Altered embryotrophic capacities of the bovine oviduct under elevated free fatty acid conditions: an in vitro embryo–oviduct co-culture model
L. Jordaens A , V. van Hoeck A , I. Pintelon B , S. Thys B , P. E. J. Bols A , W. F. A. Marei A C and J. L. M. R. Leroy A DA Laboratory for Veterinary Physiology and Biochemistry, Gamete Research Centre, University of Antwerp, Universiteitsplein 1 (U-building), B-2610 Wilrijk, Belgium.
B Laboratory for Cell Biology and Histology, Antwerp Centre for Advanced Microscopy, University of Antwerp, Universiteitsplein 1 (T-building), B-2610 Wilrijk, Belgium.
C Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, 11222 Giza, Egypt.
D Corresponding author. Email: jo.leroy@uantwerpen.be
Reproduction, Fertility and Development 32(6) 553-563 https://doi.org/10.1071/RD19019
Submitted: 11 January 2019 Accepted: 1 October 2019 Published: 10 February 2020
Abstract
Maternal metabolic stress conditions are of growing importance in both human and dairy cattle settings as they can have significant repercussions on fertility. Upregulated lipolysis is a common trait associated with metabolic disorders and results in systemically elevated concentrations of non-esterified fatty acids (NEFAs). The effects of high NEFA concentrations on the follicular environment, oocyte and embryo development is well documented. However, knowledge on the effects of NEFAs within the oviduct, representing the initial embryonic growth environment, is currently lacking. Therefore, the experiments outlined here were designed to obtain fundamental insights into both the direct and indirect interactions between NEFAs, bovine oviductal cells and developing zygotes. Hence, zygotes were co-cultured with NEFA-pre-exposed bovine oviductal cells or subjected to simultaneous NEFA exposure during the co-culture period. The outcome parameters assessed were embryo development with cleavage (48 h post insemination (pi)), morula (120–126 h pi) and blastocyst (192 h pi) rates, as well as morula intracellular lipid content and blastocyst quality using Bodipy and differential staining respectively. Our data suggest a direct embryotoxicity of NEFAs as well as impaired embryo development through a reduced oviductal ability to support and protect early embryo development.
Additional keywords: cell culture, developmental biology, embryo micro-environment, Fallopian tube, maternal metabolic health, reduced fertility.
References
Aardema, H., Vos, P. L. A. M., Lolicato, F., Roelen, B. A., Knijn, H. M., Vaandrager, A. B., Helms, J. B., and Gadella, B. M. (2011). Oleic acid prevents detrimental effects of saturated fatty acids on bovine oocyte developmental competence. Biol. Reprod. 85, 62–69.| Oleic acid prevents detrimental effects of saturated fatty acids on bovine oocyte developmental competence.Crossref | GoogleScholarGoogle Scholar | 21311036PubMed |
Bavister, B. D. (1988). Role of oviductal secretions in embryonic growth in vivo or in vitro. Theriogenology 29, 143–154.
| Role of oviductal secretions in embryonic growth in vivo or in vitro.Crossref | GoogleScholarGoogle Scholar |
Britt, J. H. (1992). Influence of nutrition and weight loss on reproduction and early embryonic death in cattle. Proceedings of the XVII World Buiatrics Congress 42, 143–149.
Carvalho, P. D., Souza, A. H., Amundson, M. C., Hackbart, K. S., Fuenzalida, M. J., Herlihy, M. M., Ayres, H., Dresch, A. R., Vieira, L. M., Guenther, J. N., Grummer, R. R., Fricke, P. M., Shaver, R. D., and Wiltbank, M. C. (2014). Relationships between fertility and postpartum changes in body condition and body weight in lactating dairy cows. J. Dairy Sci. 97, 3666–3683.
| Relationships between fertility and postpartum changes in body condition and body weight in lactating dairy cows.Crossref | GoogleScholarGoogle Scholar | 24731646PubMed |
Chen, S., Einspanier, R., and Schoen, J. (2015). Transepithelial electrical resistance (TEER): a functional parameter to monitor the quality of oviduct epithelial cells cultured on filter supports. Histochem. Cell Biol. 144, 509–515.
