Prenatal androgen excess alters the uterine peroxisome proliferator-activated receptor (PPAR) system
Silvana R. Ferreira A , Leandro M. Vélez A , Maria F. Heber A , Giselle A. Abruzzese A and Alicia B. Motta A BA Laboratorio de Fisio-Patología Ovárica, Centro de Estudios Farmacológicos y Botánicos, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, C1121 ABG, Buenos Aires, Argentina.
B Corresponding author. Email: aliciabmotta@yahoo.com.ar
Reproduction, Fertility and Development 31(8) 1401-1409 https://doi.org/10.1071/RD18432
Submitted: 29 August 2018 Accepted: 18 February 2019 Published: 1 May 2019
Abstract
It is known that androgen excess induces changes in fetal programming that affect several physiological pathways. Peroxisome proliferator-activated receptors (PPARs) α, δ and γ are key mediators of female reproductive functions, in particular in uterine tissues. Thus, we aimed to study the effect of prenatal hyperandrogenisation on the uterine PPAR system. Rats were treated with 2 mg testosterone from Day 16 to 19 of pregnancy. Female offspring (PH group) were followed until 90 days of life, when they were killed. The PH group exhibited an anovulatory phenotype. We quantified uterine mRNA levels of PPARα (Ppara), PPARδ (Ppard), PPARγ (Pparg), their regulators peroxisome proliferator-activated receptor gamma coactivator 1-alpha (Ppargc1a) and nuclear receptor co-repressor 1 (Ncor1) and cyclo-oxygenase (COX)-2 (Ptgs2), and assessed the lipid peroxidation (LP) index and levels of glutathione (GSH) and prostaglandin (PG) E2. The PH group showed decreased levels of all uterine PPAR isoforms compared with the control group. In addition, PGE2 and Ptgs2 levels were increased in the PH group, which led to a uterine proinflammatory environment, as was LP, which led to a pro-oxidant status that GSH was not able to compensate for. These results suggest that prenatal exposure to androgen excess has a fetal programming effect that affects the gene expression of PPAR isoforms, and creates a misbalanced oxidant–antioxidant state and a proinflammatory status.
Additional keywords: endometrium, fetal programming, prenatal hyperandrogenisation, uterus.
References
Abbott, D. H., Bruns, C. R., Barnett, D. K., Dunaif, A., Goodfriend, T. L., Dumesic, D. A., and Tarantal, A. F. (2010). Experimentally induced gestational androgen excess disrupts glucoregulation in rhesus monkey dams and their female offspring. Am. J. Physiol. Endocrinol. Metab. 299, E741–E751.| Experimentally induced gestational androgen excess disrupts glucoregulation in rhesus monkey dams and their female offspring.Crossref | GoogleScholarGoogle Scholar | 20682841PubMed |
Abruzzese, G. A., Heber, M. F., Ferreira, S. R., Velez, L. M., Reynoso, R., Pignataro, O. P., and Motta, A. B. (2016). Prenatal hyperandrogenism induces alterations that affect liver lipid metabolism. J. Endocrinol. 230, 67–79.
| Prenatal hyperandrogenism induces alterations that affect liver lipid metabolism.Crossref | GoogleScholarGoogle Scholar | 27179108PubMed |
Abruzzese, G. A., Crisosto, N., De Grava Kempinas, W., and Sotomayor-Zárate, R. (2018). Developmental programming of the female neuroendocrine system by steroids. J. Neuroendocrinol. 30, e12632.
| Developmental programming of the female neuroendocrine system by steroids.Crossref | GoogleScholarGoogle Scholar | 29968423PubMed |
Adelizzi, R. A. (1999). COX-1 and COX-2 in health and disease. J. Am. Osteopath. Assoc. 99, S7–S12.
| COX-1 and COX-2 in health and disease.Crossref | GoogleScholarGoogle Scholar | 10643175PubMed |
Agarwal, A., Gupta, S., and Sharma, R. K. (2005). Role of oxidative stress in female reproduction. Reprod. Biol. Endocrinol. 3, 28.
| Role of oxidative stress in female reproduction.Crossref | GoogleScholarGoogle Scholar | 16018814PubMed |
Amalfi, S., Velez, L. M., Heber, M. F., Vighi, S., Ferreira, S. R., Orozco, A. V., Pignataro, O., and Motta, A. B. (2012). Prenatal hyperandrogenization induces metabolic and endocrine alterations which depend on the levels of testosterone exposure. PLoS One 7, e37658.
| Prenatal hyperandrogenization induces metabolic and endocrine alterations which depend on the levels of testosterone exposure.Crossref | GoogleScholarGoogle Scholar | 22655062PubMed |
An, H. J., Lee, B., Kim, S. M., Kim, D. H., Chung, K. W., Ha, S. G., Park, K. C., Park, Y. J., Kim, S. J., Yun, H. Y., Chun, P., Yu, B. P., Moon, H. R., and Chung, H. Y. (2018). A PPAR pan agonist, MHY2013 alleviates age-related hepatic lipid accumulation by promoting fatty acid oxidation and suppressing inflammation. Biol. Pharm. Bull. 41, 29–35.
