Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Vitrifying immature equine oocytes impairs their ability to correctly align the chromosomes on the MII spindle

Kaatje D. Ducheyne https://orcid.org/0000-0002-5036-7914 A B D , Marilena Rizzo B C , Peter F. Daels A , Tom A. E. Stout B and Marta de Ruijter-Villani B
+ Author Affiliations
- Author Affiliations

A Department of Medical Imaging and Small Animal Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.

B Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 112, 3684CM Utrecht, Netherlands.

C Department of Veterinary Sciences, Messina University, Viale Annunziata, 98168 Messina, Italy.

D Corresponding author. Email: k.d.ducheyne@uu.nl

Reproduction, Fertility and Development 31(8) 1330-1338 https://doi.org/10.1071/RD18276
Submitted: 31 July 2018  Accepted: 6 February 2019   Published: 10 April 2019

Abstract

Vitrified–warmed immature equine oocytes are able to complete the first meiotic division, but their subsequent developmental competence is compromised. Therefore, the present study investigated the effects of vitrifying immature horse oocytes on the chromosome and spindle configuration after IVM. Cumulus–oocytes complexes (COCs) were collected and divided into two groups based on mare age (young ≤14 years; old ≥16 years). COCs were then either directly matured in vitro or vitrified and warmed before IVM. Spindle morphology and chromosome alignment within MII stage oocytes were assessed using immunofluorescent staining, confocal microscopy and three-dimensional image analysis. Vitrification reduced the ability of oocytes to reach MII and resulted in ultrastructural changes to the meiotic spindle, including shortening of its long axis, and an increased incidence of chromosomes failing to align properly at the metaphase plate. We hypothesise that aberrant chromosome alignment is an important contributor to the reduced developmental competence of vitrified equine oocytes. Contrary to expectation, oocytes from young mares were more severely affected than oocytes from older mares; we propose that the reduced effect of vitrification on oocytes from older mares is related to pre-existing compromise of spindle assembly checkpoint control mechanisms in these mares.

Additional keywords: chromosome alignment, cryopreservation, horse, meiotic spindle.


References

Allen, W. R., Brown, L., Wright, M., and Wilsher, S. (2007). Reproductive efficiency of Flatrace and National Hunt Thoroughbred mares and stallions in England. Equine Vet. J. 39, 438–445.
Reproductive efficiency of Flatrace and National Hunt Thoroughbred mares and stallions in England.Crossref | GoogleScholarGoogle Scholar | 17910269PubMed |

Canesin, H. S., Brom-de-Luna, J. G., Choi, Y. H., Ortiz, I., Diaw, M., and Hinrichs, K. (2017). Blastocyst development after intracytoplasmic sperm injection of equine oocytes vitrified at the germinal-vesicle stage. Cryobiology 75, 52–59.
Blastocyst development after intracytoplasmic sperm injection of equine oocytes vitrified at the germinal-vesicle stage.Crossref | GoogleScholarGoogle Scholar | 28209499PubMed |

Canesin, H. S., Brom-de-Luna, J. G., Choi, Y. H., Pereira, A. M., Macedo, G. G., and Hinrichs, K. (2018). Vitrification of germinal-vesicle stage equine oocytes: effect of cryoprotectant exposure time on in-vitro embryo production. Cryobiology 81, 185–191.
Vitrification of germinal-vesicle stage equine oocytes: effect of cryoprotectant exposure time on in-vitro embryo production.Crossref | GoogleScholarGoogle Scholar | 29305835PubMed |

Carnevale, E. M. (2008). The mare model for follicular maturation and reproductive aging in the woman. Theriogenology 69, 23–30.
The mare model for follicular maturation and reproductive aging in the woman.Crossref | GoogleScholarGoogle Scholar | 17976712PubMed |

Cheng, J., Jia, B., Wu, T., Zhou, G., Hou, Y., Fu, X., and Zhu, S. (2014). Effects of vitrification for germinal vesicle and metaphase II oocytes on subsequent centromere cohesion and chromosome aneuploidy in mice. Theriogenology 82, 495–500.
Effects of vitrification for germinal vesicle and metaphase II oocytes on subsequent centromere cohesion and chromosome aneuploidy in mice.Crossref | GoogleScholarGoogle Scholar | 24930605PubMed |

