Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Late-onset vanishing testis-like syndrome in a 38,XX/38,XY agonadic pig (Sus scrofa)

Felipe Vilchis A , Lizette Mares A , Bertha Chávez A , Arcadio Paredes A and Luis Ramos https://orcid.org/0000-0002-1014-3262 A B
+ Author Affiliations
- Author Affiliations

A Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco de Quiroga #15, Tlalpan, C.P. 14080, México City, México.

B Corresponding author. Email: luis.ramost@incmnsz.mx; luigi46xy@hotmail.com

Reproduction, Fertility and Development 32(3) 284-291 https://doi.org/10.1071/RD18514
Submitted: 18 December 2018  Accepted: 15 July 2019   Published: 4 November 2019

Abstract

Here we describe the case of a pig with intersex traits including ambiguous external genitalia, sex chromosome abnormalities and a late-onset vanishing testis-like syndrome. It was identified shortly after birth by presenting a predominantly female phenotype with two large scrotal masses resembling testes. The karyotype is 38,XX (53%)/38,XY (47%). Sex steroid levels were undetectable at 1 and 7 months old, whereas circulating cortisol levels were typical. DNA studies excluded gene alterations in sex-determining region Y (SRY), dosage-sensitive sex reversal-congenital adrenal hypoplasia critical region on the X chromosome protein 1 (DAX1), SRY-related high mobility group-box gene 9 (SOX9), nuclear receptor subfamily 5, group a, member 1 (NR5A1), nuclear receptor subfamily 3, group c, member 4 (NR3C4) and steroid 5-alpha-reductase 2 (SRD5A2). At 8 months of age the XX/XY pig evinced delayed growth; however, the most striking phenotypic change was that the testes-like structures completely vanished in a 2–3-week period. The internal genitalia were found to consist of a portion of a vagina and urethra. No fallopian tubes, uterus or remnants of Wolffian derivatives were observed. More importantly, no testes, ovaries, ovotestis or gonadal streaks could be identified. The XX/XY sex chromosome dosage and/or overexpression of the DAX1 gene on the X chromosome in the presence of a wild-type SRY gene may have caused this predominantly female phenotype. This specimen represents an atypical case of 38,XX/38,XY chimeric, ovotesticular disorder of sex development associated with agonadism.

Additional keywords: disorders of sexual development, ovary, sex chromosomes, sex determination.


References

Baetens, D., Mendonça, B. B., Verdin, H., Cools, M., and De Baere, E. (2017). Non-coding variation in disorders of sex development. Clin. Genet. 91, 163–172.
Non-coding variation in disorders of sex development.Crossref | GoogleScholarGoogle Scholar | 27801941PubMed |

Balaton, B. P., and Brown, C. J. (2016). Escape artists of the X chromosome. Trends Genet. 32, 348–359.
Escape artists of the X chromosome.Crossref | GoogleScholarGoogle Scholar | 27103486PubMed |

Barbaro, M., Oscarson, M., Schoumans, J., Staaf, J., Ivarsson, S. A., and Wedell, A. (2007). Isolated 46,XY gonadal dysgenesis in two sisters caused by a Xp21.2 interstitial duplication containing the DAX1 gene. J. Clin. Endocrinol. Metab. 92, 3305–3313.
Isolated 46,XY gonadal dysgenesis in two sisters caused by a Xp21.2 interstitial duplication containing the DAX1 gene.Crossref | GoogleScholarGoogle Scholar | 17504899PubMed |

Bardoni, B., Zanaria, E., Guioli, S., Floridia, G., Worley, K. C., Tonini, G., Ferrante, E., Chiumello, G., McCabe, E. R., Fraccaro, M., Zuffardi, O., and Camerino, G. (1994). A dosage sensitive locus at chromosome Xp21 is involved in male to female sex reversal. Nat. Genet. 7, 497–501.
A dosage sensitive locus at chromosome Xp21 is involved in male to female sex reversal.Crossref | GoogleScholarGoogle Scholar | 7951319PubMed |

Bersano, J. G., Farinha, F. B. N., Macruz, R., and Portugal, M. A. S. C. (1994). Hermafroditismo em suino: relato de caso. Braz. J. Vet. Res. Anim. Sci. 31, 267–272.
Hermafroditismo em suino: relato de caso.Crossref | GoogleScholarGoogle Scholar |

