Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Elongin B is a binding partner of the male germ cell nuclear speckle protein sperm-associated antigen 16S (SPAG16S) and is regulated post-transcriptionally in the testis

Zhengang Zhang A B , Qian Huang C D , Zhenyu Wang C E , Jie Zou F , Zuoren Yu G , Jerome F. Strauss III B and Zhibing Zhang C H I
+ Author Affiliations
- Author Affiliations

A Department of Gastroenterology, Tongji Hospital, Huazhong University of Science and Technology, 1095 Jiefang da dao, Wuhan, Hubei 430030, China.

B Department of Obstetrics and Gynecology, Virginia Commonwealth University, 1101 E. Marshall Street, Richmond, VA 23298, USA.

C Department of Physiology, Wayne State University, 275 E Hancock Street, Detroit, MI 48201, USA.

D Department of Occupational and Environmental Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, 2 Huangjiahu xi lu, Wuhan, Hubei 430060, China.

E Department of Biochemistry, School of Medicine, Wuhan University of Science and Technology, 2 Huangjiahu xi lu, Wuhan, Hubei 430065, China.

F Wuhan Institute of Skin Disease Prevention and Control, 64 Wusheng lu, Wuhan, Hubei 430030, China.

G Research Center for Translational Medicine, Tongji University School of Medicine, Shanghai East Hospital, 150 Jimo lu, Shanghai, China.

H Department of Obstetrics and Gynecology, Wayne State University, 275 E Hancock Street, Detroit, MI 48201, USA.

I Corresponding author. Email: gn6075@wayne.edu

Reproduction, Fertility and Development 31(5) 962-971 https://doi.org/10.1071/RD18303
Submitted: 14 August 2018  Accepted: 21 December 2018   Published: 28 February 2019

Abstract

In this study we identified Elongin B, a regulatory subunit of the trimeric elongation factor Elongin ABC, which increases the overall rate of elongation by RNA polymerase II, as a major binding partner of sperm-associated antigen 16S (SPAG16S), a component of nuclear speckles. Nuclear speckles are nuclear subcompartments involved in RNA maturation. Previously, we showed that SPAG16S is essential for spermatogenesis. In the present study, a specific antibody against mouse Elongin B was generated and reacted with a protein with the predicted size of Elongin B in the testis; immunofluorescence staining revealed that the Elongin B was located in the nuclei and residual bodies. In round spermatids, Elongin B was colocalised with splicing factor SC35 (SC35), a marker of nuclear speckles. During the first wave of spermatogenesis, Elongin B transcripts were initially detected at Postnatal Day (PND) 8, and levels were greatly increased afterwards. However, Elongin B protein was only found from PND30, when germ cells progressed through spermiogenesis. Polysomal gradient analysis of Elongin B transcripts isolated from adult mouse testes revealed that most of the Elongin B mRNA was associated with translationally inactive, non-polysomal ribonucleoproteins. An RNA electrophoretic mobility shift assay demonstrated that the 3′ untranslated region of the Elongin B transcript was bound by proteins present in testis but not liver extracts. These findings suggest that post-transcriptional regulation of Elongin B occurs in the testis, which is a common phenomenon during male germ cell development. As a major binding partner of SPAG16S, Elongin B may play an important role in spermatogenesis by modulating RNA maturation.

Additional keywords: 3′ untranslated region, post-transcriptional regulation, spermiogenesis, transcription elongation factor B.


References

Allen, B. L., and Taatjes, D. J. (2015). The Mediator complex: a central integrator of transcription. Nat. Rev. Mol. Cell Biol. 16, 155–166.
The Mediator complex: a central integrator of transcription.Crossref | GoogleScholarGoogle Scholar | 25693131PubMed |

Aso, T., Lane, W. S., Conaway, J. W., and Conaway, R. C. (1995). Elongin (SIII): a multisubunit regulator of elongation by RNA polymerase II. Science 269, 1439–1443.
Elongin (SIII): a multisubunit regulator of elongation by RNA polymerase II.Crossref | GoogleScholarGoogle Scholar | 7660129PubMed |