| A PPAR pan agonist, MHY2013 alleviates age-related hepatic lipid accumulation by promoting fatty acid oxidation and suppressing inflammation.Crossref | GoogleScholarGoogle Scholar | 29311481PubMed |
Anagnostis, P., Tarlatzis, B. C., and Kauffman, R. P. (2018). Polycystic ovarian syndrome (PCOS): long-term metabolic consequences. Metabolism 86, 33–43.
| Polycystic ovarian syndrome (PCOS): long-term metabolic consequences.Crossref | GoogleScholarGoogle Scholar | 29024702PubMed |
Avellaira, C., Villavicencio, A., Bacallao, K., Gabler, F., Wells, P., Romero, C., and Vega, M. (2006). Expression of molecules associated with tissue homeostasis in secretory endometria from untreated women with polycystic ovary syndrome. Hum. Reprod. 21, 3116–3121.
| Expression of molecules associated with tissue homeostasis in secretory endometria from untreated women with polycystic ovary syndrome.Crossref | GoogleScholarGoogle Scholar | 17008325PubMed |
Aytan, H., Caliskan, A. C., Demirturk, F., Aytan, P., and Koseoglu, D. R. (2007). Peroxisome proliferator-activated receptor-gamma agonist rosiglitazone reduces the size of experimental endometriosis in the rat model. Aust. N. Z. J. Obstet. Gynaecol. 47, 321–325.
| Peroxisome proliferator-activated receptor-gamma agonist rosiglitazone reduces the size of experimental endometriosis in the rat model.Crossref | GoogleScholarGoogle Scholar | 17627689PubMed |
Bacallao, K., Leon, L., Gabler, F., Soto, E., Romero, C., Valladares, L., and Vega, M. (2008). In situ estrogen metabolism in proliferative endometria from untreated women with polycystic ovarian syndrome with and without endometrial hyperplasia. J. Steroid Biochem. Mol. Biol. 110, 163–169.
| In situ estrogen metabolism in proliferative endometria from untreated women with polycystic ovarian syndrome with and without endometrial hyperplasia.Crossref | GoogleScholarGoogle Scholar | 18467089PubMed |
Balen, A. (2001). Polycystic ovary syndrome and cancer. Hum. Reprod. Update 7, 522–525.
| Polycystic ovary syndrome and cancer.Crossref | GoogleScholarGoogle Scholar | 11727859PubMed |
Barak, Y., Sadovsky, Y., and Shalom-Barak, T. (2008). PPAR signaling in placental development and function. PPAR Res. 2008, 142082.
| PPAR signaling in placental development and function.Crossref | GoogleScholarGoogle Scholar | 18288278PubMed |
Bartsch, H., and Nair, J. (2006). Chronic inflammation and oxidative stress in the genesis and perpetuation of cancer: role of lipid peroxidation, DNA damage, and repair. Langenbecks Arch. Surg. 391, 499–510.
| Chronic inflammation and oxidative stress in the genesis and perpetuation of cancer: role of lipid peroxidation, DNA damage, and repair.Crossref | GoogleScholarGoogle Scholar | 16909291PubMed |
Bogacka, I., and Bogacki, M. (2011). The quantitative expression of peroxisome proliferator activated receptor (PPAR) genes in porcine endometrium through the estrous cycle and early pregnancy. J. Physiol. Pharmacol. 62, 559–565.
| 22204804PubMed |
Bogacka, I., Kurzynska, A., Bogacki, M., and Chojnowska, K. (2015). Peroxisome proliferator-activated receptors in the regulation of female reproductive functions. Folia Histochem. Cytobiol. 53, 189–200.
| Peroxisome proliferator-activated receptors in the regulation of female reproductive functions.Crossref | GoogleScholarGoogle Scholar | 26339984PubMed |
Cammas, L., Reinaud, P., Bordas, N., Dubois, O., Germain, G., and Charpigny, G. (2006). Developmental regulation of prostacyclin synthase and prostacyclin receptors in the ovine uterus and conceptus during the peri-implantation period. Reproduction 131, 917–927.
| Developmental regulation of prostacyclin synthase and prostacyclin receptors in the ovine uterus and conceptus during the peri-implantation period.Crossref | GoogleScholarGoogle Scholar | 16672356PubMed |
Cohen, R. N. (2006). Nuclear receptor corepressors and PPARγ. Nucl. Recept. Signal. 4, e003.
| Nuclear receptor corepressors and PPARγ.Crossref | GoogleScholarGoogle Scholar | 16604166PubMed |
Coyne, G. S., Kenny, D. A., Childs, S., Sreenan, J. M., and Waters, S. M. (2008). Dietary n-3 polyunsaturated fatty acids alter the expression of genes involved in prostaglandin biosynthesis in the bovine uterus. Theriogenology 70, 772–782.
| Dietary n-3 polyunsaturated fatty acids alter the expression of genes involved in prostaglandin biosynthesis in the bovine uterus.Crossref | GoogleScholarGoogle Scholar | 18582926PubMed |
Cuzzocrea, S., Pisano, B., Dugo, L., Ianaro, A., Maffia, P., Patel, N. S. A., Di Paola, R., Ialenti, A., Genovese, T., Chatterjee, P. K., Di Rosa, M., Caputi, A. P., and Thiemermann, C. (2004). Rosiglitazone, a ligand of the peroxisome proliferator-activated receptor-gamma, reduces acute inflammation. Eur. J. Pharmacol. 483, 79–93.
