Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Roles of poly (ADP-ribose) polymerase 1 activation and cleavage in induction of multi-oocyte ovarian follicles in the mouse by 3-nitropropionic acid

Quanwei Wei A * , Guoyun Wu A * , Jun Xing A B , Dagan Mao A , Reinhold J. Hutz C and Fangxiong Shi https://orcid.org/0000-0002-8545-2502 A D
+ Author Affiliations
- Author Affiliations

A Laboratory of Animal Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.

B Department of Animal Husbandry and Veterinary Medicine, Jiangsu Polytechnic College of Agriculture and Forestry, Jurong 212400, China.

C Department of Biological Sciences, University of Wisconsin-Milwaukee, Lapham Hall, Milwaukee, WI 53211-0413, USA.

D Corresponding author. Email: fxshi@njau.edu.cn

Reproduction, Fertility and Development 31(5) 1017-1032 https://doi.org/10.1071/RD18406
Submitted: 8 October 2018  Accepted: 7 January 2019   Published: 6 March 2019

Abstract

3-nitropropionic acid (3-NPA) is known to be a mitochondrial toxin produced by plants and fungi, which may produce DNA damage in cells. However, studies of its reproductive toxicology are lacking. We know that poly(ADP-ribose) polymerase (PARP) plays an important role in a large variety of physiological processes and is involved in DNA repair pathways. The present study was therefore aimed at exploring the involvement of PARP-1 activation and cleavage after 3-NPA stimulation in female mice. We observed an increased number of atretic follicles and multi-oocyte follicles (MOFs) after treatment with 3-NPA and serum concentrations of 17β-oestradiol and progesterone were significantly reduced. Our results provide evidence that PARP-1 cleavage and activational signals are involved in pathological ovarian processes stimulated by 3-NPA. In addition, total superoxide dismutase, glutathione peroxidase and catalase activities were significantly increased, whereas succinate dehydrogenase was decreased in a dose-dependent manner. Results from our in vitro study similarly indicated that 3-NPA inhibited the proliferation of mouse granulosa cells and increased apoptosis in a dose-dependent manner. In summary, 3-NPA induces granulosa cell apoptosis, follicle atresia and MOFs in the ovaries of female mice and causes oxidative stress so as to disrupt endogenous hormonal systems, possibly acting through PARP-1 signalling.

Additional keywords: 3-nitropropionic acid, 3-NPA, follicular granulosa cell, MOFs.


References

Agarwal, A., Mahfouz, R. Z., Sharma, R. K., Sarkar, O., Mangrola, D., and Mathur, P. P. (2009). Potential biological role of poly (ADP-ribose) polymerase (PARP) in male gametes. Reprod. Biol. Endocrinol. 7, 143.
Potential biological role of poly (ADP-ribose) polymerase (PARP) in male gametes.Crossref | GoogleScholarGoogle Scholar | 19961617PubMed |

Bhartiya, D., and Patel, H. (2018). Ovarian stem cells – resolving controversies. J. Assist. Reprod. Genet. 35, 393–398.
Ovarian stem cells – resolving controversies.Crossref | GoogleScholarGoogle Scholar | 29128912PubMed |

Binienda, Z., Simmons, C., Hussain, S., Slikker, W., and Ali, S. F. (1998). Effect of acute exposure to 3-nitropropionic acid on activities of endogenous antioxidants in the rat brain. Neurosci. Lett. 251, 173–176.
Effect of acute exposure to 3-nitropropionic acid on activities of endogenous antioxidants in the rat brain.Crossref | GoogleScholarGoogle Scholar | 9726371PubMed |

Birben, E., Sahiner, U. M., Sackesen, C., Erzurum, S., and Kalayci, O. (2012). Oxidative stress and antioxidant defense. World Allergy Organ. J. 5, 9–19.
Oxidative stress and antioxidant defense.Crossref | GoogleScholarGoogle Scholar | 23268465PubMed |

Boesten, D. M., de Vos-Houben, J. M., Timmermans, L., den Hartog, G. J., Bast, A., and Hageman, G. J. (2013). Accelerated aging during chronic oxidative stress: a role for PARP-1. Oxid. Med. Cell. Longev. 2013, 680414.
Accelerated aging during chronic oxidative stress: a role for PARP-1.Crossref | GoogleScholarGoogle Scholar | 24319532PubMed |

