Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE (Open Access)

Exposure to atrazine during puberty reduces sperm viability, increases weight gain and alters the expression of key metabolic genes in the liver of male mice

Laura E. Cook A , Bethany J. Finger A , Mark P. Green A and Andrew J. Pask https://orcid.org/0000-0002-1900-2263 A B
+ Author Affiliations
- Author Affiliations

A School of BioSciences, The University of Melbourne, Melbourne, Vic. 3010, Australia.

B Corresponding author. Email: a.pask@unimelb.edu.au

Reproduction, Fertility and Development 31(5) 920-931 https://doi.org/10.1071/RD18505
Submitted: 20 July 2018  Accepted: 16 December 2018   Published: 14 January 2019

Journal Compilation © CSIRO 2019 Open Access CC BY-NC-ND

Abstract

Atrazine (ATZ) is one of the most widely used herbicides worldwide and is a common contaminant in human drinking water. It disrupts metabolic pathways in plants, and has metabolic and reproductive effects in vertebrates, including humans. Few studies have investigated the effects of exposure to low doses of ATZ, especially during sexual development in males. In this study, we exposed C57BL/6J male mice from weaning for 8 weeks to drinking water containing 0.5 mg kg−1 bodyweight (BW) day−1 ATZ, the ‘no observed effect’ level used by the Australian government, or a 10-fold higher dose (5 mg kg−1 BW day−1). Mice treated with the low dose of ATZ showed increased total and cumulative weight gain. At 12 weeks of age, there was a significant increase in the percentage of dead spermatozoa in both ATZ-exposed groups, as well as decreased epididymal sperm motility in the low-dose ATZ group. Significant changes in testis and liver gene expression were also observed following ATZ exposure. These data demonstrate that a low dose of ATZ can perturb metabolic and reproductive characteristics in male mice. A chronic reduction in sperm quality and increased weight gain could have negative consequences on the reproductive capacity of males, and further studies should consider the effects of long-term ATZ exposure on male reproductive health.

Additional keywords: bodyweight, endocrine disruptor, reproduction.


References

Abarikwu, S. O., Adesiyan, A. C., Oyeloja, T. O., Oyeyemi, M. O., and Farombi, E. O. (2010). Changes in sperm characteristics and induction of oxidative stress in the testis and epididymis of experimental rats by a herbicide, atrazine. Arch. Environ. Contam. Toxicol. 58, 874–882.
Changes in sperm characteristics and induction of oxidative stress in the testis and epididymis of experimental rats by a herbicide, atrazine.Crossref | GoogleScholarGoogle Scholar | 19672647PubMed |

Abarikwu, S. O., Farombi, E. O., Kashyap, M. P., and Pant, A. B. (2011). Atrazine induces transcriptional changes in marker genes associated with steroidogenesis in primary cultures of rat Leydig cells. Toxicol. In Vitro 25, 1588–1595.
Atrazine induces transcriptional changes in marker genes associated with steroidogenesis in primary cultures of rat Leydig cells.Crossref | GoogleScholarGoogle Scholar | 21693180PubMed |

Australian Pesticides and Veterinary Medicines Authority (1997). Technical report: Environmental assessment. Available at https://apvma.gov.au/sites/default/files/publication/14356-atrazine-env.pdf [verified 20 Dec 2018].

Badach, H., Nazimek, T., and Kaminska, I. A. (2007). Pesticide content in drinking water samples collected from orchard areas in central Poland. Ann. Agric. Environ. Med. 14, 109–114.
| 17655187PubMed |

Bai, X., Sun, C., Xie, J., Song, H., Zhu, Q., Su, Y., Qian, H., and Fu, Z. (2015). Effects of atrazine on photosynthesis and defense response and the underlying mechanisms in Phaeodactylum tricornutum. Environ. Sci. Pollut. Res. Int. 22, 17499–17507.
Effects of atrazine on photosynthesis and defense response and the underlying mechanisms in Phaeodactylum tricornutum.Crossref | GoogleScholarGoogle Scholar | 26139402PubMed |

Cheng, F. P., Fazeli, A., Voorhout, W. F., Marks, A., Bevers, M. M., and Colendbrander, B. (1996). Use of peanut agglutinin to assess the acrosomal status and the zona pellucida-induced acrosome reaction in stallion spermatozoa. J. Androl. 17, 674–682.
| 9016398PubMed |