| Rosiglitazone, a ligand of the peroxisome proliferator-activated receptor-gamma, reduces acute inflammation.Crossref | GoogleScholarGoogle Scholar | 14709329PubMed |
Demirturk, F., Aytan, H., Caliskan, A. C., Aytan, P., and Koseoglu, D. R. (2006). Effect of peroxisome proliferator-activated receptor-γ agonist rosiglitazone on the induction of endometriosis in an experimental rat model. J. Soc. Gynecol. Investig. 13, 58–62.
| Effect of peroxisome proliferator-activated receptor-γ agonist rosiglitazone on the induction of endometriosis in an experimental rat model.Crossref | GoogleScholarGoogle Scholar | 16378914PubMed |
Demissie, M., Lazic, M., Foecking, E. M., Aird, F., Dunaif, A., and Levine, J. E. (2008). Transient prenatal androgen exposure produces metabolic syndrome in adult female rats. Am. J. Physiol. Endocrinol. Metab. 295, E262–E268.
| Transient prenatal androgen exposure produces metabolic syndrome in adult female rats.Crossref | GoogleScholarGoogle Scholar | 18544644PubMed |
Diamanti-Kandarakis, E., and Economou, F. (2006). Stress in women: metabolic syndrome and polycystic ovary syndrome. Ann. N. Y. Acad. Sci. 1083, 54–62.
| Stress in women: metabolic syndrome and polycystic ovary syndrome.Crossref | GoogleScholarGoogle Scholar | 17148733PubMed |
Drew, P. D., and Kane, C. J. M. (2016). Peroxisome proliferator-activated receptor-γ agonists: potential therapeutics for neuropathology associated with fetal alcohol spectrum disorders. J. Clin. Cell. Immunol. 7, 469.
| Peroxisome proliferator-activated receptor-γ agonists: potential therapeutics for neuropathology associated with fetal alcohol spectrum disorders.Crossref | GoogleScholarGoogle Scholar | 28203487PubMed |
Dreyer, C., Krey, G., Keller, H., Givel, F., Helftenbein, G., and Wahli, W. (1992). Control of the peroxisomal β-oxidation pathway by a novel family of nuclear hormone receptors. Cell 68, 879–887.
| Control of the peroxisomal β-oxidation pathway by a novel family of nuclear hormone receptors.Crossref | GoogleScholarGoogle Scholar | 1312391PubMed |
Dumesic, D. A., Abbott, D. H., and Padmanabhan, V. (2007). Polycystic ovary syndrome and its developmental origins. Rev. Endocr. Metab. Disord. 8, 127–141.
| Polycystic ovary syndrome and its developmental origins.Crossref | GoogleScholarGoogle Scholar | 17659447PubMed |
Dunn-Albanese, L. R., Ackerman, W. E., Xie, Y., Iams, J. D., and Kniss, D. A. (2004). Reciprocal expression of peroxisome proliferator-activated receptor-gamma and cyclooxygenase-2 in human term parturition. Am. J. Obstet. Gynecol. 190, 809–816.
| Reciprocal expression of peroxisome proliferator-activated receptor-gamma and cyclooxygenase-2 in human term parturition.Crossref | GoogleScholarGoogle Scholar | 15042019PubMed |
Elia, E. (2006). The mechanisms involved in the action of metformin in regulating ovarian function in hyperandrogenized mice. Mol. Hum. Reprod. 12, 475–481.
| The mechanisms involved in the action of metformin in regulating ovarian function in hyperandrogenized mice.Crossref | GoogleScholarGoogle Scholar | 16809378PubMed |
Elia, E., Vighi, S., Lombardi, E., and Motta, A. B. (2008). Detrimental effects of hyperandrogenism on uterine functions. Int. Immunopharmacol. 8, 1827–1834.
| Detrimental effects of hyperandrogenism on uterine functions.Crossref | GoogleScholarGoogle Scholar | 18817896PubMed |
Elia, E. M., Pustovrh, C., Amalfi, S., Devoto, L., and Motta, A. B. (2011). Link between metformin and the peroxisome proliferator-activated receptor γ pathway in the uterine tissue of hyperandrogenized prepubertal mice. Fertil. Steril. 95, 2534–2537.e1.
| Link between metformin and the peroxisome proliferator-activated receptor γ pathway in the uterine tissue of hyperandrogenized prepubertal mice.Crossref | GoogleScholarGoogle Scholar | 21382619PubMed |
Falchi, L., and Scaramuzzi, R. J. (2013). The expression of ERα, OTR, cPLA2, COX-2, and PPARγ in the cervix of the ewe during the estrous cycle. Theriogenology 79, 40–47.
| The expression of ERα, OTR, cPLA2, COX-2, and PPARγ in the cervix of the ewe during the estrous cycle.Crossref | GoogleScholarGoogle Scholar | 23117133PubMed |
Fedele, L., Somigliana, E., Frontino, G., Benaglia, L., and Vigano, P. (2008). New drugs in development for the treatment of endometriosis. Expert Opin. Investig. Drugs 17, 1187–1202.
| New drugs in development for the treatment of endometriosis.Crossref | GoogleScholarGoogle Scholar | 18616415PubMed |
Finck, B. N. (2006). PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. J. Clin. Invest. 116, 615–622.