Breeuwsma, A. J. (1968). A case of XXY sex chromosome constitution in an intersex pig. J. Reprod. Fertil. 16, 119–120.
A case of XXY sex chromosome constitution in an intersex pig.Crossref | GoogleScholarGoogle Scholar | 5691159PubMed |

Harvey, M. J. (1968). A male pig with an XXY/XXXY sex chromosome complement. J. Reprod. Fertil. 17, 319–324.
A male pig with an XXY/XXXY sex chromosome complement.Crossref | GoogleScholarGoogle Scholar | 5755097PubMed |

Houk, C. P., and Lee, P. A. (2008). Consensus statement on terminology and management: disorders of sex development. Sex Dev. 2, 172–180.
Consensus statement on terminology and management: disorders of sex development.Crossref | GoogleScholarGoogle Scholar | 18987491PubMed |

Hunter, R. H. (1996). Aetiology of intersexuality in female (XX) pigs, with novel molecular interpretations. Mol. Reprod. Dev. 45, 392–402.
Aetiology of intersexuality in female (XX) pigs, with novel molecular interpretations.Crossref | GoogleScholarGoogle Scholar | 8916051PubMed |

Hunter, R. H., Baker, T. G., and Cook, B. (1982). Morphology, histology and steroid hormones of the gonads in intersex pigs. J. Reprod. Fertil. 64, 217–222.
Morphology, histology and steroid hormones of the gonads in intersex pigs.Crossref | GoogleScholarGoogle Scholar | 7054494PubMed |

Hutson, J. M., and Lopez-Marambio, F. A. (2017). The possible role of AMH in shortening the gubernacular cord in testicular descent: a reappraisal of the evidence. J. Pediatr. Surg. 52, 1656–1660.
The possible role of AMH in shortening the gubernacular cord in testicular descent: a reappraisal of the evidence.Crossref | GoogleScholarGoogle Scholar | 28599968PubMed |

Hutson, J. M., Li, R., Southwell, B. R., Newgreen, D., and Cousinery, M. (2015). Regulation of testicular descent. Pediatr. Surg. Int. 31, 317–325.
Regulation of testicular descent.Crossref | GoogleScholarGoogle Scholar | 25690562PubMed |

Jiménez, R., Barrionuevo, F. J., and Burgos, M. (2013). Natural exceptions to normal gonad development in mammals. Sex Dev. 7, 147–162.
Natural exceptions to normal gonad development in mammals.Crossref | GoogleScholarGoogle Scholar | 22626995PubMed |

Katoh-Fukui, Y., Igarashi, M., Nagasaki, K., Horikawa, R., Nagai, T., Tsuchiya, T., Suzuki, E., Miyado, M., Hata, K., Nakabayashi, K., Hayashi, K., Matsubara, Y., Baba, T., Morohashi, K., Igarashi, A., Ogata, T., Takada, S., and Fukami, M. (2015). Testicular dysgenesis/regression without campomelic dysplasia in patients carrying missense mutations and upstream deletion of SOX9. Mol. Genet. Genomic Med. 3, 550–557.
Testicular dysgenesis/regression without campomelic dysplasia in patients carrying missense mutations and upstream deletion of SOX9.Crossref | GoogleScholarGoogle Scholar | 26740947PubMed |

Lahbib-Mansais, Y., Barbosa, A., Yerle, M., Parma, P., Milan, D., Pailhoux, E., Gellin, J., and Cotinot, C. (1997). Mapping in pig of genes involved in sexual differentiation: AMH, WT1, FTZF1, SOX2, SOX9, AHC, and placental and embryonic CYP19. Cytogenet. Cell Genet. 76, 109–114.
Mapping in pig of genes involved in sexual differentiation: AMH, WT1, FTZF1, SOX2, SOX9, AHC, and placental and embryonic CYP19.Crossref | GoogleScholarGoogle Scholar | 9154138PubMed |

Melander, Y., Hansen-Melander, E., Holm, L., and Somlev, B. (1971). Seven swine intersexes with XX chromosome constitution. Hereditas 69, 51–57.
Seven swine intersexes with XX chromosome constitution.Crossref | GoogleScholarGoogle Scholar | 5173420PubMed |