| Transepithelial electrical resistance (TEER): a functional parameter to monitor the quality of oviduct epithelial cells cultured on filter supports.Crossref | GoogleScholarGoogle Scholar | 26223877PubMed |
Chen, S., Palma-Vera, S. E., Langhammer, M., Galuska, S. P., Braun, B. C., Krause, E., Lucas-Hahn, A., and Schoen, J. (2017). An air–liquid interphase approach for modeling the early embryo–maternal contact zone. Sci. Rep. 7, 42298.
| An air–liquid interphase approach for modeling the early embryo–maternal contact zone.Crossref | GoogleScholarGoogle Scholar | 28181558PubMed |
Cnop, M., Hannaert, J. C., Hoorens, A., Eizirik, D. L., and Pipeleers, D. G. (2001). Inverse relationship between cytotoxicity of free fatty acids in pancreatic islet cells and cellular triglyceride accumulation. Diabetes 50, 1771–1777.
| Inverse relationship between cytotoxicity of free fatty acids in pancreatic islet cells and cellular triglyceride accumulation.Crossref | GoogleScholarGoogle Scholar | 11473037PubMed |
Cordova, A., Perreau, C., Uzbekova, S., Ponsart, C., Locatelli, Y., and Mermillod, P. (2014). Development rate and gene expression of IVP bovine embryos cocultured with bovine oviduct epithelial cells at early or late stage of preimplantation development. Theriogenology 81, 1163–1173.
| Development rate and gene expression of IVP bovine embryos cocultured with bovine oviduct epithelial cells at early or late stage of preimplantation development.Crossref | GoogleScholarGoogle Scholar | 24629595PubMed |
Desmet, K. L. J., Van Hoeck, V., Gagné, D., Fournier, E., Thakur, A., O’Doherty, A. M., Walsh, C. P., Sirard, M. A., Bols, P. E. J., and Leroy, J. L. M. R. (2016). Exposure of bovine oocytes and embryos to elevated non-esterified fatty acid concentrations: integration of epigenetic and transcriptomic signatures in resultant blastocysts. BMC Genomics 17, 1004.
| Exposure of bovine oocytes and embryos to elevated non-esterified fatty acid concentrations: integration of epigenetic and transcriptomic signatures in resultant blastocysts.Crossref | GoogleScholarGoogle Scholar |
Duncan, R. E., Ahmadian, M., Jaworski, K., Sarkadi-Nagy, E., and Sook Sul, H. (2007). Regulation of lipolysis in adipocytes. Annu. Rev. Nutr. 27, 79–101.
| Regulation of lipolysis in adipocytes.Crossref | GoogleScholarGoogle Scholar | 17313320PubMed |
Edwards, L. J., Batt, P. A., Gandolfi, F., and Gardner, D. K. (1997). Modifications made to culture medium by bovine oviduct epithelial cells: changes to carbohydrates stimulate embryo development. Mol. Reprod. Dev. 46, 146–154.
| Modifications made to culture medium by bovine oviduct epithelial cells: changes to carbohydrates stimulate embryo development.Crossref | GoogleScholarGoogle Scholar | 9021746PubMed |
Eyestone, W. H., and First, N. L. (1989). Co-culture of early cattle embryos to the blastocyst stage with oviductal tissue or in conditioned medium. J. Reprod. Fertil. 85, 715–720.
| Co-culture of early cattle embryos to the blastocyst stage with oviductal tissue or in conditioned medium.Crossref | GoogleScholarGoogle Scholar | 2704004PubMed |
Ferguson, E. M., and Leese, H. J. (1999). Triglyceride content of bovine oocytes and early embryos. Reproduction 116, 373–378.
| Triglyceride content of bovine oocytes and early embryos.Crossref | GoogleScholarGoogle Scholar |
Fotheringham, S., Levanon, K., and Drapkin, R. (2011). Ex vivo culture of human primary fallopian tube epithelial cells. J. Vis. Exp. 51, e2728.
