J. M., Rodriguez, A., Kheradmand, F., and Corry, D. B. (2015). The microRNA miR-22 inhibits the histone deacetylase HDAC4 to promote T(H)17 cell-dependent emphysema. Nat. Immunol. 16, 1185–1194.
The microRNA miR-22 inhibits the histone deacetylase HDAC4 to promote T(H)17 cell-dependent emphysema.Crossref | GoogleScholarGoogle Scholar | 26437241PubMed |

Luo, C., Lu, F., Wang, X., Wang, Z., Li, X., Gong, F., Jiang, J., Liu, Q., and Shi, D. (2013). Treatment of donor cells with trichostatin A improves in vitro development and reprogramming of buffalo (Bubalus bubalis) nucleus transfer embryos. Theriogenology 80, 878–886.
Treatment of donor cells with trichostatin A improves in vitro development and reprogramming of buffalo (Bubalus bubalis) nucleus transfer embryos.Crossref | GoogleScholarGoogle Scholar | 24007823PubMed |

Mahdipour, M., van Tol, H. T., Stout, T. A., and Roelen, B. A. (2015). Validating reference microRNAs for normalizing qRT-PCR data in bovine oocytes and preimplantation embryos. BMC Dev. Biol. 15, 25.
Validating reference microRNAs for normalizing qRT-PCR data in bovine oocytes and preimplantation embryos.Crossref | GoogleScholarGoogle Scholar | 26062615PubMed |

Marinho, L. S., Rissi, V. B., Lindquist, A. G., Seneda, M. M., and Bordignon, V. (2017). Acetylation and methylation profiles of H3K27 in porcine embryos cultured in vitro. Zygote 25, 575–582.
Acetylation and methylation profiles of H3K27 in porcine embryos cultured in vitro.Crossref | GoogleScholarGoogle Scholar | 28693635PubMed |

Memari, F., Joneidi, Z., Taheri, B., Aval, S. F., Roointan, A., and Zarghami, N. (2018). Epigenetics and Epi-miRNAs: potential markers/therapeutics in leukemia. Biomed. Pharmacother. 106, 1668–1677.
Epigenetics and Epi-miRNAs: potential markers/therapeutics in leukemia.Crossref | GoogleScholarGoogle Scholar | 30170355PubMed |

Mohapatra, S. K., Sandhu, A., Neerukattu, V. S., Singh, K. P., Selokar, N. L., Singla, S. K., Chauhan, M. S., Manik, R. S., and Palta, P. (2015a). Buffalo embryos produced by handmade cloning from oocytes selected using brilliant cresyl blue staining have better developmental competence and quality and are closer to embryos produced by in vitro fertilization in terms of their epigenetic status and gene expression pattern. Cell. Reprogram. 17, 141–150.
Buffalo embryos produced by handmade cloning from oocytes selected using brilliant cresyl blue staining have better developmental competence and quality and are closer to embryos produced by in vitro fertilization in terms of their epigenetic status and gene expression pattern.Crossref | GoogleScholarGoogle Scholar | 25826727PubMed |

Mohapatra, S. K., Sandhu, A., Singh, K. P., Singla, S. K., Chauhan, M. S., Manik, R. S., and Palta, P. (2015b). Establishment of trophectoderm cell lines from buffalo (Bubalus bubalis) embryos of different sources and examination of in vitro developmental competence, quality, epigenetic status and gene expression in cloned embryos derived from them. PLoS One 10, e0129235.
Establishment of trophectoderm cell lines from buffalo (Bubalus bubalis) embryos of different sources and examination of in vitro developmental competence, quality, epigenetic status and gene expression in cloned embryos derived from them.Crossref | GoogleScholarGoogle Scholar | 26053554PubMed |

Mondou, E., Dufort, I., Gohin, M., Fournier, E., and Sirard, M. A. (2012). Analysis of microRNAs and their precursors in bovine early embryonic development. Mol. Hum. Reprod. 18, 425–434.
Analysis of microRNAs and their precursors in bovine early embryonic development.Crossref | GoogleScholarGoogle Scholar | 22491901PubMed |

Niemann, H. (2016). Epigenetic reprogramming in mammalian species after SCNT-based cloning. Theriogenology 86, 80–90.
Epigenetic reprogramming in mammalian species after SCNT-based cloning.Crossref | GoogleScholarGoogle Scholar | 27160443PubMed |

Niemann, H., and Lucas-Hahn, A. (2012). Somatic cell nuclear transfer cloning: practical applications and current legislation. Reprod. Domest. Anim. 47, 2–10.
Somatic cell nuclear transfer cloning: practical applications and current legislation.Crossref | GoogleScholarGoogle Scholar | 22913555PubMed |