Boulares, A. H., Yakovlev, A. G., Ivanova, V., Stoica, B. A., Wang, G., Iyer, S., and Smulson, M. (1999). Role of poly(ADP-ribose) polymerase (PARP) cleavage in apoptosis. Caspase 3-resistant PARP mutant increases rates of apoptosis in transfected cells. J. Biol. Chem. 274, 22932–22940.
Role of poly(ADP-ribose) polymerase (PARP) cleavage in apoptosis. Caspase 3-resistant PARP mutant increases rates of apoptosis in transfected cells.Crossref | GoogleScholarGoogle Scholar | 10438458PubMed |

Britt, K. L., and Findlay, J. K. (2003). Regulation of the phenotype of ovarian somatic cells by estrogen. Mol. Cell. Endocrinol. 202, 11–17.
Regulation of the phenotype of ovarian somatic cells by estrogen.Crossref | GoogleScholarGoogle Scholar | 12770724PubMed |

Britt, K. L., Saunders, P. K., McPherson, S. J., Misso, M. L., Simpson, E. R., and Findlay, J. K. (2004). Estrogen actions on follicle formation and early follicle development. Biol. Reprod. 71, 1712–1723.
Estrogen actions on follicle formation and early follicle development.Crossref | GoogleScholarGoogle Scholar | 15269096PubMed |

Brouillet, E. (2010) 3-Nitropropionic acid. In ‘Encyclopedia of Movement Disorders’. (Eds K. Kompoliti and L. Verhagen.) pp. 1–3. (Academic Press: Oxford.)

Bürkle, A. (2006). DNA repair and PARP in aging. Free Radic. Res. 40, 1295–1302.
DNA repair and PARP in aging.Crossref | GoogleScholarGoogle Scholar | 17090419PubMed |

Chaitanya, G. V., Steven, A. J., and Babu, P. P. (2010). PARP-1 cleavage fragments: signatures of cell-death proteases in neurodegeneration. Cell Commun. Signal. 8, 31.
PARP-1 cleavage fragments: signatures of cell-death proteases in neurodegeneration.Crossref | GoogleScholarGoogle Scholar | 21176168PubMed |

Chen, Y., Jefferson, W. N., Newbold, R. R., Padilla-Banks, E., and Pepling, M. E. (2007). Estradiol, progesterone, and genistein inhibit oocyte nest breakdown and primordial follicle assembly in the neonatal mouse ovary in vitro and in vivo. Endocrinology 148, 3580–3590.
Estradiol, progesterone, and genistein inhibit oocyte nest breakdown and primordial follicle assembly in the neonatal mouse ovary in vitro and in vivo.Crossref | GoogleScholarGoogle Scholar | 17446182PubMed |

D’Amours, D., Desnoyers, S., D’Silva, I., and Poirier, G. G. (1999). Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochem. J. 342, 249–268.
Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions.Crossref | GoogleScholarGoogle Scholar | 10455009PubMed |

Ding, W., Wang, W., Zhou, B., Zhang, W., Huang, P., Shi, F., and Taya, K. (2010). Formation of primordial follicles and immunolocalization of PTEN, PKB and FOXO3A proteins in the ovaries of fetal and neonatal pigs. J. Reprod. Dev. 56, 162–168.
Formation of primordial follicles and immunolocalization of PTEN, PKB and FOXO3A proteins in the ovaries of fetal and neonatal pigs.Crossref | GoogleScholarGoogle Scholar | 19996554PubMed |

Dorgan, J. F., Fears, T. R., McMahon, R. P., Aronson Friedman, L., Patterson, B. H., and Greenhut, S. F. (2002). Measurement of steroid sex hormones in serum: a comparison of radioimmunoassay and mass spectrometry. Steroids 67, 151–158.
Measurement of steroid sex hormones in serum: a comparison of radioimmunoassay and mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 11856538PubMed |

Dröge, W., and Kinscherf, R. (2008). Aberrant insulin receptor signaling and amino acid homeostasis as a major cause of oxidative stress in aging. Antioxid. Redox Signal. 10, 661–678.
Aberrant insulin receptor signaling and amino acid homeostasis as a major cause of oxidative stress in aging.Crossref | GoogleScholarGoogle Scholar | 18162053PubMed |

