Sex determining region Y (SRY) sequencing and non-invasive molecular sexing in three wild species: brown (Parahyaena brunnea) and spotted (Crocuta crocuta) hyenas and aardvark (Orycteropus afer)
Miluse Vozdova A B , Svatava Kubickova A and Jiri Rubes AA Central European Institute of Technology – Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic.
B Corresponding author. Email: vozdova@vri.cz
Reproduction, Fertility and Development 31(8) 1419-1423 https://doi.org/10.1071/RD18468
Submitted: 15 November 2018 Accepted: 24 February 2019 Published: 11 April 2019
Abstract
Non-invasive molecular sexing methods are useful in captive breeding programs and field studies; these methods enable sex identification without immobilisation or stressful handling of animals. We developed a method enabling fast and reliable sex identification in three species with limited external sexual dimorphism: the brown and spotted hyenas and the aardvark. We used the sex determining region Y (SRY) gene as the male-specific sequence and the c-myc gene, highly conserved among mammals, as the control sequence present in both sexes. Primers designed on the basis of the feline and human SRY gene enabled us to amplify and sequence the SRY gene fragment in hyenas and the aardvark. Subsequently, we used specific primers designed on the basis of the newly obtained sequences for sex determination in two brown hyenas, three spotted hyenas and six aardvarks. The sequences of the SRY gene fragments were further studied. Interspecies comparisons revealed high similarity in SRY sequences between both hyena species, as well as their relationships with the Felidae lineage. The aardvark, as the only species of the order Tubulidentata (Afrotheria), showed SRY gene similarities with Sirenia and Primates. Knowledge of phylogenetic relationships can be beneficial in genetic studies focused on species with limited sequence data.
Additional keywords: non-invasive sex identification, sexual dimorphism.
References
Ahlering, M. A., Hailer, F., Roberts, M. T., and Foley, C. (2011). A simple and accurate method to sex savannah, forest and Asian elephants using noninvasive sampling techniques. Mol. Ecol. Resour. 11, 831–834.| A simple and accurate method to sex savannah, forest and Asian elephants using noninvasive sampling techniques.Crossref | GoogleScholarGoogle Scholar | 21635697PubMed |
Arnason, U., Gullberg, A., and Janke, A. (1999). The mitochondrial DNA molecule of the aardvark, Orycteropus afer, and the position of the Tubulidentata in the eutherian tree. Proc. Biol. Sci. 266, 339–345.
| The mitochondrial DNA molecule of the aardvark, Orycteropus afer, and the position of the Tubulidentata in the eutherian tree.Crossref | GoogleScholarGoogle Scholar | 10097395PubMed |
Bidon, T., Frosch, C., Eiken, H. G., Kutschera, V. E., Hagen, S. B., Aarnes, S. G., Fain, S. R., Janke, A., and Hailer, F. (2013). A sensitive and specific multiplex PCR approach for sex identification of ursine and tremarctine bears suitable for non-invasive samples. Mol. Ecol. Resour. 13, 362–368.
| A sensitive and specific multiplex PCR approach for sex identification of ursine and tremarctine bears suitable for non-invasive samples.Crossref | GoogleScholarGoogle Scholar | 23347586PubMed |
Cunha, G. R., Place, N. J., Baskin, L., Conley, A., Weldele, M., Cunha, T. J., Wang, Y. Z., Cao, M., and Glickman, S. E. (2005). The ontogeny of the urogenital system of the spotted hyena (Crocuta crocuta Erxleben). Biol. Reprod. 73, 554–564.
| The ontogeny of the urogenital system of the spotted hyena (Crocuta crocuta Erxleben).Crossref | GoogleScholarGoogle Scholar | 15917348PubMed |
Ennis, S., and Gallagher, T. F. (1994). A PCR-based sex-determination assay in cattle based on the bovine amelogenin locus. Anim. Genet. 25, 425–427.
| A PCR-based sex-determination assay in cattle based on the bovine amelogenin locus.Crossref | GoogleScholarGoogle Scholar | 7695123PubMed |
Fernando, P., and Melnick, D. J. (2001). Molecular sexing eutherian mammals. Mol. Ecol. Notes 1, 350–353.
| Molecular sexing eutherian mammals.Crossref | GoogleScholarGoogle Scholar |
Flynn, J. J., Finarelli, J. A., Zehr, S., Hsu, J., and Nedbal, M. A. (2005). Molecular phylogeny of the Carnivora (Mammalia): assessing the impact of increased sampling on resolving enigmatic relationships. Syst. Biol. 54, 317–337.