Choi, B. I., Harvey, A. J., and Green, M. P. (2016). Bisphenol A affects early bovine embryo development and metabolism that is negated by an oestrogen receptor inhibitor. Sci. Rep. 6, 29318.
Bisphenol A affects early bovine embryo development and metabolism that is negated by an oestrogen receptor inhibitor.Crossref | GoogleScholarGoogle Scholar | 27384909PubMed |

Doyle, T. J., Bowman, J. L., Windell, V. L., McLean, D. J., and Kim, K. H. (2013). Transgenerational effects of di-(2-ethylhexyl) phthalate on testicular germ cell associations and spermatogonial stem cells in mice. Biol. Reprod. 88, 112.
Transgenerational effects of di-(2-ethylhexyl) phthalate on testicular germ cell associations and spermatogonial stem cells in mice.Crossref | GoogleScholarGoogle Scholar | 23536373PubMed |

Eacker, S. M., Agrawal, N., Qian, K., Dichek, H. L., Gong, E. Y., Lee, K., and Braun, R. E. (2008). Hormonal regulation of testicular steroid and cholesterol homeostasis. Mol. Endocrinol. 22, 623–635.
Hormonal regulation of testicular steroid and cholesterol homeostasis.Crossref | GoogleScholarGoogle Scholar | 18032697PubMed |

European Commission Health and Consumer Protection Directorate General (2003). Atrazine SANCO/10496/2003-final. Review report for the active substance atrazine; Finalized in the Standing Committee on the Food Chain and Animal Health at its meeting on 3 October 2003 in support of a decision concerning the non-inclusion of atrazine in Annex I of Directive 91/414/EEC and the withdrawal of authorisation for plant protection products containing this active substance. European Commission Health and Consumer Protection Directorate-General, 2003. Available at http://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/public/?event=activesubstance.ViewReview&id=108

Fan, W., Yanase, T., Morinaga, H., Gondo, S., Okabe, T., Nomura, M., Komatsu, T., Morohashi, K., Hayes, T. B., Takayanagi, R., and Nawata, H. (2007). Atrazine-induced aromatase expression is SF-1 dependent: implications for endocrine disruption in wildlife and reproductive cancers in humans. Environ. Health Perspect. 115, 720–727.
Atrazine-induced aromatase expression is SF-1 dependent: implications for endocrine disruption in wildlife and reproductive cancers in humans.Crossref | GoogleScholarGoogle Scholar | 17520059PubMed |

Farruggia, F. T., Rossmeisl, C. M., Hetrick, J. A., Biscoe, M., and Branch, M. E. R., III (2016). ‘Refined Ecological Risk Assessment for Atrazine.’ (US Environmental Protection Agency, Office of Pesticide Programs: Washington, DC.)

Fazeli, A., Hage, W. J., Cheng, F. P., Voorhout, W. F., Marks, A., Bevers, M. M., and Colenbrander, B. (1997). Acrosome-intact boar spermatozoa initiate binding to the homologous zona pellucida in vitro. Biol. Reprod. 56, 430–438.
Acrosome-intact boar spermatozoa initiate binding to the homologous zona pellucida in vitro.Crossref | GoogleScholarGoogle Scholar | 9116143PubMed |

Finger, B. J., Harvey, A. J., Green, M. P., and Gardner, D. K. (2015). Combined parental obesity negatively impacts preimplantation mouse embryo development, kinetics, morphology and metabolism. Hum. Reprod. 30, 2084–2096.
Combined parental obesity negatively impacts preimplantation mouse embryo development, kinetics, morphology and metabolism.Crossref | GoogleScholarGoogle Scholar | 26089300PubMed |

Fleming, T. P., Velazquez, M. A., and Eckert, J. J. (2015). Embryos, DOHaD and David Barker. J. Dev. Orig. Health Dis. 6, 377–383.
Embryos, DOHaD and David Barker.Crossref | GoogleScholarGoogle Scholar | 25952250PubMed |