Fadlalla, M. B., Wei, Q., Fedail, J. S., Mehfooz, A., Mao, D., and Shi, F. (2017). Effects of hyper- and hypothyroidism on the development and proliferation of testicular cells in prepubertal rats. Anim. Sci. J. 88, 1943–1954.
Effects of hyper- and hypothyroidism on the development and proliferation of testicular cells in prepubertal rats.Crossref | GoogleScholarGoogle Scholar | 28782242PubMed |

Gao, Y., Chu, S. F., Li, J. P., Zhang, Z., Yan, J. Q., Wen, Z. L., Xia, C. Y., Mou, Z., Wang, Z. Z., He, W. B., Guo, X. F., Wei, G. N., and Chen, N. H. (2015). Protopanaxtriol protects against 3-nitropropionic acid-induced oxidative stress in a rat model of Huntington’s disease. Acta Pharmacol. Sin. 36, 311–322.
Protopanaxtriol protects against 3-nitropropionic acid-induced oxidative stress in a rat model of Huntington’s disease.Crossref | GoogleScholarGoogle Scholar | 25640478PubMed |

Ha, H. C., and Snyder, S. H. (1999). Poly(ADP-ribose) polymerase is a mediator of necrotic cell death by ATP depletion. Proc. Natl. Acad. Sci. USA 96, 13978–13982.
Poly(ADP-ribose) polymerase is a mediator of necrotic cell death by ATP depletion.Crossref | GoogleScholarGoogle Scholar | 10570184PubMed |

Horan, C. J., and Williams, S. A. (2017). Oocyte stem cells: fact or fantasy? Reproduction 154, R23–R35.
Oocyte stem cells: fact or fantasy?Crossref | GoogleScholarGoogle Scholar | 28389520PubMed |

Huang, Q., and Shen, H. M. (2009). To die or to live: the dual role of poly(ADP-ribose) polymerase-1 in autophagy and necrosis under oxidative stress and DNA damage. Autophagy 5, 273–276.
To die or to live: the dual role of poly(ADP-ribose) polymerase-1 in autophagy and necrosis under oxidative stress and DNA damage.Crossref | GoogleScholarGoogle Scholar | 19139632PubMed |

Jefferson, W. N., Couse, J. F., Padilla-Banks, E., Korach, K. S., and Newbold, R. R. (2002). Neonatal exposure to genistein induces estrogen receptor (ER)alpha expression and multioocyte follicles in the maturing mouse ovary: evidence for ERbeta-mediated and nonestrogenic actions. Biol. Reprod. 67, 1285–1296.
Neonatal exposure to genistein induces estrogen receptor (ER)alpha expression and multioocyte follicles in the maturing mouse ovary: evidence for ERbeta-mediated and nonestrogenic actions.Crossref | GoogleScholarGoogle Scholar | 12297547PubMed |

Jefferson, W., Newbold, R., Padilla-Banks, E., and Pepling, M. (2006). Neonatal genistein treatment alters ovarian differentiation in the mouse: inhibition of oocyte nest breakdown and increased oocyte survival. Biol. Reprod. 74, 161–168.
Neonatal genistein treatment alters ovarian differentiation in the mouse: inhibition of oocyte nest breakdown and increased oocyte survival.Crossref | GoogleScholarGoogle Scholar | 16192398PubMed |

Kong, X. X., Fu, Y. C., Xu, J. J., Zhuang, X. L., Chen, Z. G., and Luo, L. L. (2011). Resveratrol, an effective regulator of ovarian development and oocyte apoptosis. J. Endocrinol. Invest. 34, e374–e381.
| 21738004PubMed |

Kumar, P., and Kumar, A. (2009). Possible neuroprotective effect of Withania somnifera root extract against 3-nitropropionic acid-induced behavioral, biochemical, and mitochondrial dysfunction in an animal model of Huntington’s disease. J. Med. Food 12, 591–600.
Possible neuroprotective effect of Withania somnifera root extract against 3-nitropropionic acid-induced behavioral, biochemical, and mitochondrial dysfunction in an animal model of Huntington’s disease.Crossref | GoogleScholarGoogle Scholar | 19627208PubMed |

Liu, K., Rajareddy, S., Liu, L., Jagarlamudi, K., Boman, K., Selstam, G., and Reddy, P. (2006). Control of mammalian oocyte growth and early follicular development by the oocyte PI3 kinase pathway: new roles for an old timer. Dev. Biol. 299, 1–11.
Control of mammalian oocyte growth and early follicular development by the oocyte PI3 kinase pathway: new roles for an old timer.Crossref | GoogleScholarGoogle Scholar | 16970938PubMed |

