Late-onset vanishing testis-like syndrome in a 38,XX/38,XY agonadic pig (Sus scrofa)
Felipe Vilchis A , Lizette Mares A , Bertha Chávez A , Arcadio Paredes A and Luis Ramos A BA Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco de Quiroga #15, Tlalpan, C.P. 14080, México City, México.
B Corresponding author. Email: luis.ramost@incmnsz.mx; luigi46xy@hotmail.com
Reproduction, Fertility and Development 32(3) 284-291 https://doi.org/10.1071/RD18514
Submitted: 18 December 2018 Accepted: 15 July 2019 Published: 4 November 2019
Abstract
Here we describe the case of a pig with intersex traits including ambiguous external genitalia, sex chromosome abnormalities and a late-onset vanishing testis-like syndrome. It was identified shortly after birth by presenting a predominantly female phenotype with two large scrotal masses resembling testes. The karyotype is 38,XX (53%)/38,XY (47%). Sex steroid levels were undetectable at 1 and 7 months old, whereas circulating cortisol levels were typical. DNA studies excluded gene alterations in sex-determining region Y (SRY), dosage-sensitive sex reversal-congenital adrenal hypoplasia critical region on the X chromosome protein 1 (DAX1), SRY-related high mobility group-box gene 9 (SOX9), nuclear receptor subfamily 5, group a, member 1 (NR5A1), nuclear receptor subfamily 3, group c, member 4 (NR3C4) and steroid 5-alpha-reductase 2 (SRD5A2). At 8 months of age the XX/XY pig evinced delayed growth; however, the most striking phenotypic change was that the testes-like structures completely vanished in a 2–3-week period. The internal genitalia were found to consist of a portion of a vagina and urethra. No fallopian tubes, uterus or remnants of Wolffian derivatives were observed. More importantly, no testes, ovaries, ovotestis or gonadal streaks could be identified. The XX/XY sex chromosome dosage and/or overexpression of the DAX1 gene on the X chromosome in the presence of a wild-type SRY gene may have caused this predominantly female phenotype. This specimen represents an atypical case of 38,XX/38,XY chimeric, ovotesticular disorder of sex development associated with agonadism.
Additional keywords: disorders of sexual development, ovary, sex chromosomes, sex determination.
References
Baetens, D., Mendonça, B. B., Verdin, H., Cools, M., and De Baere, E. (2017). Non-coding variation in disorders of sex development. Clin. Genet. 91, 163–172.| Non-coding variation in disorders of sex development.Crossref | GoogleScholarGoogle Scholar | 27801941PubMed |
Balaton, B. P., and Brown, C. J. (2016). Escape artists of the X chromosome. Trends Genet. 32, 348–359.
| Escape artists of the X chromosome.Crossref | GoogleScholarGoogle Scholar | 27103486PubMed |
Barbaro, M., Oscarson, M., Schoumans, J., Staaf, J., Ivarsson, S. A., and Wedell, A. (2007). Isolated 46,XY gonadal dysgenesis in two sisters caused by a Xp21.2 interstitial duplication containing the DAX1 gene. J. Clin. Endocrinol. Metab. 92, 3305–3313.
| Isolated 46,XY gonadal dysgenesis in two sisters caused by a Xp21.2 interstitial duplication containing the DAX1 gene.Crossref | GoogleScholarGoogle Scholar | 17504899PubMed |
Bardoni, B., Zanaria, E., Guioli, S., Floridia, G., Worley, K. C., Tonini, G., Ferrante, E., Chiumello, G., McCabe, E. R., Fraccaro, M., Zuffardi, O., and Camerino, G. (1994). A dosage sensitive locus at chromosome Xp21 is involved in male to female sex reversal. Nat. Genet. 7, 497–501.
| A dosage sensitive locus at chromosome Xp21 is involved in male to female sex reversal.Crossref | GoogleScholarGoogle Scholar | 7951319PubMed |
Bersano, J. G., Farinha, F. B. N., Macruz, R., and Portugal, M. A. S. C. (1994). Hermafroditismo em suino: relato de caso. Braz. J. Vet. Res. Anim. Sci. 31, 267–272.