| Ex vivo culture of human primary fallopian tube epithelial cells.Crossref | GoogleScholarGoogle Scholar |
Gualtieri, R., Mollo, V., Braun, S., Barbato, V., Fiorentino, I., and Talevi, R. (2012). Long-term viability and differentiation of bovine oviductal monolayers: bidimensional versus three-dimensional culture. Theriogenology 78, 1456–1464.
| Long-term viability and differentiation of bovine oviductal monolayers: bidimensional versus three-dimensional culture.Crossref | GoogleScholarGoogle Scholar | 22925649PubMed |
Harvey, M. B., Arcellana-Panlilio, M. Y., Zhang, X., Schultz, G. A., and Watson, A. J. (1995). Expression of genes encoding antioxidant enzymes in preimplantation mouse and cow embryos and primary bovine oviduct cultures employed for embryo co-culture. Biol. Reprod. 53, 532–540.
| Expression of genes encoding antioxidant enzymes in preimplantation mouse and cow embryos and primary bovine oviduct cultures employed for embryo co-culture.Crossref | GoogleScholarGoogle Scholar | 7578676PubMed |
Jordaens, L. (2018) Maternal metabolic health and female fertility: upregulated lipolysis and the consequences for in vitro bovine oviduct physiology and function. DVM Thesis, University of Antwerp, Wilrijk.
Jordaens, L., Arias-Alvarez, M., Pintelon, I., Thys, S., Valckx, S., Dezhkam, Y., Bols, P. E. J., and Leroy, J. L. M. R. (2015). Elevated non-esterified fatty acid concentrations hamper bovine oviductal epithelial cell physiology in three different in vitro culture systems. Theriogenology 84, 899–910.
| Elevated non-esterified fatty acid concentrations hamper bovine oviductal epithelial cell physiology in three different in vitro culture systems.Crossref | GoogleScholarGoogle Scholar | 26119475PubMed |
Jordaens, L., Van Hoeck, V., Maillo, V., Gutierrez-Adan, A., Marei, W. F. A., Vlaeminck, B., Thys, S., Sturmey, R. G., Bols, P. E. J., and Leroy, J. L. M. R. (2017a). Maternal metabolic stress may affect oviduct gatekeeper function. Reproduction 153, 759–773.
| Maternal metabolic stress may affect oviduct gatekeeper function.Crossref | GoogleScholarGoogle Scholar | 28258156PubMed |
Jordaens, L., Van Hoeck, V., De Bie, J., Berth, M., Marei, W. F. A., Desmet, K. L. J., Bols, P. E. J., and Leroy, J. L. M. R. (2017b). Non-esterified fatty acids in early luteal bovine oviduct fluid mirror plasma concentrations: an ex vivo approach. Reprod. Biol. 17, 281–284.
| Non-esterified fatty acids in early luteal bovine oviduct fluid mirror plasma concentrations: an ex vivo approach.Crossref | GoogleScholarGoogle Scholar | 28551031PubMed |
Jorritsma, R., César, M. L., Hermans, J. T., Kruitwagen, C. L. J. J., Vos, P. L. A. M., and Kruip, T. A. M. (2004). Effects of non-esterified fatty acids on bovine granulosa cells and developmental potential of oocytes in vitro. Anim. Reprod. Sci. 81, 225–235.
| Effects of non-esterified fatty acids on bovine granulosa cells and developmental potential of oocytes in vitro.Crossref | GoogleScholarGoogle Scholar | 14998649PubMed |
Jungheim, E. S., Louden, E. D., Chi, M. M. Y., Frolova, A. I., Riley, J. K., and Moley, K. H. (2011). Preimplantation exposure of mouse embryos to palmitic acids results in fetal growth restriction followed by catch-up growth in the offspring. Biol. Reprod. 85, 678–683.