Luo, X., and Kraus, W. L. (2012). On PAR with PARP: cellular stress signaling through poly(ADP-ribose) and PARP-1. Genes Dev. 26, 417–432.
On PAR with PARP: cellular stress signaling through poly(ADP-ribose) and PARP-1.Crossref | GoogleScholarGoogle Scholar | 22391446PubMed |

Malorni, W., and Donelli, G. (1992). Cell death. General features and morphological aspects. Ann. N. Y. Acad. Sci. 663, 218–233.
Cell death. General features and morphological aspects.Crossref | GoogleScholarGoogle Scholar | 1482056PubMed |

Matsuda, F., Inoue, N., Manabe, N., and Ohkura, S. (2012). Follicular growth and atresia in mammalian ovaries: regulation by survival and death of granulosa cells. J. Reprod. Dev. 58, 44–50.
Follicular growth and atresia in mammalian ovaries: regulation by survival and death of granulosa cells.Crossref | GoogleScholarGoogle Scholar | 22450284PubMed |

Meyer-Ficca, M. L., Meyer, R. G., Jacobson, E. L., and Jacobson, M. K. (2005). Poly(ADP-ribose) polymerases: managing genome stability. Int. J. Biochem. Cell Biol. 37, 920–926.
Poly(ADP-ribose) polymerases: managing genome stability.Crossref | GoogleScholarGoogle Scholar | 15743666PubMed |

Min, W., and Wang, Z. Q. (2009). Poly (ADP-ribose) glycohydrolase (PARG) and its therapeutic potential. Front. Biosci. 14, 1619–1626.
Poly (ADP-ribose) glycohydrolase (PARG) and its therapeutic potential.Crossref | GoogleScholarGoogle Scholar |

Muñoz-Gámez, J. A., Rodriguez-Vargas, J. M., Quiles-Perez, R., Aguilar-Quesada, R., Martin-Oliva, D., de Murcia, G., Menissier de Murcia, J., Almendros, A., Ruiz de Almodovar, M., and Oliver, F. J. (2009). PARP-1 is involved in autophagy induced by DNA damage. Autophagy 5, 61–74.
PARP-1 is involved in autophagy induced by DNA damage.Crossref | GoogleScholarGoogle Scholar | 19001878PubMed |

Nguewa, P. A., Fuertes, M. A., Alonso, C., and Perez, J. M. (2003). Pharmacological modulation of poly(ADP-ribose) polymerase-mediated cell death: exploitation in cancer chemotherapy. Mol. Pharmacol. 64, 1007–1014.
Pharmacological modulation of poly(ADP-ribose) polymerase-mediated cell death: exploitation in cancer chemotherapy.Crossref | GoogleScholarGoogle Scholar | 14573748PubMed |

Niikura, Y., Niikura, T., and Tilly, J. L. (2009). Aged mouse ovaries possess rare premeiotic germ cells that can generate oocytes following transplantation into a young host environment. Aging (Albany NY) 1, 971–978.
Aged mouse ovaries possess rare premeiotic germ cells that can generate oocytes following transplantation into a young host environment.Crossref | GoogleScholarGoogle Scholar | 20157580PubMed |

Nilsson, E. E., and Skinner, M. K. (2009). Progesterone regulation of primordial follicle assembly in bovine fetal ovaries. Mol. Cell. Endocrinol. 313, 9–16.
Progesterone regulation of primordial follicle assembly in bovine fetal ovaries.Crossref | GoogleScholarGoogle Scholar | 19747959PubMed |

Pang, Z., and Geddes, J. W. (1997). Mechanisms of cell death induced by the mitochondrial toxin 3-nitropropionic acid: acute excitotoxic necrosis and delayed apoptosis. J. Neurosci. 17, 3064–3073.
Mechanisms of cell death induced by the mitochondrial toxin 3-nitropropionic acid: acute excitotoxic necrosis and delayed apoptosis.Crossref | GoogleScholarGoogle Scholar | 9096141PubMed |

Patlevič, P., Vašková, J., Švorc, P., Vaško, L., and Švorc, P. (2016). Reactive oxygen species and antioxidant defense in human gastrointestinal diseases. Integr. Med. Res. 5, 250–258.
Reactive oxygen species and antioxidant defense in human gastrointestinal diseases.Crossref | GoogleScholarGoogle Scholar | 28462126PubMed |