| Hermafroditismo em suino: relato de caso.Crossref | GoogleScholarGoogle Scholar |
Breeuwsma, A. J. (1968). A case of XXY sex chromosome constitution in an intersex pig. J. Reprod. Fertil. 16, 119–120.
| A case of XXY sex chromosome constitution in an intersex pig.Crossref | GoogleScholarGoogle Scholar | 5691159PubMed |
Harvey, M. J. (1968). A male pig with an XXY/XXXY sex chromosome complement. J. Reprod. Fertil. 17, 319–324.
| A male pig with an XXY/XXXY sex chromosome complement.Crossref | GoogleScholarGoogle Scholar | 5755097PubMed |
Houk, C. P., and Lee, P. A. (2008). Consensus statement on terminology and management: disorders of sex development. Sex Dev. 2, 172–180.
| Consensus statement on terminology and management: disorders of sex development.Crossref | GoogleScholarGoogle Scholar | 18987491PubMed |
Hunter, R. H. (1996). Aetiology of intersexuality in female (XX) pigs, with novel molecular interpretations. Mol. Reprod. Dev. 45, 392–402.
| Aetiology of intersexuality in female (XX) pigs, with novel molecular interpretations.Crossref | GoogleScholarGoogle Scholar | 8916051PubMed |
Hunter, R. H., Baker, T. G., and Cook, B. (1982). Morphology, histology and steroid hormones of the gonads in intersex pigs. J. Reprod. Fertil. 64, 217–222.
| Morphology, histology and steroid hormones of the gonads in intersex pigs.Crossref | GoogleScholarGoogle Scholar | 7054494PubMed |
Hutson, J. M., and Lopez-Marambio, F. A. (2017). The possible role of AMH in shortening the gubernacular cord in testicular descent: a reappraisal of the evidence. J. Pediatr. Surg. 52, 1656–1660.
| The possible role of AMH in shortening the gubernacular cord in testicular descent: a reappraisal of the evidence.Crossref | GoogleScholarGoogle Scholar | 28599968PubMed |
Hutson, J. M., Li, R., Southwell, B. R., Newgreen, D., and Cousinery, M. (2015). Regulation of testicular descent. Pediatr. Surg. Int. 31, 317–325.
| Regulation of testicular descent.Crossref | GoogleScholarGoogle Scholar | 25690562PubMed |
Jiménez, R., Barrionuevo, F. J., and Burgos, M. (2013). Natural exceptions to normal gonad development in mammals. Sex Dev. 7, 147–162.
| Natural exceptions to normal gonad development in mammals.Crossref | GoogleScholarGoogle Scholar | 22626995PubMed |
Katoh-Fukui, Y., Igarashi, M., Nagasaki, K., Horikawa, R., Nagai, T., Tsuchiya, T., Suzuki, E., Miyado, M., Hata, K., Nakabayashi, K., Hayashi, K., Matsubara, Y., Baba, T., Morohashi, K., Igarashi, A., Ogata, T., Takada, S., and Fukami, M. (2015). Testicular dysgenesis/regression without campomelic dysplasia in patients carrying missense mutations and upstream deletion of SOX9. Mol. Genet. Genomic Med. 3, 550–557.
| Testicular dysgenesis/regression without campomelic dysplasia in patients carrying missense mutations and upstream deletion of SOX9.Crossref | GoogleScholarGoogle Scholar | 26740947PubMed |
Lahbib-Mansais, Y., Barbosa, A., Yerle, M., Parma, P., Milan, D., Pailhoux, E., Gellin, J., and Cotinot, C. (1997). Mapping in pig of genes involved in sexual differentiation: AMH, WT1, FTZF1, SOX2, SOX9, AHC, and placental and embryonic CYP19. Cytogenet. Cell Genet. 76, 109–114.
| Mapping in pig of genes involved in sexual differentiation: AMH, WT1, FTZF1, SOX2, SOX9, AHC, and placental and embryonic CYP19.Crossref | GoogleScholarGoogle Scholar | 9154138PubMed |
Melander, Y., Hansen-Melander, E., Holm, L., and Somlev, B. (1971). Seven swine intersexes with XX chromosome constitution. Hereditas 69, 51–57.