Foulds, C. E., Trevino, L. S., York, B., and Walker, C. L. (2017). Endocrine-disrupting chemicals and fatty liver disease. Nat. Rev. Endocrinol. 13, 445–457.
Endocrine-disrupting chemicals and fatty liver disease.Crossref | GoogleScholarGoogle Scholar | 28524171PubMed |

Fullston, T., McPherson, N. O., Owens, J. A., Kang, W. X., Sandeman, L. Y., and Lane, M. (2015). Paternal obesity induces metabolic and sperm disturbances in male offspring that are exacerbated by their exposure to an ‘obesogenic’ diet. Physiol. Rep. 3, e12336.
Paternal obesity induces metabolic and sperm disturbances in male offspring that are exacerbated by their exposure to an ‘obesogenic’ diet.Crossref | GoogleScholarGoogle Scholar | 25804263PubMed |

Gardner, D. K., and Lane, M. (2014). Mammalian preimplantation embryo culture. Methods Mol. Biol. 1092, 167–182.
Mammalian preimplantation embryo culture.Crossref | GoogleScholarGoogle Scholar | 24318820PubMed |

Gely-Pernot, A., Hao, C., Becker, E., Stuparevic, I., Kervarrec, C., Chalmel, F., Primig, M., Jegou, B., and Smagulova, F. (2015). The epigenetic processes of meiosis in male mice are broadly affected by the widely used herbicide atrazine. BMC Genomics 16, 885.
The epigenetic processes of meiosis in male mice are broadly affected by the widely used herbicide atrazine.Crossref | GoogleScholarGoogle Scholar | 26518232PubMed |

Gore, A. C., Chappell, V. A., Fenton, S. E., Flaws, J. A., Nadal, A., Prins, G. S., Toppari, J., and Zoeller, R. T. (2015). EDC-2: The Endocrine Society’s second scientific statement on endocrine-disrupting chemicals. Endocr. Rev. 36, E1–E150.
EDC-2: The Endocrine Society’s second scientific statement on endocrine-disrupting chemicals.Crossref | GoogleScholarGoogle Scholar | 26544531PubMed |

Graymore, M., Stagnitti, F., and Allinson, G. (2001). Impacts of atrazine in aquatic ecosystems. Environ. Int. 26, 483–495.
Impacts of atrazine in aquatic ecosystems.Crossref | GoogleScholarGoogle Scholar | 11485216PubMed |

Greenlee, A. R., Ellis, T. M., and Berg, R. L. (2004). Low-dose agrochemicals and lawn-care pesticides induce developmental toxicity in murine preimplantation embryos. Environ. Health Perspect. 112, 703–709.
Low-dose agrochemicals and lawn-care pesticides induce developmental toxicity in murine preimplantation embryos.Crossref | GoogleScholarGoogle Scholar | 15121514PubMed |

Hao, C., Gely-Pernot, A., Kervarrec, C., Boudjema, M., Becker, E., Khil, P., Tevosian, S., Jegou, B., and Smagulova, F. (2016). Exposure to the widely used herbicide atrazine results in deregulation of global tissue-specific RNA transcription in the third generation and is associated with a global decrease of histone trimethylation in mice. Nucleic Acids Res. 44, 9784–9802.
| 27655631PubMed |

Hase, Y., Tatsuno, M., Nishi, T., Kataoka, K., Kabe, Y., Yamaguchi, Y., Ozawa, N., Natori, M., Handa, H., and Watanabe, H. (2008). Atrazine binds to F1F0-ATP synthase and inhibits mitochondrial function in sperm. Biochem. Biophys. Res. Commun. 366, 66–72.
Atrazine binds to F1F0-ATP synthase and inhibits mitochondrial function in sperm.Crossref | GoogleScholarGoogle Scholar | 18060860PubMed |

Hayes, T. B., Stuart, A. A., Mendoza, M., Collins, A., Noriega, N., Vonk, A., Johnston, G., Liu, R., and Kpodzo, D. (2006). Characterization of atrazine-induced gonadal malformations in African clawed frogs (Xenopus laevis) and comparisons with effects of an androgen antagonist (cyproterone acetate) and exogenous estrogen (17 beta-estradiol): support for the demasculinization/feminization hypothesis. Environ. Health Perspect. 114, 134–141.
Characterization of atrazine-induced gonadal malformations in African clawed frogs (Xenopus laevis) and comparisons with effects of an androgen antagonist (cyproterone acetate) and exogenous estrogen (17 beta-estradiol): support for the demasculinization/feminization hypothesis.Crossref | GoogleScholarGoogle Scholar | 16818259PubMed |