Aso, T., Haque, D., Barstead, R. J., Conaway, R. C., and Conaway, J. W. (1996). The inducible Elongin A elongation activation domain: structure, function and interaction with the Elongin BC complex. EMBO J. 15, 5557–5566.
The inducible Elongin A elongation activation domain: structure, function and interaction with the Elongin BC complex.Crossref | GoogleScholarGoogle Scholar | 8896449PubMed |

Aso, T., Yamazaki, K., Amimoto, K., Kuroiwa, A., Higashi, H., Matsuda, Y., Kitajima, S., and Hatakeyama, M. (2000). Identification and characterization of Elongin A2, a new member of the Elongin family of transcription elongation factors, specifically expressed in the testis. J. Biol. Chem. 275, 6546–6552.
Identification and characterization of Elongin A2, a new member of the Elongin family of transcription elongation factors, specifically expressed in the testis.Crossref | GoogleScholarGoogle Scholar | 10692460PubMed |

Bregman, D. B., Du, L., Van, Z. S., and Warren, S. L. (1995). Transcription-dependent redistribution of the large subunit of RNA polymerase II to discrete nuclear domains. J. Cell Biol. 129, 287–298.
Transcription-dependent redistribution of the large subunit of RNA polymerase II to discrete nuclear domains.Crossref | GoogleScholarGoogle Scholar | 7536746PubMed |

Derry, M. C., Yanagiya, A., Martineau, Y., and Sonenberg, N. (2006). Regulation of poly(A)-binding protein through PABP-interacting proteins. Cold Spring Harb. Symp. Quant. Biol. 71, 537–543.
Regulation of poly(A)-binding protein through PABP-interacting proteins.Crossref | GoogleScholarGoogle Scholar | 17381337PubMed |

Duan, D. R., Pause, A., Burgess, W. H., Aso, T., Chen, D., Garrett, K. P., Conaway, R. C., Conaway, J. W., Linehan, W. M., and Klausner, R. D. (1995). Inhibition of transcription elongation by the VHL tumor suppressor protein. Science 269, 1402–1406.
Inhibition of transcription elongation by the VHL tumor suppressor protein.Crossref | GoogleScholarGoogle Scholar | 7660122PubMed |

Galganski, L., Urbanek, M. O., and Krzyzosiak, W. J. (2017). Nuclear speckles: molecular organization, biological function and role in disease. Nucleic Acids Res. 45, 10350–10368.
Nuclear speckles: molecular organization, biological function and role in disease.Crossref | GoogleScholarGoogle Scholar | 28977640PubMed |

Garrett, K. P., Aso, T., Bradsher, J. N., Foundling, S. I., Lane, W. S., Conaway, R. C., and Conaway, J. W. (1995). Positive regulation of general transcription factor SIII by a tailed ubiquitin homolog. Proc. Natl Acad. Sci. USA 92, 7172–7176.
Positive regulation of general transcription factor SIII by a tailed ubiquitin homolog.Crossref | GoogleScholarGoogle Scholar | 7638163PubMed |

Geissler, R., and Grimson, A. (2016). A position-specific 3′UTR sequence that accelerates mRNA decay. RNA Biol. 13, 1075–1077.
A position-specific 3′UTR sequence that accelerates mRNA decay.Crossref | GoogleScholarGoogle Scholar | 27565004PubMed |

He, S. L., and Green, R. (2013). Northern blotting. Methods Enzymol. 530, 75–87.
Northern blotting.Crossref | GoogleScholarGoogle Scholar | 24034315PubMed |

Hermo, L., Pelletier, R. M., Cyr, D. G., and Smith, C. E. (2010). Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 2: changes in spermatid organelles associated with development of spermatozoa. Microsc. Res. Tech. 73, 279–319.
Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 2: changes in spermatid organelles associated with development of spermatozoa.Crossref | GoogleScholarGoogle Scholar | 19941292PubMed |

Iguchi, N., Tobias, J. W., and Hecht, N. B. (2006). Expression profiling reveals meiotic male germ cell mRNAs that are translationally up- and down-regulated. Proc. Natl Acad. Sci. USA 103, 7712–7717.
Expression profiling reveals meiotic male germ cell mRNAs that are translationally up- and down-regulated.Crossref | GoogleScholarGoogle Scholar | 16682651PubMed |