| Preimplantation exposure of mouse embryos to palmitic acids results in fetal growth restriction followed by catch-up growth in the offspring.Crossref | GoogleScholarGoogle Scholar | 21653893PubMed |
Lash, M. M., and Armstrong, A. (2009). Impact of obesity on women’s health. Fertil. Steril. 91, 1712–1716.
| Impact of obesity on women’s health.Crossref | GoogleScholarGoogle Scholar | 18410940PubMed |
Leese, H. J., Baumann, C. G., Brison, D. R., McEvou, T. G., and Sturmey, R. G. (2008). Metabolism of the viable mammalian embryo: quietness revisited. Molecular Human Reproduction 14, 667–672.
| Metabolism of the viable mammalian embryo: quietness revisited.Crossref | GoogleScholarGoogle Scholar | 19019836PubMed |
Leroy, J. L. M. R., Vanholder, T., Mateusen, B., Christophe, A., Opsomer, G., de Kruif, A., Genicot, G., and Van Soom, A. (2005). Non-esterified fatty acids in follicular fluid of dairy cows and their effect on developmental capacity of bovine oocytes in vitro. Reproduction 130, 485–495.
| Non-esterified fatty acids in follicular fluid of dairy cows and their effect on developmental capacity of bovine oocytes in vitro.Crossref | GoogleScholarGoogle Scholar |
Leroy, J. L. M. R., Van Hoeck, V., Clemente, M., Rizos, D., Gutierrez-Adan, A., Van Soom, A., Uytterhoeven, M., and Bols, P. E. J. (2010). The effect of nutritionally induced hyperlipidemia on in vitro bovine embryo quality. Hum. Reprod. 25, 768–778.
| The effect of nutritionally induced hyperlipidemia on in vitro bovine embryo quality.Crossref | GoogleScholarGoogle Scholar |
Leroy, J. L. M. R., de Bie, J., Jordaens, L., Desmet, K., Smits, A., Marei, W. F. A., Bols, P. E. J., and Van Hoeck, V. (2017) Negative energy balance and metabolic stress in relation to oocyte and embryo quality: an update on possible pathways reducing fertility in dairy cows. In ‘Proceedings of the 31th Annual Meeting of the Brazilian Embryo Technology Society (SBTE),’ 17–19 August 2017, Cabo de Santo Agostinho, PE, Brazil. pp. 497–506.
Maillo, V., Rizos, D., Besenfelder, U., Havlicek, V., Kelly, A. K., Garrett, M., and Lonergan, P. (2012). Influence of lactation on metabolic characteristics and embryo development in postpartum Holstein dairy cows. J. Dairy Sci. 95, 3865–3876.
| Influence of lactation on metabolic characteristics and embryo development in postpartum Holstein dairy cows.Crossref | GoogleScholarGoogle Scholar | 22720941PubMed |
Marei, W. F. A., De Bie, J., Mohey-Elsaeed, O., Wydooghe, E., Bols, P. E. J., and Leroy, J. L. M. R. (2017). Alpha-linolenic acid protects the developmental capacity of bovine cumulus–oocyte complexes matured under lipotoxic conditions in vitro. Biol. Reprod. , .
| Alpha-linolenic acid protects the developmental capacity of bovine cumulus–oocyte complexes matured under lipotoxic conditions in vitro.Crossref | GoogleScholarGoogle Scholar |
Miessen, K., Sharbati, S., Einspanier, R., and Schoen, J. (2011). Modelling the porcine oviduct epithelium: a polarized in vitro system suitable for long-term cultivation. Theriogenology 76, 900–910.
| Modelling the porcine oviduct epithelium: a polarized in vitro system suitable for long-term cultivation.Crossref | GoogleScholarGoogle Scholar | 21719086PubMed |
Nonogaki, T., Noda, Y., Goto, Y., Kishi, J., and Mori, T. (1994). Developmental blockage of mouse embryos caused by fatty acids. J. Assist. Reprod. Genet. 11, 482–488.