Pepling, M. E. (2012). Follicular assembly: mechanisms of action. Reproduction 143, 139–149.
Follicular assembly: mechanisms of action.Crossref | GoogleScholarGoogle Scholar | 22065859PubMed |

Rodríguez-Vargas, J. M., Ruiz-Magaña, M. J., Ruiz-Ruiz, C., Majuelos-Melguizo, J., Peralta-Leal, A., Rodríguez, M. I., Muñoz-Gámez, J. A., de Almodóvar, M. R., Siles, E., Rivas, A. L., Jäättela, M., and Oliver, F. J. (2012). ROS-induced DNA damage and PARP-1 are required for optimal induction of starvation-induced autophagy. Cell Res. 22, 1181–1198.
ROS-induced DNA damage and PARP-1 are required for optimal induction of starvation-induced autophagy.Crossref | GoogleScholarGoogle Scholar | 22525338PubMed |

Sahaboglu, A., Tanimoto, N., Kaur, J., Sancho-Pelluz, J., Huber, G., Fahl, E., Arango-Gonzalez, B., Zrenner, E., Ekstrom, P., Lowenheim, H., Seeliger, M., and Paquet-Durand, F. (2010). PARP1 gene knock-out increases resistance to retinal degeneration without affecting retinal function. PLoS One 5, e15495.
PARP1 gene knock-out increases resistance to retinal degeneration without affecting retinal function.Crossref | GoogleScholarGoogle Scholar | 21124852PubMed |

Shiotani, M., Noda, Y., Narimoto, K., Imai, K., Mori, T., Fujimoto, K., and Ogawa, K. (1991). Immunohistochemical localization of superoxide dismutase in the human ovary. Hum. Reprod. 6, 1349–1353.
Immunohistochemical localization of superoxide dismutase in the human ovary.Crossref | GoogleScholarGoogle Scholar | 1770125PubMed |

Skillings, E. A., and Morton, A. J. (2016). Delayed onset and reduced cognitive deficits through pre-conditioning with 3-nitropropionic acid is dependent on sex and CAG repeat length in the R6/2 mouse model of Huntington’s disease. J. Huntingtons Dis. 5, 19–32.
Delayed onset and reduced cognitive deficits through pre-conditioning with 3-nitropropionic acid is dependent on sex and CAG repeat length in the R6/2 mouse model of Huntington’s disease.Crossref | GoogleScholarGoogle Scholar | 27031731PubMed |

Sugino, N., Takiguchi, S., Kashida, S., Karube, A., Nakamura, Y., and Kato, H. (2000). Superoxide dismutase expression in the human corpus luteum during the menstrual cycle and in early pregnancy. Mol. Hum. Reprod. 6, 19–25.
Superoxide dismutase expression in the human corpus luteum during the menstrual cycle and in early pregnancy.Crossref | GoogleScholarGoogle Scholar | 10611256PubMed |

Suzuki, T., Sugino, N., Fukaya, T., Sugiyama, S., Uda, T., Takaya, R., Yajima, A., and Sasano, H. (1999). Superoxide dismutase in normal cycling human ovaries: immunohistochemical localization and characterization. Fertil. Steril. 72, 720–726.
Superoxide dismutase in normal cycling human ovaries: immunohistochemical localization and characterization.Crossref | GoogleScholarGoogle Scholar | 10521117PubMed |

Tingen, C., Kim, A., and Woodruff, T. K. (2009). The primordial pool of follicles and nest breakdown in mammalian ovaries. Mol. Hum. Reprod. 15, 795–803.
The primordial pool of follicles and nest breakdown in mammalian ovaries.Crossref | GoogleScholarGoogle Scholar | 19710243PubMed |

Túnez, I., Drucker-Colín, R., Jimena, I., Medina, F. J., Muñoz Mdel, C., Peña, J., and Montilla, P. (2006). Transcranial magnetic stimulation attenuates cell loss and oxidative damage in the striatum induced in the 3-nitropropionic model of Huntington’s disease. J. Neurochem. 97, 619–630.
Transcranial magnetic stimulation attenuates cell loss and oxidative damage in the striatum induced in the 3-nitropropionic model of Huntington’s disease.Crossref | GoogleScholarGoogle Scholar | 16524377PubMed |

