Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Apoptosis signal-regulating kinase (ASK-1) controls ovarian cell functions

Alexander V. Sirotkin A B E , Andrej Benčo A , Jan Kotwica C , Saleh H. Alwasel D and Abdel H. Harrath D
+ Author Affiliations
- Author Affiliations

A Constantine the Philosopher University, 949 74 Nitra, Slovakia.

B Research Institute of Animal Production, National Agricultural and Food Centre, 951 41 Lužianky, Slovakia.

C Institute of Animal Reproduction and Food Research, 10-718 Olsztyn-Kortowo, Poland.

D Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.

E Corresponding author. Email: asirotkin@ukf.sk

Reproduction, Fertility and Development 31(11) 1657-1664 https://doi.org/10.1071/RD19055
Submitted: 11 February 2019  Accepted: 29 May 2019   Published: 20 June 2019

Abstract

The involvement of the apoptosis signal-regulating kinase 1 (ASK1)-related signalling pathway in the control of reproduction is unknown. This study aimed to investigate the role of ASK-1 in the control of basic ovarian functions (proliferation, apoptosis and hormone release) and its response to ovarian hormonal regulators (leptin and FSH). We compared the accumulation of ASK-1, proliferation marker proliferating cell nuclear antigen (PCNA), apoptosis marker Bax and apoptosis and proliferation regulating transcription factor p53 and the release of progesterone (P4), oxytocin (OT), insulin-like growth factor I (IGF-I) and prostaglandins F (PGF) and E (PGE) using cultured porcine ovarian granulosa cells transfected with ASK-1 cDNA and cultured with leptin or FSH. This study is the first to demonstrate that ASK-1 does not affect cell apoptosis and viability in ovarian cells, but promotes cell proliferation, suppresses p53, alters the release of ovarian hormones (P4, OT, IGF-I, PGF and PGE) and defines their response to the upstream hormonal regulators leptin and FSH. Therefore, ASK-1 can be considered a new and important regulator of multiple ovarian functions.

Additional keywords: hormones, ovarian granulosa cells, pig, proliferation, transfection.


References

Braithwaite, A. W., Del Sal, G., and Lu, X. (2006). Some p53-binding proteins that can function as arbiters of life and death. Cell Death Differ. 13, 984–993.
Some p53-binding proteins that can function as arbiters of life and death.Crossref | GoogleScholarGoogle Scholar | 16575404PubMed |

Chen, Z., Seimiya, H., Naito, M., Mashima, T., Kizaki, A., Dan, S., Imaizumi, M., Ichijo, H., Miyazono, K., and Tsuruo, T. (1999). ASK1 mediates apoptotic cell death induced by genotoxic stress. Oncogene 18, 173–180.
ASK1 mediates apoptotic cell death induced by genotoxic stress.Crossref | GoogleScholarGoogle Scholar | 9926932PubMed |

Chowdhury, I., Tharakan, B., and Bhat, G. K. (2006). Current concepts in apoptosis: the physiological suicide program revisited. Cell. Mol. Biol. Lett. 11, 506–525.
Current concepts in apoptosis: the physiological suicide program revisited.Crossref | GoogleScholarGoogle Scholar | 16977376PubMed |

Duffy, M. J., Synnott, N. C., and Crown, J. (2017). Mutant p53 as a target for cancer treatment. Eur. J. Cancer 83, 258–265.
Mutant p53 as a target for cancer treatment.Crossref | GoogleScholarGoogle Scholar | 28756138PubMed |

Dupont, J., Scaramuzzi, R. J., and Reverchon, M. (2014). The effect of nutrition and metabolic status on the development of follicles, oocytes and embryos in ruminants. Animal 8, 1031–1044.
The effect of nutrition and metabolic status on the development of follicles, oocytes and embryos in ruminants.Crossref | GoogleScholarGoogle Scholar | 24774511PubMed |

Duras, M., Mlynarczuk, J., and Kotwica, J. (2005). Non-genomic effect of steroids on oxytocin-stimulated intracellular mobilization of calcium and on prostaglandin F2α and E2 secretion from bovine endometrial cells. Prostaglandins Other Lipid Mediat. 76, 105–116.
Non-genomic effect of steroids on oxytocin-stimulated intracellular mobilization of calcium and on prostaglandin F2α and E2 secretion from bovine endometrial cells.Crossref | GoogleScholarGoogle Scholar | 15967166PubMed |