| Developmental blockage of mouse embryos caused by fatty acids.Crossref | GoogleScholarGoogle Scholar | 7633171PubMed |
Rapala, L., Starzynski, R. R., Trzeciak, P. Z., Dabrowski, S., Gajewska, M., Jurka, P., Smolarczyk, R., and Duszewska, A. M. (2018). Influence of elevated temperature on bovine oviduct epithelial cells (BOECs). PLoS One 13, e0198843.
| Influence of elevated temperature on bovine oviduct epithelial cells (BOECs).Crossref | GoogleScholarGoogle Scholar | 29906278PubMed |
Reischl, J., Prelle, K., Schol, H., Neumuller, C., Einspanier, R., Sinowatz, F., and Wolf, E. (1999). Factors affecting proliferation and dedifferentiation of primary bovine oviduct epithelial cells in vitro. Cell Tissue Res. 296, 371–383.
| Factors affecting proliferation and dedifferentiation of primary bovine oviduct epithelial cells in vitro.Crossref | GoogleScholarGoogle Scholar | 10382279PubMed |
Ribeiro, E. S., Gomes, G., Greco, L. F., Cerri, R. L. A., Vieira-Neto, A., Monteiro, P. L. J., Lima, F. S., Bisinotto, R. S., Thatcher, W. W., and Santos, J. E. P. (2016). Carryover effect of postpartum inflammatory diseases on developmental biology and fertility in lactating dairy cows. J. Dairy Sci. 99, 2201–2220.
| Carryover effect of postpartum inflammatory diseases on developmental biology and fertility in lactating dairy cows.Crossref | GoogleScholarGoogle Scholar | 26723113PubMed |
Rizos, D., Carter, F., Besenfelder, U., Havlicek, V., and Lonergan, P. (2010). Contribution of the female reproductive tract to low fertility in postpartum lactating dairy cows. J. Dairy Sci. 93, 1022–1029.
| Contribution of the female reproductive tract to low fertility in postpartum lactating dairy cows.Crossref | GoogleScholarGoogle Scholar | 20172222PubMed |
Schmaltz-Panneau, B., Cordova, A., Dhorne-Pollet, S., Hennequet-Antier, C., Uzbekova, S., Martinot, E., Doret, S., Martin, P., Mermillod, P., and Locatelli, Y. (2014). Early bovine embryos regulate oviduct epithelial cell gene expression during in vitro co-culture. Anim. Reprod. Sci. 149, 103–116.
| Early bovine embryos regulate oviduct epithelial cell gene expression during in vitro co-culture.Crossref | GoogleScholarGoogle Scholar | 25113901PubMed |
Schmaltz-Panneau, B., Locatelli, Y., Uzbekova, S., Perreau, C., and Mermillod, P. (2015). Bovine oviduct epithelial cells dedifferentiate partly in culture, while maintaining their ability to improve early embryo development ratio and quality. Reprod. Domest. Anim. 50, 719–729.
| Bovine oviduct epithelial cells dedifferentiate partly in culture, while maintaining their ability to improve early embryo development ratio and quality.Crossref | GoogleScholarGoogle Scholar | 26302033PubMed |
Schoen, J., Bondizo, A., Topp, K., and Einspanier, R. (2008). Establishment and characterization of an adherent pure epithelial cell line derived from the bovine oviduct. Theriogenology 69, 536–545.
| Establishment and characterization of an adherent pure epithelial cell line derived from the bovine oviduct.Crossref | GoogleScholarGoogle Scholar | 18242684PubMed |
Tse, P. K., Lee, Y. L., Chow, W. N., Luk, J. M. C., Lee, K. F., and Yeung, W. S. B. (2008). Preimplantation embryos cooperate with oviductal cells to produce embryotrophic inactivated complement-3b. Endocrinology 149, 1268–1276.
| Preimplantation embryos cooperate with oviductal cells to produce embryotrophic inactivated complement-3b.Crossref | GoogleScholarGoogle Scholar | 18039777PubMed |
Ulbrich, S. E., Zitta, K., Hiendleder, S., and Wolf, E. (2010). In vitro systems for intercepting early embryo–maternal cross-talk in the bovine oviduct. Theriogenology 73, 802–816.