Meyers-Wallen, V. N. (2012). Gonadal and sex differentiation abnormalities of dogs and cats. Sex Dev. 6, 46–60.
Gonadal and sex differentiation abnormalities of dogs and cats.Crossref | GoogleScholarGoogle Scholar | 22005097PubMed |

Ohnesorg, T., Vilain, E., and Sinclair, A. H. (2014). The genetics of disorders of sex development in humans. Sex Dev. 8, 262–272.
The genetics of disorders of sex development in humans.Crossref | GoogleScholarGoogle Scholar | 24504012PubMed |

Okamoto, A., and Masuda, H. (1977). Cytogenetic studies of intersex swine. Proc. Japan Acad. 53, 276–281.
Cytogenetic studies of intersex swine.Crossref | GoogleScholarGoogle Scholar |

Pailhoux, E., Popescu, P. C., Parma, P., Boscher, J., Legault, C., Molteni, L., Fellous, M., and Cotinot, C. (1994). Genetic analysis of 38XX males with genital ambiguities and true hermaphrodites in pigs. Anim. Genet. 25, 299–305.
Genetic analysis of 38XX males with genital ambiguities and true hermaphrodites in pigs.Crossref | GoogleScholarGoogle Scholar | 7818163PubMed |

Pailhoux, E., Parma, P., Sundström, J., Viger, B., Servel, N., Kuopio, T., Locatelli, A., Pelliniemi, L. J., and Cotinot, C. (2001). Time course of female-to-male sex reveresal in 38,XX fetal and postnatal pigs. Dev. Dyn. 222, 328–340.
Time course of female-to-male sex reveresal in 38,XX fetal and postnatal pigs.Crossref | GoogleScholarGoogle Scholar | 11747069PubMed |

Parma, P., Pailhoux, E., and Cotinot, C. (1999). Reverse transcription-polymerase chain reaction analysis of genes involved in gonadal differentiation in pigs. Biol. Reprod. 61, 741–748.
Reverse transcription-polymerase chain reaction analysis of genes involved in gonadal differentiation in pigs.Crossref | GoogleScholarGoogle Scholar | 10456852PubMed |

Parma, P., Veyrunes, F., and Pailhoux, E. (2016). Sex reversal in non-human placental mammals. Sex Dev. 10, 326–344.
Sex reversal in non-human placental mammals.Crossref | GoogleScholarGoogle Scholar | 27529721PubMed |

Philibert, P., Zenaty, D., Lin, L., Soskin, S., Audran, F., Léger, J., Achermann, J. C., and Sultan, C. (2007). Mutational analysis of steroidogenic factor 1 (NR5a1) in 24 boys with bilateral anorchia: a French collaborative study. Hum. Reprod. 22, 3255–3261.
Mutational analysis of steroidogenic factor 1 (NR5a1) in 24 boys with bilateral anorchia: a French collaborative study.Crossref | GoogleScholarGoogle Scholar | 17940071PubMed |

Pinton, A., Pailhoux, E., Piumi, F., Rogel-Gaillard, C., Darré, R., Yerle, M., Ducos, A., and Cotinot, C. (2002). A case of intersexuality in pigs associated with a de novo paracentric inversion 9 (p1.2; p2.2). Anim. Genet. 33, 69–71.
A case of intersexuality in pigs associated with a de novo paracentric inversion 9 (p1.2; p2.2).Crossref | GoogleScholarGoogle Scholar | 11849141PubMed |

Quilter, C. R., Blott, S. C., Mileham, A. J., Affara, N. A., Sargent, C. A., and Griffin, D. K. (2002). A mapping and evolutionary study of porcine sex chromosome genes. Mamm. Genome 13, 588–594.
A mapping and evolutionary study of porcine sex chromosome genes.Crossref | GoogleScholarGoogle Scholar | 12420137PubMed |

Ramos, L., Chávez, B., Mares, L., Valdés, E., and Vilchis, F. (2018). Mutational analysis of the androgen receptor (NR3C4) gene in patients with 46,XY DSD. Gene 641, 86–93.
Mutational analysis of the androgen receptor (NR3C4) gene in patients with 46,XY DSD.Crossref | GoogleScholarGoogle Scholar | 29051026PubMed |