Harrath, A. H., Østrup, O., Rafay, J., Koničková Florkovičová, I., Laurincik, J., and Sirotkin, A. V. (2017). Metabolic state defines the response of rabbit ovarian cells to leptin. Reprod. Biol. 17, 19–24.
Metabolic state defines the response of rabbit ovarian cells to leptin.Crossref | GoogleScholarGoogle Scholar | 27894742PubMed |

Hattori, K., Naguro, I., Runchel, C., and Ichijo, H. (2009). The roles of ASK family proteins in stress responses and diseases. Cell Commun. Signal. 7, 9.
The roles of ASK family proteins in stress responses and diseases.Crossref | GoogleScholarGoogle Scholar | 19389260PubMed |

Hayakawa, R., Hayakawa, T., Takeda, K., and Ichijo, H. (2012). Therapeutic targets in the ASK1-dependent stress signaling pathways. Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci. 88, 434–453.
Therapeutic targets in the ASK1-dependent stress signaling pathways.Crossref | GoogleScholarGoogle Scholar | 23060232PubMed |

Kotwica, J., and Skarzynski, D. (1993). Influence of oxytocin removal from corpus luteum on secretory function and duration of estrous cycle in cattle. J. Reprod. Fertil. 97, 411–417.
Influence of oxytocin removal from corpus luteum on secretory function and duration of estrous cycle in cattle.Crossref | GoogleScholarGoogle Scholar | 8501712PubMed |

Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.
Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Crossref | GoogleScholarGoogle Scholar | 5432063PubMed |

Liu, T., Zhou, H. J., and Min, W. (2017). ASK family in cardiovascular biology and medicine. Adv. Biol. Regul. 66, 54–62.
ASK family in cardiovascular biology and medicine.Crossref | GoogleScholarGoogle Scholar | 29107568PubMed |

Mollereau, B., and Ma, D. (2014). The p53 control of apoptosis and proliferation: lessons from Drosophila. Apoptosis 19, 1421–1429.
The p53 control of apoptosis and proliferation: lessons from Drosophila.Crossref | GoogleScholarGoogle Scholar | 25217223PubMed |

Osborn, M., and Isenberg, S. 1994 Immunocytochemistry of frozen and paraffin tissue sections. In ‘Cell Biology. A Laboratory Handbook. Vol. 2’. (Ed. J. E. Celis.) pp. 361–367. (Academic Press: New York.)

Peña-Blanco, A., and García-Sáez, A. J. (2018). Bax, Bak and beyond – mitochondrial performance in apoptosis. FEBS J. 285, 416–431.
Bax, Bak and beyond – mitochondrial performance in apoptosis.Crossref | GoogleScholarGoogle Scholar | 28755482PubMed |

Pérez-Pérez, A., Sánchez-Jiménez, F., Maymó, J., Dueñas, J. L., Varone, C., and Sánchez-Margalet, V. (2015). Role of leptin in female reproduction. Clin. Chem. Lab. Med. 53, 15–28.
Role of leptin in female reproduction.Crossref | GoogleScholarGoogle Scholar | 25014521PubMed |

Royuela, M., Rodríguez-Berriguete, G., Fraile, B., and Paniagua, R. (2008). TNF-α/IL-1/NF-κB transduction pathway in human cancer prostate. Histol. Histopathol. 23, 1279–1290.
TNF-α/IL-1/NF-κB transduction pathway in human cancer prostate.Crossref | GoogleScholarGoogle Scholar | 18712680PubMed |

Shiomi, Y., and Nishitani, H. (2017). Control of genome integrity by RFC complexes; conductors of PCNA loading onto and unloading from chromatin during DNA replication. Genes (Basel) 8, 52.
Control of genome integrity by RFC complexes; conductors of PCNA loading onto and unloading from chromatin during DNA replication.Crossref | GoogleScholarGoogle Scholar |

Sirotkin, A. V. (2010). Transcription factors and ovarian functions. J. Cell. Physiol. 225, 20–26.
Transcription factors and ovarian functions.Crossref | GoogleScholarGoogle Scholar | 20506392PubMed |

Sirotkin, A. V. (2014). ‘Regulators of Ovarian Functions’. (Nova Publishers Inc.: New York.)