Niemann, H., Tian, X. C., King, W. A., and Lee, R. S. (2008). Epigenetic reprogramming in embryonic and foetal development upon somatic cell nuclear transfer cloning. Reproduction 135, 151–163.
Epigenetic reprogramming in embryonic and foetal development upon somatic cell nuclear transfer cloning.Crossref | GoogleScholarGoogle Scholar | 18239046PubMed |

Onder, T. T., and Daley, G. Q. (2011). microRNAs become macro players in somatic cell reprogramming. Genome Med. 3, 40.
microRNAs become macro players in somatic cell reprogramming.Crossref | GoogleScholarGoogle Scholar | 21699744PubMed |

Panarace, M., Agüero, J. I., Garrote, M., Jauregui, G., Segovia, A., Cane, L., Gutierrez, J., Marfil, M., Rigali, F., Pugliese, M., and Young, S. (2007). How healthy are clones and their progeny: 5 years of field experience. Theriogenology 67, 142–151.
How healthy are clones and their progeny: 5 years of field experience.Crossref | GoogleScholarGoogle Scholar | 17067665PubMed |

Saini, M., Selokar, N. L., Palta, P., Chauhan, M. S., Manik, R. S., and Singla, S. K. (2018). An update: reproductive handmade cloning of water buffalo (Bubalus bubalis). Anim. Reprod. Sci. 197, 1–9.
An update: reproductive handmade cloning of water buffalo (Bubalus bubalis).Crossref | GoogleScholarGoogle Scholar | 30122268PubMed |

Schwartz, Y. B., and Pirrotta, V. (2007). Polycomb silencing mechanisms and the management of genomic programmes. Nat. Rev. Genet. 8, 9–22.
Polycomb silencing mechanisms and the management of genomic programmes.Crossref | GoogleScholarGoogle Scholar | 17173055PubMed |

Selokar, N. L., St John, L., Revay, T., King, W. A., Singla, S. K., and Madan, P. (2013). Effect of histone deacetylase inhibitor valproic acid treatment on donor cell growth characteristics, cell cycle arrest, apoptosis and hand-made cloned bovine embryo production efficiency. Cell. Reprogram. 15, 531–542.
Effect of histone deacetylase inhibitor valproic acid treatment on donor cell growth characteristics, cell cycle arrest, apoptosis and hand-made cloned bovine embryo production efficiency.Crossref | GoogleScholarGoogle Scholar | 24180742PubMed |

Selokar, N. L., Saini, M., Palta, P., Chauhan, M. S., Manik, R. S., and Singla, S. K. (2014). Hope for restoration of dead valuable bulls through cloning using donor somatic cells isolated from cryopreserved semen. PLoS One 9, e90755.
Hope for restoration of dead valuable bulls through cloning using donor somatic cells isolated from cryopreserved semen.Crossref | GoogleScholarGoogle Scholar | 24614586PubMed |

Selokar, N. L., Saini, M., Palta, P., Chauhan, M. S., Manik, R. S., and Singla, S. K. (2018). Cloning of buffalo, a highly valued livestock species of south and southeast Asia: any achievements? Cell. Reprogram. 20, 89–98.
Cloning of buffalo, a highly valued livestock species of south and southeast Asia: any achievements?Crossref | GoogleScholarGoogle Scholar | 29620444PubMed |

Sharma, R., George, A., Kamble, N. M., Singh, K. P., Chauhan, M. S., Singla, S. K., Manik, R. S., and Palta, P. (2011). Optimization of culture conditions to support long-term self-renewal of buffalo (Bubalus bubalis) embryonic stem cell-like cells. Cell. Reprogram. 13, 539–549.
Optimization of culture conditions to support long-term self-renewal of buffalo (Bubalus bubalis) embryonic stem cell-like cells.Crossref | GoogleScholarGoogle Scholar | 22029416PubMed |

Shen, X. H., Han, Y. J., Zhang, D. X., Cui, X. S., and Kim, N. H. (2009). A link between the interleukin-6/Stat3 anti-apoptotic pathway and microRNA-21 in preimplantation mouse embryos. Mol. Reprod. Dev. 76, 854–862.
A link between the interleukin-6/Stat3 anti-apoptotic pathway and microRNA-21 in preimplantation mouse embryos.Crossref | GoogleScholarGoogle Scholar | 19437447PubMed |

Sood, T. J., Lagah, S. V., Sharma, A., Singla, S. K., Mukesh, M., Chauhan, M. S., Manik, R. S., and Palta, P. (2017). Selection of suitable internal control genes for accurate normalization of real-time quantitative PCR data of buffalo (Bubalus bubalis) blastocysts produced by SCNT and IVF. Cell. Reprogram. 19, 302–310.
Selection of suitable internal control genes for accurate normalization of real-time quantitative PCR data of buffalo (Bubalus bubalis) blastocysts produced by SCNT and IVF.Crossref | GoogleScholarGoogle Scholar | 28880574PubMed |