| PGC-1 coactivators: inducible regulators of energy metabolism in health and disease.Crossref | GoogleScholarGoogle Scholar | 16511594PubMed |
Foecking, E. M., McDevitt, M. A., Acosta-Martínez, M., Horton, T. H., and Levine, J. E. (2008). Neuroendocrine consequences of androgen excess in female rodents. Horm. Behav. 53, 673–692.
| Neuroendocrine consequences of androgen excess in female rodents.Crossref | GoogleScholarGoogle Scholar | 18374922PubMed |
Franks, S. (1995). Polycystic ovary syndrome. N. Engl. J. Med. 333, 853–861.
| Polycystic ovary syndrome.Crossref | GoogleScholarGoogle Scholar | 7651477PubMed |
Franks, S. (2003). Assessment and management of anovulatory infertility in polycystic ovary syndrome. Endocrinol. Metab. Clin. North Am. 32, 639–651.
| Assessment and management of anovulatory infertility in polycystic ovary syndrome.Crossref | GoogleScholarGoogle Scholar | 14560891PubMed |
Froment, P., Gizard, F., Defever, D., Staels, B., Dupont, J., and Monget, P. (2006). Peroxisome proliferator-activated receptors in reproductive tissues: from gametogenesis to parturition. J. Endocrinol. 189, 199–209.
| Peroxisome proliferator-activated receptors in reproductive tissues: from gametogenesis to parturition.Crossref | GoogleScholarGoogle Scholar | 16648288PubMed |
Giudice, L. C. (2006). Endometrium in PCOS: implantation and predisposition to endocrine CA. Best Pract. Res. Clin. Endocrinol. Metab. 20, 235–244.
| Endometrium in PCOS: implantation and predisposition to endocrine CA.Crossref | GoogleScholarGoogle Scholar | 16772154PubMed |
Goodarzi, M. O., Dumesic, D. A., Chazenbalk, G., and Azziz, R. (2011). Polycystic ovary syndrome: etiology, pathogenesis and diagnosis. Nat. Rev. Endocrinol. 7, 219–231.
| Polycystic ovary syndrome: etiology, pathogenesis and diagnosis.Crossref | GoogleScholarGoogle Scholar | 21263450PubMed |
Gunin, A. G., Bitter, A. D., Demakov, A. B., Vasilieva, E. N., and Suslonova, N. V. (2004). Effects of peroxisome proliferator activated receptors-alpha and -gamma agonists on estradiol-induced proliferation and hyperplasia formation in the mouse uterus. J. Endocrinol. 182, 229–239.
| Effects of peroxisome proliferator activated receptors-alpha and -gamma agonists on estradiol-induced proliferation and hyperplasia formation in the mouse uterus.Crossref | GoogleScholarGoogle Scholar | 15283683PubMed |
Jayakrishnan, K., Anupama, R., Koshy, A., and Raju, R. (2010). Endometrial carcinoma in a young subfertile woman with polycystic ovarian syndrome. J. Hum. Reprod. Sci. 3, 38–41.
| Endometrial carcinoma in a young subfertile woman with polycystic ovarian syndrome.Crossref | GoogleScholarGoogle Scholar | 20607008PubMed |
Haoula, Z., Salman, M., and Atiomo, W. (2012). Evaluating the association between endometrial cancer and polycystic ovary syndrome. Hum. Reprod. 27, 1327–1331.
| Evaluating the association between endometrial cancer and polycystic ovary syndrome.Crossref | GoogleScholarGoogle Scholar | 22367984PubMed |
Heber, M. F., Ferreira, S. R., Vélez, L. M., and Motta, A. B. (2013). Prenatal hyperandrogenism and lipid profile during different age stages: an experimental study. Fertil. Steril. 99, 551–557.
| Prenatal hyperandrogenism and lipid profile during different age stages: an experimental study.Crossref | GoogleScholarGoogle Scholar | 23122950PubMed |
Homburg, R. (2006). Pregnancy complications in PCOS. Best Pract. Res. Clin. Endocrinol. Metab. 20, 281–292.
| Pregnancy complications in PCOS.Crossref | GoogleScholarGoogle Scholar | 16772158PubMed |
Huang, J.-C. (2008). The role of peroxisome proliferator-activated receptors in the development and physiology of gametes and preimplantation embryos. PPAR Res. 2008, 732303.
| The role of peroxisome proliferator-activated receptors in the development and physiology of gametes and preimplantation embryos.Crossref | GoogleScholarGoogle Scholar | 19096716PubMed |
Hyong, A., Jadhav, V., Lee, S., Tong, W., Rowe, J., Zhang, J. H., and Tang, J. (2008). Rosiglitazone, a PPAR gamma agonist, attenuates inflammation after surgical brain injury in rodents. Brain Res. 1215, 218–224.
| Rosiglitazone, a PPAR gamma agonist, attenuates inflammation after surgical brain injury in rodents.Crossref | GoogleScholarGoogle Scholar | 18479673PubMed |
Issemann, I., and Green, S. (1990). Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 347, 645–650.
| Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators.Crossref | GoogleScholarGoogle Scholar | 2129546PubMed |
Kadam, L., Kohan-Ghadr, H. R., and Drewlo, S. (2015). The balancing act – PPAR-γ’s roles at the maternal–fetal interface. Syst. Biol. Reprod. Med. 61, 65–71.