| In vitro systems for intercepting early embryo–maternal cross-talk in the bovine oviduct.Crossref | GoogleScholarGoogle Scholar | 19963260PubMed |
Valckx, S. D. M., Van Hoeck, V., Arias-Alvarez, M., Maillo, V., Lopez-Cardona, A. P., Gutierrez-Adan, A., Berth, M., Cortvrindt, R., Bols, P. E. J., and Leroy, J. L. M. R. (2014). Elevated non-esterified fatty acid concentrations during in vitro murine follicle growth alter follicular physiology and reduce oocyte developmental competence. Fertil. Steril. 102, 1769–1776.
| Elevated non-esterified fatty acid concentrations during in vitro murine follicle growth alter follicular physiology and reduce oocyte developmental competence.Crossref | GoogleScholarGoogle Scholar |
van der Weijden, V. A., Chen, S., Bauersachs, S., Ulbrich, S. E., and Schoen, J. (2017). Gene expression of bovine embryos developing at the air–liquid interface on oviductal epithelial cells (ALI-BOEC). Reprod. Biol. Endocrinol. 15, 91.
| Gene expression of bovine embryos developing at the air–liquid interface on oviductal epithelial cells (ALI-BOEC).Crossref | GoogleScholarGoogle Scholar | 29178958PubMed |
Van Hoeck, V., Sturmey, R. G., Bermejo-Alvarez, P., Rizos, D., Gutierrez-Adan, A., Leese, H. J., Bols, P. E. J., and Leroy, J. L. M. R. (2011). Elevated non-esterified fatty acid concentrations during bovine oocyte maturation compromise early embryo physiology. PLoS One 6, e23183.
| Elevated non-esterified fatty acid concentrations during bovine oocyte maturation compromise early embryo physiology.Crossref | GoogleScholarGoogle Scholar | 21858021PubMed |
Van Hoeck, V., Leroy, J. L. M. R., Arias-Alvarez, M., Rizos, D., Gutierrez-Adan, A., Schnorbusch, K., Bols, P. E. J., Leese, H. J., and Sturmey, R. G. (2013a). Oocyte developmental failure in response to elevated nonesterified fatty acid concentrations: mechanistic insights. Reproduction 145, 33–44.
| Oocyte developmental failure in response to elevated nonesterified fatty acid concentrations: mechanistic insights.Crossref | GoogleScholarGoogle Scholar | 23108110PubMed |
Van Hoeck, V., De Bie, J., Ramos, P., Rizos, D., Gutierrez-Adan, A., Dufort, I., Sirard, M. A., Merckx, E., Andries, S., Bols, P. E. J., and Leroy, J. L. M. R. (2013b). Maternal metabolic health and female fertility: a bovine model to study the effect of elevated non-esterified fatty acid concentrations on oocyte and embryo physiology. PhD Thesis, University of Antwerp, Belgium.
Wydooghe, E., Vandaele, L., Beek, J., Favoreel, H., Heindryckx, B., De Sutter, P., and Van Soom, A. (2011). Differential apoptotic staining of mammalian blastocysts based on double immunofluorescent CDX2 and active caspase-3 staining. Anal. Biochem. 416, 228–230.
| Differential apoptotic staining of mammalian blastocysts based on double immunofluorescent CDX2 and active caspase-3 staining.Crossref | GoogleScholarGoogle Scholar | 21684250PubMed |
Yuan, Y. Q., Van Soom, A., Coopman, F. O., Mintiens, K., Boerjan, M. L., Van Zeveren, A., de Kruif, A., and Peelman, L. J. (2003). Influence of oxygen tension on apoptosis and hatching in bovine embryos cultured in vitro. Theriogenology 59, 1585–1596.
| Influence of oxygen tension on apoptosis and hatching in bovine embryos cultured in vitro.Crossref | GoogleScholarGoogle Scholar | 12559463PubMed |