| Seven swine intersexes with XX chromosome constitution.Crossref | GoogleScholarGoogle Scholar | 5173420PubMed |
Meyers-Wallen, V. N. (2012). Gonadal and sex differentiation abnormalities of dogs and cats. Sex Dev. 6, 46–60.
| Gonadal and sex differentiation abnormalities of dogs and cats.Crossref | GoogleScholarGoogle Scholar | 22005097PubMed |
Ohnesorg, T., Vilain, E., and Sinclair, A. H. (2014). The genetics of disorders of sex development in humans. Sex Dev. 8, 262–272.
| The genetics of disorders of sex development in humans.Crossref | GoogleScholarGoogle Scholar | 24504012PubMed |
Okamoto, A., and Masuda, H. (1977). Cytogenetic studies of intersex swine. Proc. Japan Acad. 53, 276–281.
| Cytogenetic studies of intersex swine.Crossref | GoogleScholarGoogle Scholar |
Pailhoux, E., Popescu, P. C., Parma, P., Boscher, J., Legault, C., Molteni, L., Fellous, M., and Cotinot, C. (1994). Genetic analysis of 38XX males with genital ambiguities and true hermaphrodites in pigs. Anim. Genet. 25, 299–305.
| Genetic analysis of 38XX males with genital ambiguities and true hermaphrodites in pigs.Crossref | GoogleScholarGoogle Scholar | 7818163PubMed |
Pailhoux, E., Parma, P., Sundström, J., Viger, B., Servel, N., Kuopio, T., Locatelli, A., Pelliniemi, L. J., and Cotinot, C. (2001). Time course of female-to-male sex reveresal in 38,XX fetal and postnatal pigs. Dev. Dyn. 222, 328–340.
| Time course of female-to-male sex reveresal in 38,XX fetal and postnatal pigs.Crossref | GoogleScholarGoogle Scholar | 11747069PubMed |
Parma, P., Pailhoux, E., and Cotinot, C. (1999). Reverse transcription-polymerase chain reaction analysis of genes involved in gonadal differentiation in pigs. Biol. Reprod. 61, 741–748.
| Reverse transcription-polymerase chain reaction analysis of genes involved in gonadal differentiation in pigs.Crossref | GoogleScholarGoogle Scholar | 10456852PubMed |
Parma, P., Veyrunes, F., and Pailhoux, E. (2016). Sex reversal in non-human placental mammals. Sex Dev. 10, 326–344.
| Sex reversal in non-human placental mammals.Crossref | GoogleScholarGoogle Scholar | 27529721PubMed |
Philibert, P., Zenaty, D., Lin, L., Soskin, S., Audran, F., Léger, J., Achermann, J. C., and Sultan, C. (2007). Mutational analysis of steroidogenic factor 1 (NR5a1) in 24 boys with bilateral anorchia: a French collaborative study. Hum. Reprod. 22, 3255–3261.
| Mutational analysis of steroidogenic factor 1 (NR5a1) in 24 boys with bilateral anorchia: a French collaborative study.Crossref | GoogleScholarGoogle Scholar | 17940071PubMed |
Pinton, A., Pailhoux, E., Piumi, F., Rogel-Gaillard, C., Darré, R., Yerle, M., Ducos, A., and Cotinot, C. (2002). A case of intersexuality in pigs associated with a de novo paracentric inversion 9 (p1.2; p2.2). Anim. Genet. 33, 69–71.
| A case of intersexuality in pigs associated with a de novo paracentric inversion 9 (p1.2; p2.2).Crossref | GoogleScholarGoogle Scholar | 11849141PubMed |
Quilter, C. R., Blott, S. C., Mileham, A. J., Affara, N. A., Sargent, C. A., and Griffin, D. K. (2002). A mapping and evolutionary study of porcine sex chromosome genes. Mamm. Genome 13, 588–594.
| A mapping and evolutionary study of porcine sex chromosome genes.Crossref | GoogleScholarGoogle Scholar | 12420137PubMed |
Ramos, L., Chávez, B., Mares, L., Valdés, E., and Vilchis, F. (2018). Mutational analysis of the androgen receptor (NR3C4) gene in patients with 46,XY DSD. Gene 641, 86–93.