| The balancing act – PPAR-γ’s roles at the maternal–fetal interface.Crossref | GoogleScholarGoogle Scholar | 25475254PubMed |
Karim, B. O., Landolfi, J. A., Christian, A., Ricart-Arbona, R., Qiu, W., McAlonis, M., Eyabi, P. O., Khan, K. A., Dicello, J. F., Mann, J. F., and Huso, D. L. (2003). Estrous cycle and ovarian changes in a rat mammary carcinogenesis model after irradiation, tamoxifen chemoprevention, and aging. Comp. Med. 53, 532–538.
| 14655997PubMed |
Kliewer, S. A., Forman, B. M., Blumberg, B., Ong, E. S., Borgmeyer, U., Mangelsdorf, D. J., Umesono, K., and Evans, R. M. (1994). Differential expression and activation of a family of murine peroxisome proliferator-activated receptors. Proc. Natl Acad. Sci. USA 91, 7355–7359.
| Differential expression and activation of a family of murine peroxisome proliferator-activated receptors.Crossref | GoogleScholarGoogle Scholar | 8041794PubMed |
Knapp, P., Chabowski, A., Błachnio-Zabielska, A., Jarząbek, K., and Wołczyński, S. (2012). Altered peroxisome-proliferator activated receptors expression in human endometrial cancer. PPAR Res. 2012, 471524.
| Altered peroxisome-proliferator activated receptors expression in human endometrial cancer.Crossref | GoogleScholarGoogle Scholar | 22448166PubMed |
Knopfová, L., and Smarda, J. (2010). The use of Cox-2 and PPARγ signaling in anti-cancer therapies. Exp. Ther. Med. 1, 257–264.
| The use of Cox-2 and PPARγ signaling in anti-cancer therapies.Crossref | GoogleScholarGoogle Scholar | 22993537PubMed |
Komar, C. M., Braissant, O., Wahli, W., and Curry, T. E. (2001). Expression and localization of PPARs in the rat ovary during follicular development and the periovulatory period. Endocrinology 142, 4831–4838.
| Expression and localization of PPARs in the rat ovary during follicular development and the periovulatory period.Crossref | GoogleScholarGoogle Scholar | 11606451PubMed |
Latini, G., Del Vecchio, A., Massaro, M., Verrotti, A., and DE Felice, C. (2006). In utero exposure to phthalates and fetal development. Curr. Med. Chem. 13, 2527–2534.
| In utero exposure to phthalates and fetal development.Crossref | GoogleScholarGoogle Scholar | 17017909PubMed |
Lebovic, D. I., Kir, M., and Casey, C. L. (2004). Peroxisome proliferator-activated receptor-gamma induces regression of endometrial explants in a rat model of endometriosis. Fertil. Steril. 82, 1008–1013.
| Peroxisome proliferator-activated receptor-gamma induces regression of endometrial explants in a rat model of endometriosis.Crossref | GoogleScholarGoogle Scholar | 15474065PubMed |
Lim, H., and Dey, S. K. (2000). PPARδ functions as a prostacyclin receptor in blastocyst implantation. Trends Endocrinol. Metab. 11, 137–142.
| PPARδ functions as a prostacyclin receptor in blastocyst implantation.Crossref | GoogleScholarGoogle Scholar | 10754535PubMed |
Lim, H., Gupta, R. A., Ma, W.-g., Paria, B. C., Moller, D. E., Morrow, J. D., DuBois, R. N., Trzaskos, J. M., and Dey, S. K. (1999). Cyclo-oxygenase-2-derived prostacyclin mediates embryo implantation in the mouse via PPARdelta. Genes Dev. 13, 1561–1574.
| Cyclo-oxygenase-2-derived prostacyclin mediates embryo implantation in the mouse via PPARdelta.Crossref | GoogleScholarGoogle Scholar | 10385625PubMed |
Luchetti, C. G., Solano, M. E., Sander, V., Arcos, M. L. B., Gonzalez, C., Di Girolamo, G., Chiocchio, S., Cremaschi, G., and Motta, A. B. (2004). Effects of dehydroepiandrosterone on ovarian cystogenesis and immune function. J. Reprod. Immunol. 64, 59–74.
| Effects of dehydroepiandrosterone on ovarian cystogenesis and immune function.Crossref | GoogleScholarGoogle Scholar | 15596227PubMed |
MacLaren, L. A., Guzeloglu, A., Michel, F., and Thatcher, W. W. (2006). Peroxisome proliferator-activated receptor (PPAR) expression in cultured bovine endometrial cells and response to omega-3 fatty acid, growth hormone and agonist stimulation in relation to series 2 prostaglandin production. Domest. Anim. Endocrinol. 30, 155–169.
| Peroxisome proliferator-activated receptor (PPAR) expression in cultured bovine endometrial cells and response to omega-3 fatty acid, growth hormone and agonist stimulation in relation to series 2 prostaglandin production.Crossref | GoogleScholarGoogle Scholar | 16154718PubMed |
Manikkam, M., Steckler, T. L., Welch, K. B., Inskeep, E. K., and Padmanabhan, V. (2006). Fetal programming: prenatal testosterone treatment leads to follicular persistence/luteal defects; partial restoration of ovarian function by cyclic progesterone treatment. Endocrinology 147, 1997–2007.