Hayes, T. B., Khoury, V., Narayan, A., Nazir, M., Park, A., Brown, T., Adame, L., Chan, E., Buchholz, D., Stueve, T., Gallipeau, S., and Wake, D. B. (2010). Atrazine induces complete feminization and chemical castration in male African clawed frogs (Xenopus laevis). Proc. Natl Acad. Sci. USA 107, 4612–4617.
Atrazine induces complete feminization and chemical castration in male African clawed frogs (Xenopus laevis).Crossref | GoogleScholarGoogle Scholar | 20194757PubMed |

Hayes, T. B., Anderson, L. L., Beasley, V. R., de Solla, S. R., Iguchi, T., Ingraham, H., Kestemont, P., Kniewald, J., Kniewald, Z., Langlois, V. S., Luque, E. H., McCoy, K. A., Munoz-de-Toro, M., Oka, T., Oliveira, C. A., Orton, F., Ruby, S., Suzawa, M., Tavera-Mendoza, L. E., Trudeau, V. L., Victor-Costa, A. B., and Willingham, E. (2011). Demasculinization and feminization of male gonads by atrazine: consistent effects across vertebrate classes. J. Steroid Biochem. Mol. Biol. 127, 64–73.
Demasculinization and feminization of male gonads by atrazine: consistent effects across vertebrate classes.Crossref | GoogleScholarGoogle Scholar | 21419222PubMed |

Holloway, A. C., Anger, D. A., Crankshaw, D. J., Wu, M., and Foster, W. G. (2008). Atrazine-induced changes in aromatase activity in estrogen sensitive target tissues. J. Appl. Toxicol. 28, 260–270.
Atrazine-induced changes in aromatase activity in estrogen sensitive target tissues.Crossref | GoogleScholarGoogle Scholar | 17685393PubMed |

Huyghe, E., Plante, P., and Thonneau, P. F. (2007). Testicular cancer variations in time and space in Europe. Eur. Urol. 51, 621–628.
Testicular cancer variations in time and space in Europe.Crossref | GoogleScholarGoogle Scholar | 16963178PubMed |

Jin, Y., Wang, L., and Fu, Z. (2013). Oral exposure to atrazine modulates hormone synthesis and the transcription of steroidogenic genes in male peripubertal mice. Gen. Comp. Endocrinol. 184, 120–127.
Oral exposure to atrazine modulates hormone synthesis and the transcription of steroidogenic genes in male peripubertal mice.Crossref | GoogleScholarGoogle Scholar | 23376530PubMed |

Jin, Y., Lin, X., Miao, W., Wu, T., Shen, H., Chen, S., Li, Y., Pan, Q., and Fu, Z. (2014). Chronic exposure of mice to environmental endocrine-disrupting chemicals disturbs their energy metabolism. Toxicol. Lett. 225, 392–400.
Chronic exposure of mice to environmental endocrine-disrupting chemicals disturbs their energy metabolism.Crossref | GoogleScholarGoogle Scholar | 24440342PubMed |

Jin, Y., Lin, X., Miao, W., Wang, L., Wu, Y., and Fu, Z. (2015). Oral exposure of pubertal male mice to endocrine-disrupting chemicals alters fat metabolism in adult livers. Environ. Toxicol. 30, 1434–1444.
Oral exposure of pubertal male mice to endocrine-disrupting chemicals alters fat metabolism in adult livers.Crossref | GoogleScholarGoogle Scholar | 24916741PubMed |

Jørgensen, N., Joensen, U. N., Jensen, T. K., Jensen, M. B., Almstrup, K., Olesen, I. A., Juul, A., Andersson, A. M., Carlsen, E., Petersen, J. H., Toppari, J., and Skakkebaek, N. E. (2012). Human semen quality in the new millennium: a prospective cross-sectional population-based study of 4867 men. BMJ Open 2, e000990.
Human semen quality in the new millennium: a prospective cross-sectional population-based study of 4867 men.Crossref | GoogleScholarGoogle Scholar | 22761286PubMed |

Kasturi, S. S., Tannir, J., and Brannigan, R. E. (2008). The metabolic syndrome and male infertility. J. Androl. 29, 251–259.
The metabolic syndrome and male infertility.Crossref | GoogleScholarGoogle Scholar | 18222914PubMed |

Kay, J., and Weitzman, P. D. J. (1987). Krebs citric acid cycle: half a century and still turning. (Biochem Soc Symp vol 54). The Biochemical Society, London.