Subramanyam, D., Lamouille, S., Judson, R. L., Liu, J. Y., Bucay, N., Derynck, R., and Blelloch, R. (2011). Multiple targets of miR-302 and miR-372 promote reprogramming of human fibroblasts to induced pluripotent stem cells. Nat. Biotechnol. 29, 443–448.
Multiple targets of miR-302 and miR-372 promote reprogramming of human fibroblasts to induced pluripotent stem cells.Crossref | GoogleScholarGoogle Scholar | 21490602PubMed |

Tesfaye, D., Worku, D., Rings, F., Phatsara, C., Tholen, E., Schellander, K., and Hoelker, M. (2009). Identification and expression profiling of microRNAs during bovine oocyte maturation using heterologous approach. Mol. Reprod. Dev. 76, 665–677.
Identification and expression profiling of microRNAs during bovine oocyte maturation using heterologous approach.Crossref | GoogleScholarGoogle Scholar | 19170227PubMed |

Van Soom, A., Boerjan, M., Ysebaert, M. T., and de Kruif, A. (1996). Cell allocation to the inner cell mass and the trophectoderm in bovine embryos cultured in two different media. Mol. Reprod. Dev. 45, 171–182.
Cell allocation to the inner cell mass and the trophectoderm in bovine embryos cultured in two different media.Crossref | GoogleScholarGoogle Scholar | 8914075PubMed |

Wu, F. R., Zhang, Y., Ding, B., Lei, X. H., Huang, J. C., Wang, C. H., Liu, Y., Wang, R., and Li, W. Y. (2014). H3K27me3 may be associated with Oct4 and Sox2 in mouse preimplantation embryos. Genet. Mol. Res. 13, 10121–10129.
H3K27me3 may be associated with Oct4 and Sox2 in mouse preimplantation embryos.Crossref | GoogleScholarGoogle Scholar | 25501223PubMed |

Xu, N., Papagiannakopoulos, T., Pan, G., Thomson, J. A., and Kosik, K. S. (2009). MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell 137, 647–658.
MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 19409607PubMed |

Yamakuchi, M., Ferlito, M., and Lowenstein, C. J. (2008). miR-34a repression of SIRT1 regulates apoptosis. Proc. Natl Acad. Sci. USA 105, 13421–13426.
miR-34a repression of SIRT1 regulates apoptosis.Crossref | GoogleScholarGoogle Scholar | 18755897PubMed |

Yamanaka, K., Sugimura, S., Wakai, T., Kawahara, M., and Sato, E. (2009). Acetylation level of histone H3 in early embryonic stages affects subsequent development of miniature pig somatic cell nuclear transfer embryos. J. Reprod. Dev. 55, 638–644.
Acetylation level of histone H3 in early embryonic stages affects subsequent development of miniature pig somatic cell nuclear transfer embryos.Crossref | GoogleScholarGoogle Scholar | 19700928PubMed |

Yu, Y., Ding, C., Wang, E., Chen, X., Li, X., Zhao, C., Fan, Y., Wang, L., Beaujean, N., Zhou, Q., and Jouneau, A. (2007). Piezo-assisted nuclear transfer affects cloning efficiency and may cause apoptosis. Reproduction 133, 947–954.
Piezo-assisted nuclear transfer affects cloning efficiency and may cause apoptosis.Crossref | GoogleScholarGoogle Scholar | 17616724PubMed |

Zhang, M., Wang, F., Kou, Z., Zhang, Y., and Gao, S. (2009). Defective chromatin structure in somatic cell cloned mouse embryos. J. Biol. Chem. 284, 24981–24987.
Defective chromatin structure in somatic cell cloned mouse embryos.Crossref | GoogleScholarGoogle Scholar | 19602512PubMed |

Zhang, H., Zuo, Z., Lu, X., Wang, L., Wang, H., and Zhu, Z. (2012). MiR-25 regulates apoptosis by targeting Bim in human ovarian cancer. Oncol. Rep. 27, 594–598.
| 22076535PubMed |

Zhou, C., Wang, Y., Zhang, J., Su, J., An, Q., Liu, X., Zhang, M., Wang, Y., Liu, J., and Zhang, Y. (2019). H3K27me3 is an epigenetic barrier while KDM6A overexpression improves nuclear reprogramming efficiency. FASEB J. 33, 4638–4652.
H3K27me3 is an epigenetic barrier while KDM6A overexpression improves nuclear reprogramming efficiency.Crossref | GoogleScholarGoogle Scholar | 30673507PubMed |

Zhu, N. X., Liu, S. Y., Su, Z. J., Chen, L., Ma, T., Wen, L., Yuan, Y., Lv, L., Chen, X., and Chen, H. (2011). The expression pattern of polycomb group protein Ezh2 during mouse embryogenesis. Anat. Rec. (Hoboken) 294, 1150–1157.
The expression pattern of polycomb group protein Ezh2 during mouse embryogenesis.Crossref | GoogleScholarGoogle Scholar |