Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Betaine-loaded CaCO3 microparticles improve survival of vitrified feline preantral follicles through higher mitochondrial activity and decreased reactive oxygen species

D. C. C. Brito https://orcid.org/0000-0001-8561-739X A B C H , S. F. S. Domingues B , A. P. R. Rodrigues C , L. M. Silva C , K. A. Alves C , X. Wu D E , T. S. Francisco F G , I. L. Barroso Neto F , V. N. Freire F , J. R. Figueiredo C , J. C. Pieczarka A and R. R. Santos https://orcid.org/0000-0001-7030-6097 B
+ Author Affiliations
- Author Affiliations

A Laboratory of Cytogenetics, Center for Advanced Studies in Biodiversity, Biological Sciences Institute, Federal University of Pará, Av. Perimetral, 2-224 - Guamá, 66077-830, Belém-PA, Brazil.

B Laboratory of Wild Animal Biology and Medicine, Federal University of Pará, Av. Perimetral, 2-224 - Guamá, 66077-830, Belém-PA, Brazil.

C Laboratory of Manipulation of Oocytes and Ovarian Pre-Antral Follicles, Faculty of Veterinary Medicine, Ceará State University, Av. Dr. Silas Munguba, 1700 - Itaperi, 60714-903, Fortaleza-CE, Brazil.

D Hubert Department of Global Health, Rollins School of Public Health, Emory University, 1518 Clifton Rd, Atlanta, GA 30322, USA.

E Department of Infectious Disease, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Yuhangtang Road 866, Hangzhou, Zhejiang, PR China.

F Department of Physics, Federal University of Ceará, Av. da Universidade, 2853 - Benfica, 60020-181, Fortaleza - CE, Brazil.

G Department of Chemistry, State University of Vale do Acarau, Av. da Universidade, 850 - Jerônimo de Medeiros Prado, Sobral - CE, 62010-295, Brazil.

H Corresponding author. Email: daniellecalado@ymail.com

Reproduction, Fertility and Development 32(5) 531-537 https://doi.org/10.1071/RD19068
Submitted: 27 February 2019  Accepted: 21 August 2019   Published: 24 February 2020

Abstract

Ovary fragments from six sexually mature cats were vitrified in the presence or absence of betaine or ascorbic acid, loaded (7.4 or 74 µM betaine; 20 or 200 µM ascorbic acid) or not (1 mM betaine or 0.3 mM ascorbic acid) into CaCO3 microparticles, and assessed for follicular morphology, oxidative stress and mitochondrial activity Feline ovarian tissue was successfully preserved after vitrification in the presence of 74 µM betaine loaded in CaCO3 microparticles, as confirmed by morphological analysis and the density of preantral follicles and stromal cells, as well as by the increased mitochondrial activity and decreased production of reactive oxygen species.

Additional keywords: ascorbic acid, cat, microencapsulation, osmoregulator, ovary.


References

Asadi-Azarbaijani, B., Santos, R. R., Jahnukainen, K., Braber, S., van Duursen, M. B. M., Toppari, J., Saugstad, O. D., Nurmio, M., and Oskam, I. C. (2017). Developmental effects of imatinib mesylate on follicle assembly and early activation of primordial follicle pool in postnatal rat ovary. Reprod. Biol. 17, 25–33.
Developmental effects of imatinib mesylate on follicle assembly and early activation of primordial follicle pool in postnatal rat ovary.Crossref | GoogleScholarGoogle Scholar | 28040471PubMed |

Brito, D. C., Domingues, S. F., Silva, J. K., Wu, X., Santos, R. R., and Pieczarka, J. C. (2016). Detrimental effect of phenol red on the vitrification of cat (Felis catus) ovarian tissue. Biopreserv. Biobank. 14, 17–22.
Detrimental effect of phenol red on the vitrification of cat (Felis catus) ovarian tissue.Crossref | GoogleScholarGoogle Scholar | 26828827PubMed |

Brito, D. C. C., Domingues, S. F. S., Rodrigues, A. P. R., Figueiredo, J. R., Santos, R. R., and Pieczarka, J. C. (2018a). Vitrification of domestic cat (Felis catus) ovarian tissue effects of three different sugars. Cryobiology 83, 97–99.
Vitrification of domestic cat (Felis catus) ovarian tissue effects of three different sugars.Crossref | GoogleScholarGoogle Scholar |