Kniewald, J., Osredecki, V., Gojmerac, T., Zechner, V., and Kniewald, Z. (1995). Effect of s-triazine compounds on testosterone metabolism in the rat prostate J. Appl. Toxicol. 15, 215–218.
Effect of s-triazine compounds on testosterone metabolism in the rat prostateCrossref | GoogleScholarGoogle Scholar | 7560742PubMed |

Kniewald, J., Jakominic, M., Tomljenovic, A., Simic, B., Romac, P., Vranesic, D., and Kniewald, Z. (2000). Disorders of male rat reproductive tract under the influence of atrazine. J. Appl. Toxicol. 20, 61–68.
Disorders of male rat reproductive tract under the influence of atrazine.Crossref | GoogleScholarGoogle Scholar | 10641017PubMed |

Komsky-Elbaz, A., and Roth, Z. (2017). Effect of the herbicide atrazine and its metabolite DACT on bovine sperm quality. Reprod. Toxicol. 67, 15–25.
Effect of the herbicide atrazine and its metabolite DACT on bovine sperm quality.Crossref | GoogleScholarGoogle Scholar | 27836535PubMed |

Lagarde, F., Beausoleil, C., Belcher, S. M., Belzunces, L. P., Emond, C., Guerbet, M., and Rousselle, C. (2015). Non-monotonic dose-response relationships and endocrine disruptors: a qualitative method of assessment. Environ. Health 14, 13.
Non-monotonic dose-response relationships and endocrine disruptors: a qualitative method of assessment.Crossref | GoogleScholarGoogle Scholar | 25971433PubMed |

Lane, M., Robker, R. L., and Robertson, S. A. (2014). Parenting from before conception. Science 345, 756–760.
Parenting from before conception.Crossref | GoogleScholarGoogle Scholar | 25124428PubMed |

Lim, S., Ahn, S. Y., Song, I. C., Chung, M. H., Jang, H. C., Park, K. S., Lee, K. U., Pak, Y. K., and Lee, H. K. (2009). Chronic exposure to the herbicide, atrazine, causes mitochondrial dysfunction and insulin resistance. PLoS One 4, e5186.
Chronic exposure to the herbicide, atrazine, causes mitochondrial dysfunction and insulin resistance.Crossref | GoogleScholarGoogle Scholar | 19787048PubMed |

Lu, J. C., Huang, Y. F., and Lu, N. Q. (2010). WHO Laboratory Manual for the Examination and Processing of Human Semen: its applicability to andrology laboratories in China. Zhonghua Nan Ke Xue 16, 867–871.
| 21243747PubMed |

McBirney, M., King, S. E., Pappalardo, M., Houser, E., Unkefer, M., Nilsson, E., Sadler-Riggleman, I., Beck, D., Winchester, P., and Skinner, M. K. (2017). Atrazine induced epigenetic transgenerational inheritance of disease, lean phenotype and sperm epimutation pathology biomarkers. PLoS One 12, e0184306.
Atrazine induced epigenetic transgenerational inheritance of disease, lean phenotype and sperm epimutation pathology biomarkers.Crossref | GoogleScholarGoogle Scholar | 28931070PubMed |

McLaren, A. (2000). Establishment of the germ cell lineage in mammals. J. Cell. Physiol. 182, 141–143.
Establishment of the germ cell lineage in mammals.Crossref | GoogleScholarGoogle Scholar | 10623876PubMed |

Mizota, K., and Ueda, H. (2006). Endocrine disrupting chemical atrazine causes degranulation through Gq/11 protein-coupled neurosteroid receptor in mast cells. Toxicol. Sci. 90, 362–368.
Endocrine disrupting chemical atrazine causes degranulation through Gq/11 protein-coupled neurosteroid receptor in mast cells.Crossref | GoogleScholarGoogle Scholar | 16381660PubMed |