| Mutational analysis of the androgen receptor (NR3C4) gene in patients with 46,XY DSD.Crossref | GoogleScholarGoogle Scholar | 29051026PubMed |
Rangel-Negrín, A., Flores-Escobar, E., Coyohua-Fuentes, A., Chavira-Ramírez, D. R., Canales-Espinosa, D., and Dias, P. A. (2015). Behavioural and glucocorticoid responses of a captive group of spider monkeys to short-term variation in food presentation. Folia Primatol. (Basel) 86, 433–445.
| Behavioural and glucocorticoid responses of a captive group of spider monkeys to short-term variation in food presentation.Crossref | GoogleScholarGoogle Scholar | 26509570PubMed |
Rousseau, S., Iannuccelli, N., Mercat, M. J., Naylies, C., Thouly, J. C., Servin, B., Milan, D., Pailhoux, E., and Riquet, J. (2013). A genome-wide association study points out the causal implication of SOX9 in the sex-reversal phenotype in XX pigs. PLoS One 8, e79882.
| A genome-wide association study points out the causal implication of SOX9 in the sex-reversal phenotype in XX pigs.Crossref | GoogleScholarGoogle Scholar | 24223201PubMed |
Sekido, R., and Lovell-Badge, R. (2013). Genetic control of testis development. Sex Dev. 7, 21–32.
| Genetic control of testis development.Crossref | GoogleScholarGoogle Scholar | 22964823PubMed |
Sinclair, A. H., Berta, P., Palmer, M. S., Hawkins, J. R., Griffiths, B. L., Smith, M. J., Foster, J. W., Frischauf, A. M., Lovell-Badge, R., and Goodfellow, P. N. (1990). A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature 346, 240–244.
| A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif.Crossref | GoogleScholarGoogle Scholar | 1695712PubMed |
Somlev, B., Hansen-Melander, E., Melander, Y., and Holm, L. (1970). XX–XY chimerism in leucocytes of two intersexual pigs. Hereditas 64, 203–210.
| XX–XY chimerism in leucocytes of two intersexual pigs.Crossref | GoogleScholarGoogle Scholar | 5535788PubMed |
Świtoński, M., Jackowiak, H., Godynicki, S., Klukowska, J., Borsiak, K., and Urbaniak, K. (2002). Familial occurrence of pig intersexes (38,XX; SRY-negative) on a commercial fattening farm. Anim. Reprod. Sci. 69, 117–124.
| Familial occurrence of pig intersexes (38,XX; SRY-negative) on a commercial fattening farm.Crossref | GoogleScholarGoogle Scholar | 11755722PubMed |
Thomsen, P. D., and Poulsen, P. H. (1993). Analysis of the gonadal sex of five intersex pigs using Y chromosomal markers. Hereditas 119, 205–207.
| Analysis of the gonadal sex of five intersex pigs using Y chromosomal markers.Crossref | GoogleScholarGoogle Scholar | 8144359PubMed |
Tiranti, I. N., Genghini, R. N., González Quintana, H., and Wittouck, P. (2002). Morphological and karyotypic characterization of intersex pigs with hernia inguinalis. J. Agric. Sci. 138, 333–340.
| Morphological and karyotypic characterization of intersex pigs with hernia inguinalis.Crossref | GoogleScholarGoogle Scholar |
Vaiman, D., and Pailhoux, E. (2000). Mammalian sex reversal and intersexuality: deciphering the sex-determination cascade. Trends Genet. 16, 488–494.
| Mammalian sex reversal and intersexuality: deciphering the sex-determination cascade.Crossref | GoogleScholarGoogle Scholar | 11074290PubMed |
Villagómez, D. A., Parma, P., Radi, O., Di Meo, G., Pinton, A., Iannuzzi, L., and King, W. A. (2009). Classical and molecular cytogenetics of disorders of sex development in domestic animals. Cytogenet. Genome Res. 126, 110–131.
| Classical and molecular cytogenetics of disorders of sex development in domestic animals.Crossref | GoogleScholarGoogle Scholar | 20016161PubMed |
Windley, S. P., and Wilhelm, D. (2015). Signaling pathways involved in mammalian sex determination and gonad development. Sex Dev. 9, 297–315.
| Signaling pathways involved in mammalian sex determination and gonad development.Crossref | GoogleScholarGoogle Scholar | 26905731PubMed |