Brito, D. C. C., Domingues, S. F. S., Rodrigues, A. P. R., Maside, C., Lunardi, F. O., Wu, X., Figueiredo, J. R., Pieczarka, J. C., and Santos, R. R. (2018b). Cryopreservation of domestic cat (Felis catus) ovarian tissue comparison of two vitrification methods. Theriogenology 111, 69–77.
Cryopreservation of domestic cat (Felis catus) ovarian tissue comparison of two vitrification methods.Crossref | GoogleScholarGoogle Scholar |

Carr, A., and Frei, B. (1999). Does vitamin C act as a pro-oxidant under physiological conditions? FASEB J. 13, 1007–1024.
Does vitamin C act as a pro-oxidant under physiological conditions?Crossref | GoogleScholarGoogle Scholar | 10336883PubMed |

Carvalho, A. A., Faustino, L. R., Silva, C. M., Castro, S. V., Lpes, C. A., Santos, R. R., Bao, S. N., Figueiredo, J. R., and Rodrigues, A. P. (2013). Novel wide-capacity method for vitrification of caprine ovaries: ovarian tissue cryosystem (OTC). Anim. Reprod. Sci. 138, 220–227.
Novel wide-capacity method for vitrification of caprine ovaries: ovarian tissue cryosystem (OTC).Crossref | GoogleScholarGoogle Scholar | 23522695PubMed |

Demant, M., Trapphoff, T., Frohlich, T., Arnold, G. J., and Eichenlaub-Ritter, U. (2012). Vitrificaiton at the pre-antral stage transiently alters inner mitochondrial membran potential but proteome of in vitro grown and matured mouse oocytes appears unafected. Hum. Reprod. 27, 1096–1111.
Vitrificaiton at the pre-antral stage transiently alters inner mitochondrial membran potential but proteome of in vitro grown and matured mouse oocytes appears unafected.Crossref | GoogleScholarGoogle Scholar | 22258663PubMed |

Donfack, N. J., Alves, K. A., Alves, B. G., Rocha, R. M. P., Bruno, J. B., Bertolini, M., Santos, R. R., Domingues, S. F. S., Figueiredo, J. R., Smitz, J., and Rodrigues, A. P. R. (2018). Stroma cell-derived factor 1 and connexins (37 and 43) are preserved after vitrification and in vitro culture of goat ovarian cortex. Theriogenology 116, 83–88.
Stroma cell-derived factor 1 and connexins (37 and 43) are preserved after vitrification and in vitro culture of goat ovarian cortex.Crossref | GoogleScholarGoogle Scholar | 29783047PubMed |

Du, C., Shi, J., Shi, J., Zhang, L., and Cao, S. (2013). PUA/PSS multilayer coated CaCO3 microparticles as smart drug delivery vehicles. Mater. Sci. Eng. C 33, 3745–3752.
PUA/PSS multilayer coated CaCO3 microparticles as smart drug delivery vehicles.Crossref | GoogleScholarGoogle Scholar |

Figueiredo, J. R., Rodrigues, A. P., Silva, J. R., and Santos, R. R. (2011). Cryopreservation and in vitro culture of caprine preantral follicles. Reprod. Fertil. Dev. 23, 40–47.
Cryopreservation and in vitro culture of caprine preantral follicles.Crossref | GoogleScholarGoogle Scholar | 21366979PubMed |

Frazão, N. F., Albuquerque, E. L., Fulco, U. L., Azevedo, D. L., Mendonça, G. L. F., Lima-Neto, P., Caetano, E. W. S., Santana, J. V., and Freire, V. N. (2012). Four-level levodopa adsorption on C60 fullerene for transdermal and oral administration: a computational study. RSC Advances 2, 8306–8322.
Four-level levodopa adsorption on C60 fullerene for transdermal and oral administration: a computational study.Crossref | GoogleScholarGoogle Scholar |

Ganesan, B., Anandan, R., and Lakshmanan, P. T. (2011). Studies on the protective effects of betaine against oxidative damage during experimentally induced restraint stress in Wistar albino rats. Cell Stress Chaperones 16, 641–652.
Studies on the protective effects of betaine against oxidative damage during experimentally induced restraint stress in Wistar albino rats.Crossref | GoogleScholarGoogle Scholar | 21717086PubMed |