Moore, A., and Waring, C. P. (1998). Mechanistic effects of a triazine pesticide on reproductive endocrine function in mature male Atlantic salmon (Salmo salar L.) Pestic. Biochem. Physiol. 62, 41–50.
Mechanistic effects of a triazine pesticide on reproductive endocrine function in mature male Atlantic salmon (Salmo salar L.)Crossref | GoogleScholarGoogle Scholar |

National Health and Medical Research Council (NHMRC) (2013). ‘Australian Code for the Care and Use of Animals for Scientific Purposes.’ (Australia: NHMRC)

National Health and Medical Research Council (NHMRC) and National Resource Management Ministerial Council (NRMMC) (2011). Australian Drinking Water Guidelines Paper 6 National Water Quality Management Strategy. National Health and Medical Research Council, National Resource Management Ministerial Council, Commonwealth of Australia, Canberra. Available at https://nhmrc.gov.au/about-us/publications/australian-drinking-water-guidelines#block-views-block-file-attachments-content-block-1

Oakberg, E. F. (1956). Duration of spermatogenesis in the mouse and timing of stages of the cycle of the seminiferous epithelium. Am. J. Anat. 99, 507–516.
Duration of spermatogenesis in the mouse and timing of stages of the cycle of the seminiferous epithelium.Crossref | GoogleScholarGoogle Scholar | 13402729PubMed |

Osadchuk, L. V. (2016). Spermatogenesis parameters and testosterone production at puberty as predictors of testicular functional activity in mice (Mus musculus). J. Evol. Biochem. Physiol. 52, 475–481.
Spermatogenesis parameters and testosterone production at puberty as predictors of testicular functional activity in mice (Mus musculus).Crossref | GoogleScholarGoogle Scholar |

Palmer, N. O., Bakos, H. W., Fullston, T., and Lane, M. (2012). Impact of obesity on male fertility, sperm function and molecular composition. Spermatogenesis 2, 253–263.
Impact of obesity on male fertility, sperm function and molecular composition.Crossref | GoogleScholarGoogle Scholar | 23248766PubMed |

Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, e45.
A new mathematical model for relative quantification in real-time RT-PCR.Crossref | GoogleScholarGoogle Scholar | 11328886PubMed |

Pintado, B., de la Fuente, J., and Roldan, E. R. (2000). Permeability of boar and bull spermatozoa to the nucleic acid stains propidium iodide or Hoechst 33258, or to eosin: accuracy in the assessment of cell viability. J. Reprod. Fertil. 118, 145–152.
| 10793636PubMed |

Pogrmic, K., Fa, S., Dakic, V., Kaisarevic, S., and Kovacevic, R. (2009). Atrazine oral exposure of peripubertal male rats downregulates steroidogenesis gene expression in Leydig cells. Toxicol. Sci. 111, 189–197.
Atrazine oral exposure of peripubertal male rats downregulates steroidogenesis gene expression in Leydig cells.Crossref | GoogleScholarGoogle Scholar | 19541795PubMed |

Pohlert, T. (2014). ‘The Pairwise Multiple Comparison of Mean Ranks Package.’ Available at: https://cran.r-project.org/web/packages/PMCMR/index.html

R Core Team (2017). ‘R: A Language and Environment for Statistical Computing.’ (R Foundation for Statistical Computing: Vienna.)

Radcliffe, J. C. (2002). ‘Pesticide Use in Australia.’ (Australian Academy of Technological Sciences and Engineering). Available at: www.atse.org.au

Rey, F., Gonzalez, M., Zayas, M. A., Stoker, C., Durando, M., Luque, E. H., and Munoz-de-Toro, M. (2009). Prenatal exposure to pesticides disrupts testicular histoarchitecture and alters testosterone levels in male Caiman latirostris. Gen. Comp. Endocrinol. 162, 286–292.
Prenatal exposure to pesticides disrupts testicular histoarchitecture and alters testosterone levels in male Caiman latirostris.Crossref | GoogleScholarGoogle Scholar | 19364509PubMed |