Kamura, T., Sato, S., Haque, D., Liu, L., Kaelin, W. G., Conaway, R. C., and Conaway, J. W. (1998). The Elongin BC complex interacts with the conserved SOCS-box motif present in members of the SOCS, ras, WD-40 repeat, and ankyrin repeat families. Genes Dev. 12, 3872–3881.
The Elongin BC complex interacts with the conserved SOCS-box motif present in members of the SOCS, ras, WD-40 repeat, and ankyrin repeat families.Crossref | GoogleScholarGoogle Scholar | 9869640PubMed |

Kibel, A., Iliopoulos, O., DeCaprio, J. A., and Kaelin, W. G. (1995). Binding of the von Hippel–Lindau tumor suppressor protein to Elongin B and C. Science 269, 1444–1446.
Binding of the von Hippel–Lindau tumor suppressor protein to Elongin B and C.Crossref | GoogleScholarGoogle Scholar | 7660130PubMed |

Kleene, K. C. (1993). Multiple controls over the efficiency of translation of the mRNAs encoding transition proteins, protamines, and the mitochondrial capsule selenoprotein in late spermatids in mice. Dev. Biol. 159, 720–731.
Multiple controls over the efficiency of translation of the mRNAs encoding transition proteins, protamines, and the mitochondrial capsule selenoprotein in late spermatids in mice.Crossref | GoogleScholarGoogle Scholar | 8405691PubMed |

Kobayashi, M., Takaori-Kondo, A., Miyauchi, Y., Iwai, K., and Uchiyama, T. (2005). Ubiquitination of APOBEC3G by an HIV-1 Vif-Cullin5-Elongin B-Elongin C complex is essential for Vif function. J. Biol. Chem. 280, 18573–18578.
Ubiquitination of APOBEC3G by an HIV-1 Vif-Cullin5-Elongin B-Elongin C complex is essential for Vif function.Crossref | GoogleScholarGoogle Scholar | 15781449PubMed |

Laiho, A., Kotaja, N., Gyenesei, A., and Sironen, A. (2013). Transcriptome profiling of the murine testis during the first wave of spermatogenesis. PLoS One 8, e61558.
Transcriptome profiling of the murine testis during the first wave of spermatogenesis.Crossref | GoogleScholarGoogle Scholar | 24236059PubMed |

Lee, C. (2007). Coimmunoprecipitation assay. Methods Mol. Biol. 362, 401–406.
Coimmunoprecipitation assay.Crossref | GoogleScholarGoogle Scholar | 17417028PubMed |

Licatalosi, D. D. (2016). Roles of RNA-binding proteins and post-transcriptional regulation in driving male germ cell development in the mouse. Adv. Exp. Med. Biol. 907, 123–151.
Roles of RNA-binding proteins and post-transcriptional regulation in driving male germ cell development in the mouse.Crossref | GoogleScholarGoogle Scholar | 27256385PubMed |

Liu, H., Li, W., Zhang, Y., Zhang, Z., Shang, X., Zhang, L., Zhang, S., Li, Y., Somoza, A. V., Delpi, B., Gerton, G. L., Foster, J. A., Hess, R. A., Pazour, G. J., and Zhang, Z. (2017). IFT25, an intraflagellar transporter protein dispensable for ciliogenesis in somatic cells, is essential for sperm flagella formation. Biol. Reprod. 96, 993–1006.
IFT25, an intraflagellar transporter protein dispensable for ciliogenesis in somatic cells, is essential for sperm flagella formation.Crossref | GoogleScholarGoogle Scholar | 28430876PubMed |

Ma, W., Tessarollo, L., Hong, S. B., Baba, M., Southon, E., Back, T. C., Spence, S., Lobe, C. G., Sharma, N., Maher, G. W., Pack, S., Vortmeyer, A. O., Guo, C., Zbar, B., and Schmidt, L. S. (2003). Hepatic vascular tumors, angiectasis in multiple organs, and impaired spermatogenesis in mice with conditional inactivation of the VHL gene. Cancer Res. 63, 5320–5328.
| 14500363PubMed |