| Molecular phylogeny of the Carnivora (Mammalia): assessing the impact of increased sampling on resolving enigmatic relationships.Crossref | GoogleScholarGoogle Scholar | 16012099PubMed |
Glickman, S. E., Short, R. V., and Renfree, M. B. (2005). Sexual differentiation in three unconventional mammals: spotted hyenas, elephants and tammar wallabies. Horm. Behav. 48, 403–417.
| Sexual differentiation in three unconventional mammals: spotted hyenas, elephants and tammar wallabies.Crossref | GoogleScholarGoogle Scholar | 16197946PubMed |
Glickman, S. E., Cunha, G. R., Drea, C. M., Conley, A., and Place, N. J. (2006). Mammalian sexual differentiation: lessons from the spotted hyena. Trends Endocrinol. Metab. 17, 349–356.
| Mammalian sexual differentiation: lessons from the spotted hyena.Crossref | GoogleScholarGoogle Scholar | 17010637PubMed |
Greggor, A. L., Vicino, G. A., Swaisgood, R. R., Fidgett, A., Brenner, D., Kinney, M. E., Farabaugh, S., Masuda, B., and Lamberski, N. (2018). Animal welfare in conservation breeding: applications and challenges. Front. Vet. Sci. 5, 323.
| Animal welfare in conservation breeding: applications and challenges.Crossref | GoogleScholarGoogle Scholar | 30631770PubMed |
Gurgul, A., Radko, A., and Słota, E. (2010). Characteristics of X- and Y-chromosome specific regions of the amelogenin gene and a PCR-based method for sex identification in red deer (Cervus elaphus). Mol. Biol. Rep. 37, 2915–2918.
| Characteristics of X- and Y-chromosome specific regions of the amelogenin gene and a PCR-based method for sex identification in red deer (Cervus elaphus).Crossref | GoogleScholarGoogle Scholar | 19809889PubMed |
Kiik, K., Maran, T., Nagl, A., Ashford, K., and Tammaru, T. (2013). The causes of the low breeding success of European mink (Mustela lutreola) in captivity. Zoo Biol. 32, 387–393.
| The causes of the low breeding success of European mink (Mustela lutreola) in captivity.Crossref | GoogleScholarGoogle Scholar | 23426800PubMed |
Kim, B. J., Lee, Y.-S., An, J., Park, H.-C., Okumura, H., Lee, H., and Min, M.-S. (2008). Species and sex identification of the Korean goral (Nemorhaedus caudatus) by molecular analysis of non-invasive samples. Mol. Cells 26, 314–318.
| 18679054PubMed |
Kingdon, J., Happold, D., Butynski, T., Hoffmann, M., Happold, M., and Kalina, J. (eds.) (2013). ‘Mammals of Africa. Volume I Introductory Chapters and Afrotheria.’ (Bloomsbury Publishing: London.)
Koehler, C. E., and Richardson, P. R. K. (1990). Proteles cristatus. Mamm. Species 363, 1–6.
| Proteles cristatus.Crossref | GoogleScholarGoogle Scholar |
Koepfli, K.-P., Jenks, S. M., Eizirik, E., Zahirpour, T., Van Valkenburgh, B., and Wayne, R. K. (2006). Molecular systematics of the Hyaenidae: relationships of a relictual lineage resolved by a molecular supermatrix. Mol. Phylogenet. Evol. 38, 603–620.
| Molecular systematics of the Hyaenidae: relationships of a relictual lineage resolved by a molecular supermatrix.Crossref | GoogleScholarGoogle Scholar | 16503281PubMed |
Liu, X., Yang, Y. Y., Wang, X. M., Liu, Z. S., Wang, Z. H., and Ding, Y. Z. (2015). Sex identification based on AMEL gene PCR amplification from blue sheep (Pseudois nayaur) fecal DNA samples. Genet. Mol. Res. 14, 9045–9052.
| Sex identification based on AMEL gene PCR amplification from blue sheep (Pseudois nayaur) fecal DNA samples.Crossref | GoogleScholarGoogle Scholar | 26345836PubMed |
Murata, K., and Masuda, R. (1996). Gender determination of the Linne’s two-toed sloth (Choloepus didactylus) using SRY amplified from hair. J. Vet. Med. Sci. 58, 1157–1159.
| Gender determination of the Linne’s two-toed sloth (Choloepus didactylus) using SRY amplified from hair.Crossref | GoogleScholarGoogle Scholar | 8996696PubMed |
Owens, D., and Owens, M. (1996). Social dominance and reproductive patterns in brown hyaenas, Hyaena brunnea, of the central Kalahari desert. Anim. Behav. 51, 535–551.