| Fetal programming: prenatal testosterone treatment leads to follicular persistence/luteal defects; partial restoration of ovarian function by cyclic progesterone treatment.Crossref | GoogleScholarGoogle Scholar | 16373416PubMed |
Martin, H. (2010). Role of PPAR-gamma in inflammation. Prospects for therapeutic intervention by food components. Mutat. Res. 690, 57–63.
| Role of PPAR-gamma in inflammation. Prospects for therapeutic intervention by food components.Crossref | GoogleScholarGoogle Scholar | 20973164PubMed |
Meade, E. A., McIntyre, T. M., Zimmerman, G. A., and Prescott, S. M. (1999). Peroxisome proliferators enhance cyclooxygenase-2 expression in epithelial cells. J. Biol. Chem. 274, 8328–8334.
| Peroxisome proliferators enhance cyclooxygenase-2 expression in epithelial cells.Crossref | GoogleScholarGoogle Scholar | 10075740PubMed |
Motta, A. B., Estevez, A., and de Gimeno, M. F. (1999). The involvement of nitric oxide in corpus luteum regression in the rat: feedback mechanism between prostaglandin F(2alpha) and nitric oxide. Mol. Hum. Reprod. 5, 1011–1016.
| The involvement of nitric oxide in corpus luteum regression in the rat: feedback mechanism between prostaglandin F(2alpha) and nitric oxide.Crossref | GoogleScholarGoogle Scholar | 10541562PubMed |
Müller, R., Rieck, M., and Müller-Brüsselbach, S. (2008). Regulation of cell proliferation and differentiation by PPARβ/δ. PPAR Res. 2008, 614852.
| Regulation of cell proliferation and differentiation by PPARβ/δ.Crossref | GoogleScholarGoogle Scholar | 18815620PubMed |
Nishimura, K., Yamauchi, N., Chowdhury, V. S., Torii, M., Hattori, M., and Kaneto, M. (2011). Expression of peroxisome proliferator-activated receptor isoforms in the rat uterus during early pregnancy. Cell Tissue Res. 345, 275–284.
| Expression of peroxisome proliferator-activated receptor isoforms in the rat uterus during early pregnancy.Crossref | GoogleScholarGoogle Scholar | 21773887PubMed |
Padmanabhan, V., Salvetti, N. R., Matiller, V., and Ortega, H. H. (2014). Developmental programming: prenatal steroid excess disrupts key members of intraovarian steroidogenic pathway in sheep. Endocrinology 155, 3649–3660.
| Developmental programming: prenatal steroid excess disrupts key members of intraovarian steroidogenic pathway in sheep.Crossref | GoogleScholarGoogle Scholar | 25061847PubMed |
Palomba, S., de Wilde, M. A., Falbo, A., Koster, M. P. H., La Sala, G. B., and Fauser, B. C. J. M. (2015). Pregnancy complications in women with polycystic ovary syndrome. Hum. Reprod. Update 21, 575–592.
| Pregnancy complications in women with polycystic ovary syndrome.Crossref | GoogleScholarGoogle Scholar | 26117684PubMed |
Papalou, O., Victor, V. M., and Diamanti-Kandarakis, E. (2016). Oxidative stress in polycystic ovary syndrome. Curr. Pharm. Des. 22, 2709–2722.
| Oxidative stress in polycystic ovary syndrome.Crossref | GoogleScholarGoogle Scholar | 26881435PubMed |
Plaza-Parrochia, F., Romero, C., Valladares, L., and Vega, M. (2017). Endometrium and steroids, a pathologic overview. Steroids 126, 85–91.
| Endometrium and steroids, a pathologic overview.Crossref | GoogleScholarGoogle Scholar | 28827068PubMed |
Puigserver, P., Wu, Z., Park, C. W., Graves, R., Wright, M., and Spiegelman, B. M. (1998). A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92, 829–839.
| A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis.Crossref | GoogleScholarGoogle Scholar | 9529258PubMed |
Rak-Mardyła, A., and Karpeta, A. (2014). Rosiglitazone stimulates peroxisome proliferator-activated receptor gamma expression and directly affects in vitro steroidogenesis in porcine ovarian follicles. Theriogenology 82, 1–9.
| Rosiglitazone stimulates peroxisome proliferator-activated receptor gamma expression and directly affects in vitro steroidogenesis in porcine ovarian follicles.Crossref | GoogleScholarGoogle Scholar | 24681211PubMed |
Shang, K., Jia, X., Qiao, J., Kang, J., and Guan, Y. (2012). Endometrial abnormality in women with polycystic ovary syndrome. Reprod. Sci. 19, 674–683.
| Endometrial abnormality in women with polycystic ovary syndrome.Crossref | GoogleScholarGoogle Scholar | 22534323PubMed |
Shao, R., Li, X., Feng, Y., Lin, J.-F., and Billig, H. (2014). Direct effects of metformin in the endometrium: a hypothetical mechanism for the treatment of women with PCOS and endometrial carcinoma. J. Exp. Clin. Cancer Res. 33, 41.