Halliwell, B. (2014). Cell culture, oxidative stress, and antioxidants: avoiding pitfalls. Biomed. J. 37, 99–105.
Cell culture, oxidative stress, and antioxidants: avoiding pitfalls.Crossref | GoogleScholarGoogle Scholar | 24923566PubMed |

Ivanova, I. P., Trofimova, S. V., and Piskarev, I. M. (2013). Evaluation of prooxidant properties of ascorbic acid. Biophysics 58, 453–456.
Evaluation of prooxidant properties of ascorbic acid.Crossref | GoogleScholarGoogle Scholar |

Karlsson, M., Kurz, T., Brunk, U. T., Nilsson, S. E., and Frennesson, C. I. (2010). What does the commonly used DCF test for oxidative stress really show? Biochem. J. 428, 183–190.
What does the commonly used DCF test for oxidative stress really show?Crossref | GoogleScholarGoogle Scholar | 20331437PubMed |

Knapp, S., Ladenstein, R., and Galinski, E. A. (1999). Extrinsic protein stabilization by the naturally occurring osmolytes beta-hydroxyectoine and betaine. Extremophiles 3, 191–198.
Extrinsic protein stabilization by the naturally occurring osmolytes beta-hydroxyectoine and betaine.Crossref | GoogleScholarGoogle Scholar | 10484175PubMed |

Lee, I. (2015). Betaine is a positive regulator of mitochondrial respiration. Biochem. Biophys. Res. Commun. 456, 621–625.
Betaine is a positive regulator of mitochondrial respiration.Crossref | GoogleScholarGoogle Scholar | 25498545PubMed |

Levine, M., Conry-Cantilena, C., Wang, Y., Welch, R. W., Washko, P. W., Dhariwal, K. R., Park, J. B., Lazarev, A., Graumlich, J. F., King, J., and Cantilena, L. R. (1996). Vitamin C pharmacokinetics in healthy volunteers: evidence for a recommended dietary allowance. Proc. Natl Acad. Sci. USA 93, 3704–3709.
Vitamin C pharmacokinetics in healthy volunteers: evidence for a recommended dietary allowance.Crossref | GoogleScholarGoogle Scholar | 8623000PubMed |

Lima, A. K., Silva, A. R., Santos, R. R., Sales, D. M., Evangelista, A. F., Figueiredo, J. R., and Silva, L. D. (2006). Cryopreservation of preantral ovarian follicles in situ from domestic cats (Felis catus) using different cryoprotective agents. Theriogenology 66, 1664–1666.
Cryopreservation of preantral ovarian follicles in situ from domestic cats (Felis catus) using different cryoprotective agents.Crossref | GoogleScholarGoogle Scholar | 16530815PubMed |

Luvoni, G. C. (2006). Gamete cryopreservation in the domestic cat. Theriogenology 66, 101–111.
Gamete cryopreservation in the domestic cat.Crossref | GoogleScholarGoogle Scholar | 16620937PubMed |

Luvoni, G. C., Tessaro, I., Apparicio, M., Ruggeri, E., Luciano, A. M., and Modina, S. C. (2012). Effect of vitrification of feline ovarian cortex on follicular and oocyte quality and competence. Reprod. Domest. Anim. 47, 385–391.
Effect of vitrification of feline ovarian cortex on follicular and oocyte quality and competence.Crossref | GoogleScholarGoogle Scholar | 21950518PubMed |

Martins, J. L. A., Lopes, M. D., de Souza, F. F., Possebon, F. S., Wibbelt, G., and Jewgenow, K. (2018). Cat preantral follicle survival after prolonged cooled storage followed by vitrification. Cryobiology 81, 94–100.
Cat preantral follicle survival after prolonged cooled storage followed by vitrification.Crossref | GoogleScholarGoogle Scholar |

Melo, M. A., Oscam, I. C., Celestino, J. J., Carvalho, A. A., Castro, S. V., Figueiredo, J. R., Rodrigues, A. P., and Santos, R. R. (2011). Adding ascorbic acid to vitrification and IVC medium influences preantral follicle morphology, but not viability. Reprod. Domest. Anim. 46, 742–745.
Adding ascorbic acid to vitrification and IVC medium influences preantral follicle morphology, but not viability.Crossref | GoogleScholarGoogle Scholar | 21736637PubMed |