| Social dominance and reproductive patterns in brown hyaenas, Hyaena brunnea, of the central Kalahari desert.Crossref | GoogleScholarGoogle Scholar |
Peppin, L., McEwing, R., Ogden, R., Hermes, R., Harper, C., Guthrie, A., and Carvalho, G. R. (2010). Molecular sexing of African rhinoceros. Conserv. Genet. 11, 1181–1184.
| Molecular sexing of African rhinoceros.Crossref | GoogleScholarGoogle Scholar |
Rose, P. E., and Croft, D. P. (2018). Quantifying the social structure of a large captive flock of greater flamingos (Phoenicopterus roseus): potential implications for management in captivity. Behav. Processes 150, 66–74.
| Quantifying the social structure of a large captive flock of greater flamingos (Phoenicopterus roseus): potential implications for management in captivity.Crossref | GoogleScholarGoogle Scholar | 29522841PubMed |
Sembon, S., Suzuki, S., Fuchimoto, D., Iwamoto, M., Kawarasaki, T., and Onishi, A. (2008). Sex identification of pigs using polymerase chain reaction amplification of the amelogenin gene. Zygote 16, 327–332.
| Sex identification of pigs using polymerase chain reaction amplification of the amelogenin gene.Crossref | GoogleScholarGoogle Scholar | 18616845PubMed |
Stoops, M. A., Winget, G. D., DeChant, C. J., Ball, R. L., and Roth, T. L. (2018). Early fetal sexing in the rhinoceros by detection of male-specific genes in maternal serum. Mol. Reprod. Dev. 85, 197–204.
| Early fetal sexing in the rhinoceros by detection of male-specific genes in maternal serum.Crossref | GoogleScholarGoogle Scholar | 29437259PubMed |
Taberlet, P., Mattock, H., Dubois-Paganon, C., and Bouvet, J. (1993). Sexing free-ranging brown bears Ursus arctos using hairs found in the field. Mol. Ecol. 2, 399–403.
| Sexing free-ranging brown bears Ursus arctos using hairs found in the field.Crossref | GoogleScholarGoogle Scholar | 8162229PubMed |
Takami, K., Yoshida, M., Yoshida, Y., and Kojima, Y. (1998). Sex determination in giant anteater (Myrmecophaga tridactyla) using hair roots by polymerase chain reaction amplification. J. Reprod. Dev. 44, 73–78.
| Sex determination in giant anteater (Myrmecophaga tridactyla) using hair roots by polymerase chain reaction amplification.Crossref | GoogleScholarGoogle Scholar |
Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680.
| CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice.Crossref | GoogleScholarGoogle Scholar | 7984417PubMed |
Vanpé, C., Salmona, J., Pais, I., Kun-Rodrigues, C., Pichon, C., Meyler, S. V., Rabarivola, C., Lewis, R., Ibouroi, M. T., and Chikhi, L. (2013). Noninvasive molecular sexing: an evaluation and validation of the SRY- and amelogenin-based method in three new lemur species. Am. J. Phys. Anthropol. 150, 492–503.
| Noninvasive molecular sexing: an evaluation and validation of the SRY- and amelogenin-based method in three new lemur species.Crossref | GoogleScholarGoogle Scholar | 23359239PubMed |
Wagner, A. P., Frank, L. G., Creel, S., and Coscia, E. M. (2007). Transient genital abnormalities in striped hyenas (Hyaena hyaena). Horm. Behav. 51, 626–632.
| Transient genital abnormalities in striped hyenas (Hyaena hyaena).Crossref | GoogleScholarGoogle Scholar | 17442316PubMed |
Wojick, K. B., Langan, J. N., Terio, K. A., Righton, A., and Drees, R. (2018). Anatomy, histology, and diagnostic imaging of the reproductive tract of male aardvark (Orycteropus afer). J. Zoo Wildl. Med. 49, 648–655.
| Anatomy, histology, and diagnostic imaging of the reproductive tract of male aardvark (Orycteropus afer).Crossref | GoogleScholarGoogle Scholar | 30212348PubMed |
Xu, X., Lin, L., Zhang, Z., Shen, F., Zhang, L., and Yue, B. (2008). A reliable, non-invasive PCR method for giant panda (Ailuropoda melanoleuca) sex identification. Conserv. Genet. 9, 739–741.
| A reliable, non-invasive PCR method for giant panda (Ailuropoda melanoleuca) sex identification.Crossref | GoogleScholarGoogle Scholar |