| Direct effects of metformin in the endometrium: a hypothetical mechanism for the treatment of women with PCOS and endometrial carcinoma.Crossref | GoogleScholarGoogle Scholar | 24887156PubMed |
Sharma, I., Dhawan, V., Saha, S. C., and Dhaliwal, L. K. (2011). In vitro effects of peroxisome proliferator-activated receptor-γ ligands on gene expression in lipopolysaccharide-induced endometrial and endometriotic stromal cells. Fertil. Steril. 95, 829–831.e5.
| In vitro effects of peroxisome proliferator-activated receptor-γ ligands on gene expression in lipopolysaccharide-induced endometrial and endometriotic stromal cells.Crossref | GoogleScholarGoogle Scholar | 20970133PubMed |
Sheehan, M. T. (2004). Polycystic ovarian syndrome: diagnosis and management. Clin. Med. Res. 2, 13–27.
| Polycystic ovarian syndrome: diagnosis and management.Crossref | GoogleScholarGoogle Scholar | 15931331PubMed |
Sheldrick, E. L. R., Derecka, K., Marshall, E., Chin, E. C., Hodges, L., Wathes, D. C., Abayasekara, D. R. E., and Flint, A. P. F. (2007). Peroxisome-proliferator-activated receptors and the control of levels of prostaglandin-endoperoxide synthase 2 by arachidonic acid in the bovine uterus. Biochem. J. 406, 175–183.
| Peroxisome-proliferator-activated receptors and the control of levels of prostaglandin-endoperoxide synthase 2 by arachidonic acid in the bovine uterus.Crossref | GoogleScholarGoogle Scholar |
Simitsidellis, I., Saunders, P. T. K., and Gibson, D. A. (2018). Androgens and endometrium: new insights and new targets. Mol. Cell. Endocrinol. 465, 48–60.
| Androgens and endometrium: new insights and new targets.Crossref | GoogleScholarGoogle Scholar | 28919297PubMed |
Sir-Petermann, T., Codner, E., Pérez, V., Echiburú, B., Maliqueo, M., Ladrón de Guevara, A., Preisler, J., Crisosto, N., Sánchez, F., Cassorla, F., and Bhasin, S. (2009). Metabolic and reproductive features before and during puberty in daughters of women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 94, 1923–1930.
| Metabolic and reproductive features before and during puberty in daughters of women with polycystic ovary syndrome.Crossref | GoogleScholarGoogle Scholar | 19223518PubMed |
Sobolewski, C., Cerella, C., Dicato, M., Ghibelli, L., and Diederich, M. (2010). The role of cyclooxygenase-2 in cell proliferation and cell death in human malignancies. Int. J. Cell Biol. 2010, 215158.
| The role of cyclooxygenase-2 in cell proliferation and cell death in human malignancies.Crossref | GoogleScholarGoogle Scholar | 20339581PubMed |
Socha, B. M., Łupicka, M., Szczepańska, A. A., and Korzekwa, A. J. (2017). PPAR expression throughout the oestrous cycle in the bovine endometrium. Theriogenology 100, 88–94.
| PPAR expression throughout the oestrous cycle in the bovine endometrium.Crossref | GoogleScholarGoogle Scholar | 28708539PubMed |
Toth, B., Hornung, D., Scholz, C., Djalali, S., Friese, K., and Jeschke, U. (2007). Peroxisome proliferator-activated receptors: new players in the field of reproduction. Am. J. Reprod. Immunol. 58, 289–310.
| Peroxisome proliferator-activated receptors: new players in the field of reproduction.Crossref | GoogleScholarGoogle Scholar | 17681045PubMed |
Turan, V., Sezer, E. D., Zeybek, B., and Sendag, F. (2015). Infertility and the presence of insulin resistance are associated with increased oxidative stress in young, non-obese Turkish women with polycystic ovary syndrome. J. Pediatr. Adolesc. Gynecol. 28, 119–123.
| Infertility and the presence of insulin resistance are associated with increased oxidative stress in young, non-obese Turkish women with polycystic ovary syndrome.Crossref | GoogleScholarGoogle Scholar | 25850594PubMed |
Tureyen, K., Kapadia, R., Bowen, K. K., Satriotomo, I., Liang, J., Feinstein, D. L., and Vemuganti, R. (2007). Peroxisome proliferator-activated receptor-γ agonists induce neuroprotection following transient focal ischemia in normotensive, normoglycemic as well as hypertensive and type-2 diabetic rodents: peroxisome proliferator-activated receptor-γ agonists induce neuroprotection. J. Neurochem. 101, 41–56.
| Peroxisome proliferator-activated receptor-γ agonists induce neuroprotection following transient focal ischemia in normotensive, normoglycemic as well as hypertensive and type-2 diabetic rodents: peroxisome proliferator-activated receptor-γ agonists induce neuroprotection.Crossref | GoogleScholarGoogle Scholar | 17394460PubMed |
Tyagi, S., Sharma, S., Gupta, P., Saini, A., and Kaushal, C. (2011). The peroxisome proliferator-activated receptor: a family of nuclear receptors role in various diseases. J. Adv. Pharm. Technol. Res. 2, 236.
| The peroxisome proliferator-activated receptor: a family of nuclear receptors role in various diseases.Crossref | GoogleScholarGoogle Scholar | 22247890PubMed |
Vélez, L. M., Abruzzese, G. A., and Motta, A. B. (2013). The biology of the peroxisome proliferator-activated receptor system in the female reproductive tract. Curr. Pharm. Des. 19, 4641–4646.