Sirotkin, A. V., and Grossmann, R. (2007). Leptin directly controls proliferation, apoptosis and secretory activity of cultured chicken ovarian cells. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 148, 422–429.
Leptin directly controls proliferation, apoptosis and secretory activity of cultured chicken ovarian cells.Crossref | GoogleScholarGoogle Scholar | 17604668PubMed |

Sirotkin, A. V., and Meszarosová, M. (2010). Comparison of effects of leptin and ghrelin on porcine ovarian granulosa cells. Domest. Anim. Endocrinol. 39, 1–9.
Comparison of effects of leptin and ghrelin on porcine ovarian granulosa cells.Crossref | GoogleScholarGoogle Scholar | 20452167PubMed |

Sirotkin, A. V., Makarevich, A. V., Kwon, H. B., Kotwica, J., Bulla, J., and Hetényi, L. (2001). Do GH, IGF-I and oxytocin interact by regulating the secretory activity of porcine ovarian cells? J. Endocrinol. 171, 475–480.
Do GH, IGF-I and oxytocin interact by regulating the secretory activity of porcine ovarian cells?Crossref | GoogleScholarGoogle Scholar | 11739013PubMed |

Sirotkin, A. V., Benco, A., Tandlmajerova, A., Vasícek, D., Kotwica, J., Darlak, K., and Valenzuela, F. (2008). Transcription factor p53 can regulate proliferation, apoptosis and secretory activity of luteinizing porcine ovarian granulosa cell cultured with and without ghrelin and FSH. Reproduction 136, 611–618.
Transcription factor p53 can regulate proliferation, apoptosis and secretory activity of luteinizing porcine ovarian granulosa cell cultured with and without ghrelin and FSH.Crossref | GoogleScholarGoogle Scholar | 18703674PubMed |

Sirotkin, A. V., Rafay, J., and Kotwica, J. (2009). Leptin controls rabbit ovarian function in vivo and in vitro: possible interrelationships with ghrelin. Theriogenology 72, 765–772.
Leptin controls rabbit ovarian function in vivo and in vitro: possible interrelationships with ghrelin.Crossref | GoogleScholarGoogle Scholar | 19616295PubMed |

Sirotkin, A. V., Benčo, A., Tandlmajerová, A., and Vašíček, D. (2012). Involvement of transcription factor p53 and leptin in control of porcine ovarian granulosa cell functions. Cell Prolif. 45, 9–14.
Involvement of transcription factor p53 and leptin in control of porcine ovarian granulosa cell functions.Crossref | GoogleScholarGoogle Scholar | 22151798PubMed |

Sirotkin, A. V., Dekanová, P., Harrath, A. H., Alwasel, S. H., and Vašíček, D. (2014). Interrelationships between sirtuin 1 and transcription factors p53 and NF-κB (p50/p65) in the control of ovarian cell apoptosis and proliferation. Cell Tissue Res. 358, 627–632.
Interrelationships between sirtuin 1 and transcription factors p53 and NF-κB (p50/p65) in the control of ovarian cell apoptosis and proliferation.Crossref | GoogleScholarGoogle Scholar | 25027053PubMed |

Sirotkin, A. V., Makarevich, A. V., Kubovicova, E., Laurincik, J., Alwasel, S., and Harrath, A. H. (2018). Cow body condition affects the hormonal release of ovarian cells and their responses to gonadotropic and metabolic hormones. Theriogenology 110, 142–147.
Cow body condition affects the hormonal release of ovarian cells and their responses to gonadotropic and metabolic hormones.Crossref | GoogleScholarGoogle Scholar | 29396042PubMed |

Skarzynski, D. J., Bogacki, M., and Kotwica, J. (1999). Involvement of ovarian steroids in basal and oxytocin-stimulated prostaglandin (PG)F2 secretion from bovine endometrium in vitro. Theriogenology 52, 385–397.
Involvement of ovarian steroids in basal and oxytocin-stimulated prostaglandin (PG)F2 secretion from bovine endometrium in vitro.Crossref | GoogleScholarGoogle Scholar | 10734374PubMed |