Morimoto, M., and Boerkoel, C. F. (2013). The role of nuclear bodies in gene expression and disease. Biology (Basel) 2, 976–1033.
The role of nuclear bodies in gene expression and disease.Crossref | GoogleScholarGoogle Scholar | 24040563PubMed |

Nagarkatti-Gude, D. R., Jaimez, R., Henderson, S. C., Teves, M. E., Zhang, Z., and Strauss, J. F. (2011). Spag16, an axonemal central apparatus gene, encodes a male germ cell nuclear speckle protein that regulates SPAG16 mRNA expression. PLoS One 6, e20625.
Spag16, an axonemal central apparatus gene, encodes a male germ cell nuclear speckle protein that regulates SPAG16 mRNA expression.Crossref | GoogleScholarGoogle Scholar | 21655194PubMed |

Ohh, M., Park, C. W., Ivan, M., Hoffman, M. A., Kim, T. Y., Huang, L. E., Pavletich, N., Chau, V., and Kaelin, W. G. (2000). Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel–Lindau protein. Nat. Cell Biol. 2, 423–427.
Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel–Lindau protein.Crossref | GoogleScholarGoogle Scholar | 10878807PubMed |

Okumura, F., Matsuzaki, M., Nakatsukasa, K., and Kamura, T. (2012). The role of Elongin BC-containing ubiquitin ligases. Front. Oncol. 2, 10.
The role of Elongin BC-containing ubiquitin ligases.Crossref | GoogleScholarGoogle Scholar | 22649776PubMed |

Pennarun, G., Bridoux, A. M., Escudier, E., Dastot-Le Moal, F., Cacheux, V., Amselem, S., and Duriez, B. (2002). Isolation and expression of the human hPF20 gene orthologous to Chlamydomonas PF20: evaluation as a candidate for axonemal defects of respiratory cilia and sperm flagella. Am. J. Respir. Cell Mol. Biol. 26, 362–370.
Isolation and expression of the human hPF20 gene orthologous to Chlamydomonas PF20: evaluation as a candidate for axonemal defects of respiratory cilia and sperm flagella.Crossref | GoogleScholarGoogle Scholar | 11867345PubMed |

Penttilä, T. L., Yuan, L., Mali, P., Höög, C., and Parvinen, M. (1995). Haploid gene expression: temporal onset and storage patterns of 13 novel transcripts during rat and mouse spermiogenesis. Biol. Reprod. 53, 499–510.
Haploid gene expression: temporal onset and storage patterns of 13 novel transcripts during rat and mouse spermiogenesis.Crossref | GoogleScholarGoogle Scholar | 7578672PubMed |

Querido, E., Blanchette, P., Yan, Q., Kamura, T., Morrison, M., Boivin, D., Kaelin, W. G., Conaway, R. C., Conaway, J. W., and Branton, P. E. (2001). Degradation of p53 by adenovirus E4orf6 and E1B55K proteins occurs via a novel mechanism involving a Cullin-containing complex. Genes Dev. 15, 3104–3117.
Degradation of p53 by adenovirus E4orf6 and E1B55K proteins occurs via a novel mechanism involving a Cullin-containing complex.Crossref | GoogleScholarGoogle Scholar | 11731475PubMed |

Sasagawa, Y., Kikuchi, K., Dazai, K., and Higashitani, A. (2005). Caenorhabditis elegans Elongin BC complex is essential for cell proliferation and chromosome condensation and segregation during mitosis and meiotic division II. Chromosome Res. 13, 357–375.
Caenorhabditis elegans Elongin BC complex is essential for cell proliferation and chromosome condensation and segregation during mitosis and meiotic division II.Crossref | GoogleScholarGoogle Scholar | 15973501PubMed |

Schapira, M., Tyers, M., Torrent, M., and Arrowsmith, C. H. (2017). WD40 repeat domain proteins: a novel target class? Nat. Rev. Drug Discov. 16, 773–786.
WD40 repeat domain proteins: a novel target class?Crossref | GoogleScholarGoogle Scholar | 29026209PubMed |

Smith, E. F., and Lefebvre, P. A. (1997). PF20 gene product contains WD repeats and localizes to the intermicrotubule bridges in Chlamydomonas flagella. Mol. Biol. Cell 8, 455–467.
PF20 gene product contains WD repeats and localizes to the intermicrotubule bridges in Chlamydomonas flagella.Crossref | GoogleScholarGoogle Scholar | 9188098PubMed |