Virág, L., and Szabó, C. (2002). The therapeutic potential of poly(ADP-ribose) polymerase inhibitors. Pharmacol. Rev. 54, 375–429.
The therapeutic potential of poly(ADP-ribose) polymerase inhibitors.Crossref | GoogleScholarGoogle Scholar | 12223530PubMed |

Wei, Q., and Shi, F. (2013). Cleavage of poly (ADP-ribose) polymerase-1 is involved in the process of porcine ovarian follicular atresia. Anim. Reprod. Sci. 138, 282–291.
Cleavage of poly (ADP-ribose) polymerase-1 is involved in the process of porcine ovarian follicular atresia.Crossref | GoogleScholarGoogle Scholar | 23522430PubMed |

Wei, Q., Shi, F., He, J., Xie, C., Xu, K., Zhang, W., Sun, S., Fedail, J., Watanabe, G., and Taya, K. (2012). Effects of exogenous 17β-estradiol on follicular development in the neonatal and immature mouse in vivo. Reprod. Med. Biol. 11, 135–141.
Effects of exogenous 17β-estradiol on follicular development in the neonatal and immature mouse in vivo.Crossref | GoogleScholarGoogle Scholar | 29699119PubMed |

Wei, Q., Ding, W., and Shi, F. (2013). Roles of poly (ADP-ribose) polymerase (PARP1) cleavage in the ovaries of fetal, neonatal, and adult pigs. Reproduction 146, 593–602.
Roles of poly (ADP-ribose) polymerase (PARP1) cleavage in the ovaries of fetal, neonatal, and adult pigs.Crossref | GoogleScholarGoogle Scholar | 24062568PubMed |

Wei, Q., Li, J., Li, X., Zhang, L., and Shi, F. (2014). Reproductive toxicity in acrylamide-treated female mice. Reprod. Toxicol. 46, 121–128.
Reproductive toxicity in acrylamide-treated female mice.Crossref | GoogleScholarGoogle Scholar | 24747376PubMed |

Wilhelm, E. A., Bortolatto, C. F., Jesse, C. R., and Luchese, C. (2014). Ebselen protects against behavioral and biochemical toxicities induced by 3-nitropropionic acid in rats: correlations between motor coordination, reactive species levels, and succinate dehydrogenase activity. Biol. Trace Elem. Res. 162, 200–210.
Ebselen protects against behavioral and biochemical toxicities induced by 3-nitropropionic acid in rats: correlations between motor coordination, reactive species levels, and succinate dehydrogenase activity.Crossref | GoogleScholarGoogle Scholar | 25277606PubMed |

Yelamos, J., Farres, J., Llacuna, L., Ampurdanes, C., and Martin-Caballero, J. (2011). PARP-1 and PARP-2: new players in tumour development. Am. J. Cancer Res. 1, 328–346.
| 21968702PubMed |

Yu, S. W., Wang, H., Poitras, M. F., Coombs, C., Bowers, W. J., Federoff, H. J., Poirier, G. G., Dawson, T. M., and Dawson, V. L. (2002). Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science 297, 259–263.
Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor.Crossref | GoogleScholarGoogle Scholar | 12114629PubMed |

Zhang, J. Q., Shen, M., Zhu, C. C., Yu, F. X., Liu, Z. Q., Ally, N., Sun, S. C., Li, K., and Liu, H. L. (2014). 3-Nitropropionic acid induces ovarian oxidative stress and impairs follicle in mouse. PLoS One 9, e86589.
3-Nitropropionic acid induces ovarian oxidative stress and impairs follicle in mouse.Crossref | GoogleScholarGoogle Scholar | 25389750PubMed |

Zhang, M., Zhang, Q., Hu, Y., Xu, L., Jiang, Y., Zhang, C., Ding, L., Jiang, R., Sun, J., Sun, H., and Yan, G. (2017). miR-181a increases FoxO1 acetylation and promotes granulosa cell apoptosis via SIRT1 downregulation. Cell Death Dis. 8, e3088.
miR-181a increases FoxO1 acetylation and promotes granulosa cell apoptosis via SIRT1 downregulation.Crossref | GoogleScholarGoogle Scholar | 29233979PubMed |

Ziegler, U., and Groscurth, P. (2004). Morphological features of cell death. News Physiol. Sci. 19, 124–128.
| 15143207PubMed |