| The biology of the peroxisome proliferator-activated receptor system in the female reproductive tract.Crossref | GoogleScholarGoogle Scholar | 23565653PubMed |
Velez, L. M., Abruzzese, G. A., Heber, M. F., Ferreira, S. R., and Motta, A. B. (2019). Treatment with the synthetic PPARG ligand pioglitazone ameliorates early ovarian alterations induced by dehydroepiandrosterone in prepubertal rats. Pharmacol. Rep. 71, 96–104.
| Treatment with the synthetic PPARG ligand pioglitazone ameliorates early ovarian alterations induced by dehydroepiandrosterone in prepubertal rats.Crossref | GoogleScholarGoogle Scholar | 30508725PubMed |
Villavicencio, A., Goyeneche, A., Telleria, C., Bacallao, K., Gabler, F., Fuentes, A., and Vega, M. (2009). Involvement of Akt, Ras and cell cycle regulators in the potential development of endometrial hyperplasia in women with polycystic ovarian syndrome. Gynecol. Oncol. 115, 102–107.
| Involvement of Akt, Ras and cell cycle regulators in the potential development of endometrial hyperplasia in women with polycystic ovarian syndrome.Crossref | GoogleScholarGoogle Scholar | 19631369PubMed |
Vitti, M., Di Emidio, G., Di Carlo, M., Carta, G., Antonosante, A., Artini, P. G., Cimini, A., Tatone, C., and Benedetti, E. (2016). Peroxisome proliferator-activated receptors in female reproduction and fertility. PPAR Res. 2016, 4612306.
| Peroxisome proliferator-activated receptors in female reproduction and fertility.Crossref | GoogleScholarGoogle Scholar | 27559343PubMed |
Walters, K. A., Bertoldo, M. J., and Handelsman, D. J. (2018). Evidence from animal models on the pathogenesis of PCOS. Best Pract. Res. Clin. Endocrinol. Metab. 32, 271–281.
| Evidence from animal models on the pathogenesis of PCOS.Crossref | GoogleScholarGoogle Scholar | 29779581PubMed |
Ward, I. L., Ward, O. B., Affuso, J. D., Long, W. D., French, J. A., and Hendricks, S. E. (2003). Fetal testosterone surge: specific modulations induced in male rats by maternal stress and/or alcohol consumption. Horm. Behav. 43, 531–539.
| Fetal testosterone surge: specific modulations induced in male rats by maternal stress and/or alcohol consumption.Crossref | GoogleScholarGoogle Scholar | 12799169PubMed |
Woodruff, T. K., Lyon, R. J., Hansen, S. E., Rice, G. C., and Mather, J. P. (1990). Inhibin and activin locally regulate rat ovarian folliculogenesis. Endocrinology 127, 3196–3205.
| Inhibin and activin locally regulate rat ovarian folliculogenesis.Crossref | GoogleScholarGoogle Scholar | 2123449PubMed |
Yang, J., Chen, L., Zhang, X., Zhou, Y., Zhang, D., Huo, M., and Guan, Y. (2008). PPARs and female reproduction: evidence from genetically manipulated mice. PPAR Res. 2008, 723243.
| PPARs and female reproduction: evidence from genetically manipulated mice.Crossref | GoogleScholarGoogle Scholar | 18401459PubMed |
Yessoufou, A., Hichami, A., Besnard, P., Moutairou, K., and Khan, N. A. (2006). Peroxisome proliferator-activated receptor α deficiency increases the risk of maternal abortion and neonatal mortality in murine pregnancy with or without diabetes mellitus: modulation of T cell differentiation. Endocrinology 147, 4410–4418.
| Peroxisome proliferator-activated receptor α deficiency increases the risk of maternal abortion and neonatal mortality in murine pregnancy with or without diabetes mellitus: modulation of T cell differentiation.Crossref | GoogleScholarGoogle Scholar | 16763063PubMed |
Yu, C., Markan, K., Temple, K. A., Deplewski, D., Brady, M. J., and Cohen, R. N. (2005). The nuclear receptor corepressors NCoR and SMRT decrease peroxisome proliferator-activated receptor gamma transcriptional activity and repress 3T3-L1 adipogenesis. J. Biol. Chem. 280, 13600–13605.
| The nuclear receptor corepressors NCoR and SMRT decrease peroxisome proliferator-activated receptor gamma transcriptional activity and repress 3T3-L1 adipogenesis.Crossref | GoogleScholarGoogle Scholar | 15691842PubMed |
Ziech, D., Franco, R., Pappa, A., and Panayiotidis, M. I. (2011). Reactive oxygen species (ROS)-induced genetic and epigenetic alterations in human carcinogenesis. Mutat. Res. 711, 167–173.
| Reactive oxygen species (ROS)-induced genetic and epigenetic alterations in human carcinogenesis.Crossref | GoogleScholarGoogle Scholar | 21419141PubMed |
Zuo, T., Zhu, M., and Xu, W. (2016). Roles of oxidative stress in polycystic ovary syndrome and cancers. Oxid. Med. Cell. Longev. 2016, 8589318.
| Roles of oxidative stress in polycystic ovary syndrome and cancers.Crossref | GoogleScholarGoogle Scholar | 26770659PubMed |