Rangel-Negrín, A., Flores-Escobar, E., Coyohua-Fuentes, A., Chavira-Ramírez, D. R., Canales-Espinosa, D., and Dias, P. A. (2015). Behavioural and glucocorticoid responses of a captive group of spider monkeys to short-term variation in food presentation. Folia Primatol. (Basel) 86, 433–445.
Behavioural and glucocorticoid responses of a captive group of spider monkeys to short-term variation in food presentation.Crossref | GoogleScholarGoogle Scholar | 26509570PubMed |

Rousseau, S., Iannuccelli, N., Mercat, M. J., Naylies, C., Thouly, J. C., Servin, B., Milan, D., Pailhoux, E., and Riquet, J. (2013). A genome-wide association study points out the causal implication of SOX9 in the sex-reversal phenotype in XX pigs. PLoS One 8, e79882.
A genome-wide association study points out the causal implication of SOX9 in the sex-reversal phenotype in XX pigs.Crossref | GoogleScholarGoogle Scholar | 24223201PubMed |

Sekido, R., and Lovell-Badge, R. (2013). Genetic control of testis development. Sex Dev. 7, 21–32.
Genetic control of testis development.Crossref | GoogleScholarGoogle Scholar | 22964823PubMed |

Sinclair, A. H., Berta, P., Palmer, M. S., Hawkins, J. R., Griffiths, B. L., Smith, M. J., Foster, J. W., Frischauf, A. M., Lovell-Badge, R., and Goodfellow, P. N. (1990). A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature 346, 240–244.
A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif.Crossref | GoogleScholarGoogle Scholar | 1695712PubMed |

Somlev, B., Hansen-Melander, E., Melander, Y., and Holm, L. (1970). XX–XY chimerism in leucocytes of two intersexual pigs. Hereditas 64, 203–210.
XX–XY chimerism in leucocytes of two intersexual pigs.Crossref | GoogleScholarGoogle Scholar | 5535788PubMed |

Świtoński, M., Jackowiak, H., Godynicki, S., Klukowska, J., Borsiak, K., and Urbaniak, K. (2002). Familial occurrence of pig intersexes (38,XX; SRY-negative) on a commercial fattening farm. Anim. Reprod. Sci. 69, 117–124.
Familial occurrence of pig intersexes (38,XX; SRY-negative) on a commercial fattening farm.Crossref | GoogleScholarGoogle Scholar | 11755722PubMed |

Thomsen, P. D., and Poulsen, P. H. (1993). Analysis of the gonadal sex of five intersex pigs using Y chromosomal markers. Hereditas 119, 205–207.
Analysis of the gonadal sex of five intersex pigs using Y chromosomal markers.Crossref | GoogleScholarGoogle Scholar | 8144359PubMed |

Tiranti, I. N., Genghini, R. N., González Quintana, H., and Wittouck, P. (2002). Morphological and karyotypic characterization of intersex pigs with hernia inguinalis. J. Agric. Sci. 138, 333–340.
Morphological and karyotypic characterization of intersex pigs with hernia inguinalis.Crossref | GoogleScholarGoogle Scholar |

Vaiman, D., and Pailhoux, E. (2000). Mammalian sex reversal and intersexuality: deciphering the sex-determination cascade. Trends Genet. 16, 488–494.
Mammalian sex reversal and intersexuality: deciphering the sex-determination cascade.Crossref | GoogleScholarGoogle Scholar | 11074290PubMed |

Villagómez, D. A., Parma, P., Radi, O., Di Meo, G., Pinton, A., Iannuzzi, L., and King, W. A. (2009). Classical and molecular cytogenetics of disorders of sex development in domestic animals. Cytogenet. Genome Res. 126, 110–131.
Classical and molecular cytogenetics of disorders of sex development in domestic animals.Crossref | GoogleScholarGoogle Scholar | 20016161PubMed |

Windley, S. P., and Wilhelm, D. (2015). Signaling pathways involved in mammalian sex determination and gonad development. Sex Dev. 9, 297–315.
Signaling pathways involved in mammalian sex determination and gonad development.Crossref | GoogleScholarGoogle Scholar | 26905731PubMed |