Riffle, B. W., Klinefelter, G. R., Cooper, R. L., Winnik, W. M., Swank, A., Jayaraman, S., Suarez, J., Best, D., and Laws, S. C. (2014). Novel molecular events associated with altered steroidogenesis induced by exposure to atrazine in the intact and castrate male rat. Reprod. Toxicol. 47, 59–69.
Novel molecular events associated with altered steroidogenesis induced by exposure to atrazine in the intact and castrate male rat.Crossref | GoogleScholarGoogle Scholar | 24887032PubMed |

Robb, G. W., Amann, R. P., and Killian, G. J. (1978). Daily sperm production and epididymal sperm reserves of pubertal and adult rats. J. Reprod. Fertil. 54, 103–107.
Daily sperm production and epididymal sperm reserves of pubertal and adult rats.Crossref | GoogleScholarGoogle Scholar | 712697PubMed |

Roberge, M., Hakk, H., and Larsen, G. (2004). Atrazine is a competitive inhibitor of phosphodiesterase but does not affect the estrogen receptor. Toxicol. Lett. 154, 61–68.
Atrazine is a competitive inhibitor of phosphodiesterase but does not affect the estrogen receptor.Crossref | GoogleScholarGoogle Scholar | 15475179PubMed |

Sagarkar, S., Gandhi, D., Devi, S. S., Sakharkar, A., and Kapley, A. (2016). Atrazine exposure causes mitochondrial toxicity in liver and muscle cell lines. Indian J. Pharmacol. 48, 200–207.
Atrazine exposure causes mitochondrial toxicity in liver and muscle cell lines.Crossref | GoogleScholarGoogle Scholar | 27114639PubMed |

Scarpulla, R. C., Vega, R. B., and Kelly, D. P. (2012). Transcriptional integration of mitochondrial biogenesis. Trends Endocrinol. Metab. 23, 459–466.
Transcriptional integration of mitochondrial biogenesis.Crossref | GoogleScholarGoogle Scholar | 22817841PubMed |

Schneider, C. A., Rasband, W. S., and Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675.
NIH Image to ImageJ: 25 years of image analysis.Crossref | GoogleScholarGoogle Scholar | 22930834PubMed |

Skakkebaek, N. E. (2002). Endocrine disrupters and testicular dysgenesis syndrome. Horm. Res. 57, 43.
| 12065926PubMed |

Song, Y., Jia, Z. C., Chen, J. Y., Hu, J. X., and Zhang, L. S. (2014). Toxic effects of atrazine on reproductive system of male rats. Biomed. Environ. Sci. 27, 281–288.
| 24758756PubMed |

Spanò, L., Tyler, C. R., van Aerle, R., Devos, P., Mandiki, S. N., Silvestre, F., Thomé, J. P., and Kestemont, P. (2004). Effects of atrazine on sex steroid dynamics, plasma vitellogenin concentration and gonad development in adult goldfish (Carassius auratus). Aquat. Toxicol. 66, 369–379.
Effects of atrazine on sex steroid dynamics, plasma vitellogenin concentration and gonad development in adult goldfish (Carassius auratus).Crossref | GoogleScholarGoogle Scholar | 15168945PubMed |

Stanko, J. P., Enoch, R. R., Rayner, J. L., Davis, C. C., Wolf, D. C., Malarkey, D. E., and Fenton, S. E. (2010). Effects of prenatal exposure to a low dose atrazine metabolite mixture on pubertal timing and prostate development of male Long-Evans rats. Reprod. Toxicol. 30, 540–549.
Effects of prenatal exposure to a low dose atrazine metabolite mixture on pubertal timing and prostate development of male Long-Evans rats.Crossref | GoogleScholarGoogle Scholar | 20727709PubMed |

Stepien, K. M., Heaton, R., Rankin, S., Murphy, A., Bentley, J., Sexton, D., and Hargreaves, I. P. (2017). Evidence of oxidative stress and secondary mitochondrial dysfunction in metabolic and non-metabolic disorders. J. Clin. Med. 6, 71.
Evidence of oxidative stress and secondary mitochondrial dysfunction in metabolic and non-metabolic disorders.Crossref | GoogleScholarGoogle Scholar |