Steger, K. (2001). Haploid spermatids exhibit translationally repressed mRNAs. Anat. Embryol. (Berl.) 203, 323–334.
Haploid spermatids exhibit translationally repressed mRNAs.Crossref | GoogleScholarGoogle Scholar | 11411307PubMed |

Yang, J., Morales, C. R., Medvedev, S., Schultz, R. M., and Hecht, N. B. (2007). In the absence of the mouse DNA/RNA-binding protein MSY2, messenger RNA instability leads to spermatogenic arrest. Biol. Reprod. 76, 48–54.
In the absence of the mouse DNA/RNA-binding protein MSY2, messenger RNA instability leads to spermatogenic arrest.Crossref | GoogleScholarGoogle Scholar | 17035640PubMed |

Ye, Y., Vasavada, S., Kuzmin, I., Stackhouse, T., Zbar, B., and Williams, B. R. (1998). Subcellular localization of the von Hippel–Lindau disease gene product is cell cycle-dependent. Int. J. Cancer 78, 62–69.
Subcellular localization of the von Hippel–Lindau disease gene product is cell cycle-dependent.Crossref | GoogleScholarGoogle Scholar | 9724095PubMed |

Zhang, Z., Sapiro, R., Kapfhamer, D., Bucan, M., Bray, J., Chennathukuzhi, V., McNamara, P., Curtis, A., Zhang, M., Blanchette-Mackie, E. J., and Strauss, J. F. (2002). A sperm-associated WD repeat protein orthologous to Chlamydomonas PF20 associates with Spag6, the mammalian orthologue of Chlamydomonas PF16. Mol. Cell. Biol. 22, 7993–8004.
A sperm-associated WD repeat protein orthologous to Chlamydomonas PF20 associates with Spag6, the mammalian orthologue of Chlamydomonas PF16.Crossref | GoogleScholarGoogle Scholar | 12391165PubMed |

Zhang, Z., Kostetskii, I., Moss, S. B., Jones, B. H., Ho, C., Wang, H., Kishida, T., Gerton, G. L., Radice, G. L., and Strauss, J. F. (2004). Haploinsufficiency for the murine orthologue of Chlamydomonas PF20 disrupts spermatogenesis. Proc. Natl Acad. Sci. USA 101, 12946–12951.
Haploinsufficiency for the murine orthologue of Chlamydomonas PF20 disrupts spermatogenesis.Crossref | GoogleScholarGoogle Scholar | 15328412PubMed |

Zhang, Z., Kostetskii, I., Tang, W., Haig-Ladewig, L., Sapiro, R., Wei, Z., Patel, A. M., Bennett, J., Gerton, G. L., Moss, S. B., Radice, G. L., and Strauss, J. F. (2006). Deficiency of SPAG16L causes male infertility associated with impaired sperm motility. Biol. Reprod. 74, 751–759.
Deficiency of SPAG16L causes male infertility associated with impaired sperm motility.Crossref | GoogleScholarGoogle Scholar | 16382026PubMed |

Zhang, Z., Shen, X., Jones, B. H., Xu, B., Herr, J. C., and Strauss, J. F. (2008). Phosphorylation of mouse sperm axoneme central apparatus protein SPAG16L by a testis-specific kinase, TSSK2. Biol. Reprod. 79, 75–83.
Phosphorylation of mouse sperm axoneme central apparatus protein SPAG16L by a testis-specific kinase, TSSK2.Crossref | GoogleScholarGoogle Scholar | 18367677PubMed |

Zhang, Y., Liu, H., Li, W., Zhang, Z., Shang, X., Zhang, D., Li, Y., Zhang, S., Liu, J., and Hess, R. A. (2017). Intraflagellar transporter protein (IFT27), an IFT25 binding partner, is essential for male fertility and spermiogenesis in mice. Dev. Biol. 432, 125–139.
Intraflagellar transporter protein (IFT27), an IFT25 binding partner, is essential for male fertility and spermiogenesis in mice.Crossref | GoogleScholarGoogle Scholar | 28964737PubMed |