Mouttham, L., and Comizzoli, P. (2016). The preservation of vital functions in cat ovarian tissue during vitrification depends more on the temperature of the cryoprotectant exposure than on the sucrose supplementation. Cryobiology 73, 187–195.
The preservation of vital functions in cat ovarian tissue during vitrification depends more on the temperature of the cryoprotectant exposure than on the sucrose supplementation.Crossref | GoogleScholarGoogle Scholar | 27475292PubMed |

Mouttham, L., and Comizzoli, P. (2017). Presence of sucrose in the vitrification solution and exposure for longer periods of time improve post-warming follicle integrity in cat ovarian tissues. Reprod. Domest. Anim. 52, 224–229.
Presence of sucrose in the vitrification solution and exposure for longer periods of time improve post-warming follicle integrity in cat ovarian tissues.Crossref | GoogleScholarGoogle Scholar | 27757998PubMed |

Nakanishi, T., Turner, R. J., and Burg, M. B. (1990). Osmoregulation of betaine transport in mammalian renal medullary cells. Am. J. Physiol. 258, F1061–1067.
| 2330972PubMed |

Ryu, J. S., Kim, T. K., Chung, J. Y., and Lee, G. M. (2000). Osmoprotective effect of glycine betaine on foreign protein production in hyperosmotic recombinant Chinese hamster ovary cell cultures differs among cell lines. Biotechnol. Bioeng. 70, 167–175.
Osmoprotective effect of glycine betaine on foreign protein production in hyperosmotic recombinant Chinese hamster ovary cell cultures differs among cell lines.Crossref | GoogleScholarGoogle Scholar | 10972928PubMed |

Santos, R. R., van Haeften, T., Roelen, B. A., Knijn, H. M., Colenbrander, B., Gadella, B. M., and van den Hurk, R. (2008). Osmotic tolerance and freezability of isolated caprine early-staged follicles. Cell Tissue Res. 333, 323–331.
Osmotic tolerance and freezability of isolated caprine early-staged follicles.Crossref | GoogleScholarGoogle Scholar | 18548282PubMed |

Santos, R. R., Amorim, C., Cecconi, S., Fassbender, M., Imhof, M., Lornage, J., Paris, M., Schoenfeldt, V., and Martinez-Madrid, B. (2010). Cryopreservation of ovarian tissue: an emerging technology for female germline preservation of endangered species and breeds. Anim. Reprod. Sci. 122, 151–163.
Cryopreservation of ovarian tissue: an emerging technology for female germline preservation of endangered species and breeds.Crossref | GoogleScholarGoogle Scholar | 20832203PubMed |

Slow, S., Lever, M., Chambers, S. T., and George, P. M. (2009). Plasma dependent and independent accumulation of betaine in male and female rat tissues. Physiol. Res. 58, 403–410.
| 18637704PubMed |

Sokolov, E. P., and Sokolova, I. M. (2019). Compatible osmolytes modulate mitochondrial function in a marine osmoconformer Crassostrea gigas (Thunberg, 1793). Mitochondrion 45, 29–37.
Compatible osmolytes modulate mitochondrial function in a marine osmoconformer Crassostrea gigas (Thunberg, 1793).Crossref | GoogleScholarGoogle Scholar | 29458112PubMed |

Trushina, D. B., Bukreeva, T. V., Kovalchuk, M. V., and Antipina, M. N. (2014). CaCO3 vaterite microparticles for biomedical and personal care applications. Mater. Sci. Eng. C 45, 644–658.
CaCO3 vaterite microparticles for biomedical and personal care applications.Crossref | GoogleScholarGoogle Scholar |

Uhrich, K. E., Cannizzaro, S. M., Langer, R. S., and Shakesheff, K. M. (1999). Polymeric systems for controlled drug release. Chem. Rev. 99, 3181–3198.
Polymeric systems for controlled drug release.Crossref | GoogleScholarGoogle Scholar | 11749514PubMed |

Zhao, X. M., Fu, X. W., Hou, Y. P., Yan, C. L., Suo, L., Wang, Y. P., Zhu, H. B., Dinnyes, A., and Zhu, S. E. (2009). Effect of vitrification on mitochondrial distribution and membrane potential in mouse two pronuclear (2-PN) embryos. Mol. Reprod. Dev. 76, 1056–1063.
Effect of vitrification on mitochondrial distribution and membrane potential in mouse two pronuclear (2-PN) embryos.Crossref | GoogleScholarGoogle Scholar | 19551710PubMed |