Stoker, T. E., Laws, S. C., Guidici, D. L., and Cooper, R. L. (2000). The effect of atrazine on puberty in male Wistar rats: an evaluation in the protocol for the assessment of pubertal development and thyroid function. Toxicol. Sci. 58, 50–59.
The effect of atrazine on puberty in male Wistar rats: an evaluation in the protocol for the assessment of pubertal development and thyroid function.Crossref | GoogleScholarGoogle Scholar | 11053540PubMed |

Stoker, T. E., Guidici, D. L., Laws, S. C., and Cooper, R. L. (2002). The effects of atrazine metabolites on puberty and thyroid function in the male Wistar rat. Toxicol. Sci. 67, 198–206.
The effects of atrazine metabolites on puberty and thyroid function in the male Wistar rat.Crossref | GoogleScholarGoogle Scholar | 12011479PubMed |

Susiarjo, M., Xin, F., Bansal, A., Stefaniak, M., Li, C., Simmons, R. A., and Bartolomei, M. S. (2015). Bisphenol A exposure disrupts metabolic health across multiple generations in the mouse. Endocrinology 156, 2049–2058.
Bisphenol A exposure disrupts metabolic health across multiple generations in the mouse.Crossref | GoogleScholarGoogle Scholar | 25807043PubMed |

Suzawa, M., and Ingraham, H. A. (2008). The herbicide atrazine activates endocrine gene networks via non-steroidal NR5A nuclear receptors in fish and mammalian cells. PLoS One 3, e2117.
The herbicide atrazine activates endocrine gene networks via non-steroidal NR5A nuclear receptors in fish and mammalian cells.Crossref | GoogleScholarGoogle Scholar | 18461179PubMed |

Swan, S. H. (2003). Semen quality in relation to pesticide exposure in Missouri males. Mo. Med. 100, 554.
| 14699813PubMed |

Swan, S. H. (2006). Semen quality in fertile US men in relation to geographical area and pesticide exposure. Int. J. Androl. 29, 62–68.
Semen quality in fertile US men in relation to geographical area and pesticide exposure.Crossref | GoogleScholarGoogle Scholar | 16466525PubMed |

Swan, S. H., Elkin, E. P., and Fenster, L. (2000). The question of declining sperm density revisited: an analysis of 101 studies published 1934–1996. Environ. Health Perspect. 108, 961–966.
The question of declining sperm density revisited: an analysis of 101 studies published 1934–1996.Crossref | GoogleScholarGoogle Scholar | 11049816PubMed |

Toppari, J., Kaleva, M., and Virtanen, H. E. (2001). Trends in the incidence of cryptorchidism and hypospadias, and methodological limitations of registry-based data. Hum. Reprod. Update 7, 282–286.
Trends in the incidence of cryptorchidism and hypospadias, and methodological limitations of registry-based data.Crossref | GoogleScholarGoogle Scholar | 11392374PubMed |

US Environmental Protection Agency (EPA) (2003). ‘Interim Reregistration Eligibility Decision for Atrazine, 2005.’ (US EPA.)

Vandenberg, L. N., Colborn, T., Hayes, T. B., Heindel, J. J., Jacobs, D. R., Lee, D. H., Shioda, T., Soto, A. M., vom Saal, F. S., Welshons, W. V., Zoeller, R. T., and Myers, J. P. (2012). Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses. Endocr. Rev. 33, 378–455.
Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses.Crossref | GoogleScholarGoogle Scholar | 22419778PubMed |

Victor-Costa, A. B., Bandeira, S. M., Oliveira, A. G., Mahecha, G. A., and Oliveira, C. A. (2010). Changes in testicular morphology and steroidogenesis in adult rats exposed to atrazine. Reprod. Toxicol. 29, 323–331.
Changes in testicular morphology and steroidogenesis in adult rats exposed to atrazine.Crossref | GoogleScholarGoogle Scholar | 20045047PubMed |

World Health Organization (WHO) (2010a). 2.7 Sperm numbers. In ‘WHO Laboratory Manual for the Examination and Processing of Human Semen’. 5th edn. (Ed. T. G. Cooper.) pp. 33–44. (WHO: Switzerland)

World Health Organization (WHO) (2010b). 2.5 Sperm motility. In ‘WHO Laboratory Manual for the Examination and Processing of Human Semen’. 5th edn. (Ed. T. G. Cooper.) pp. 21–26. (WHO: Switzerland)