Choi, Y. H., Love, L. B., Varner, D. D., and Hinrichs, K. (2006). Holding immature equine oocytes in the absence of meiotic inhibitors: effect on germinal vesicle chromatin and blastocyst development after intracytoplasmic sperm injection. Theriogenology 66, 955–963.
Holding immature equine oocytes in the absence of meiotic inhibitors: effect on germinal vesicle chromatin and blastocyst development after intracytoplasmic sperm injection.Crossref | GoogleScholarGoogle Scholar | 16574209PubMed |

Choi, Y. H., Velez, I. C., Macias-Garcia, B., Riera, F. L., Ballard, C. S., and Hinrichs, K. (2016). Effect of clinically-related factors on in vitro blastocyst development after equine ICSI. Theriogenology 85, 1289–1296.
Effect of clinically-related factors on in vitro blastocyst development after equine ICSI.Crossref | GoogleScholarGoogle Scholar | 26777560PubMed |

Comizzoli, P., Wildt, D. E., and Pukazhenthi, B. S. (2004). Effect of 1,2-propanediol versus 1,2-ethanediol on subsequent oocyte maturation, spindle integrity, fertilization, and embryo development in vitro in the domestic cat. Biol. Reprod. 71, 598–604.
Effect of 1,2-propanediol versus 1,2-ethanediol on subsequent oocyte maturation, spindle integrity, fertilization, and embryo development in vitro in the domestic cat.Crossref | GoogleScholarGoogle Scholar | 15084479PubMed |

Coticchio, G., Guglielmo, M. C., Dal Canto, M., Fadini, R., Mignini Renzini, M., De Ponti, E., Brambillasca, F., and Albertini, D. F. (2013). Mechanistic foundations of the metaphase II spindle of human oocytes matured in vivo and in vitro. Hum. Reprod. 28, 3271–3282.
Mechanistic foundations of the metaphase II spindle of human oocytes matured in vivo and in vitro.Crossref | GoogleScholarGoogle Scholar | 24129615PubMed |

Curcio, B. R., Gastal, M. A., Pereira, G. R., Corcini, C. D., Landim-Alvarenga, F. C., Barros, S. S., Nogueira, C. E. W., Deschamps, J. C., and Gastal, E. L. (2014). Ultrastructural morphology and nuclear maturation rates of immature equine oocytes vitrified with different solutions and exposure times. J. Equine Vet. Sci. 34, 632–640.
Ultrastructural morphology and nuclear maturation rates of immature equine oocytes vitrified with different solutions and exposure times.Crossref | GoogleScholarGoogle Scholar |

de Leon, P. M., Campos, V. F., Corcini, C. D., Santos, E. C., Rambo, G., Lucia, T., Deschamps, J. C., and Collares, T. (2012). Cryopreservation of immature equine oocytes, comparing a solid surface vitrification process with open pulled straws and the use of a synthetic ice blocker. Theriogenology 77, 21–27.
Cryopreservation of immature equine oocytes, comparing a solid surface vitrification process with open pulled straws and the use of a synthetic ice blocker.Crossref | GoogleScholarGoogle Scholar | 21835449PubMed |

Eichenlaub-Ritter, U., Vogt, E., Yin, H., and Gosden, R. (2004). Spindles, mitochondria and redox potential in ageing oocytes. Reprod. Biomed. Online 8, 45–58.
Spindles, mitochondria and redox potential in ageing oocytes.Crossref | GoogleScholarGoogle Scholar | 14759287PubMed |

Galli, C., Colleoni, S., Duchi, R., Lagutina, I., and Lazzari, G. (2007). Developmental competence of equine oocytes and embryos obtained by in vitro procedures ranging from in vitro maturation and ICSI to embryo culture, cryopreservation and somatic cell nuclear transfer. Anim. Reprod. Sci. 98, 39–55.
Developmental competence of equine oocytes and embryos obtained by in vitro procedures ranging from in vitro maturation and ICSI to embryo culture, cryopreservation and somatic cell nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 17101246PubMed |

Galli, C., Colleoni, S., Turini, P., Crotti, G., Dieci, C., Lodde, V., Luciano, A. M., and Lazzari, G. (2014). Holding equine oocytes at room temperature for 18 hours prior in vitro maturation maintains their developmental competence. J. Equine Vet. Sci. 34, 174–175.
Holding equine oocytes at room temperature for 18 hours prior in vitro maturation maintains their developmental competence.Crossref | GoogleScholarGoogle Scholar |

Hinrichs, K., Schmidt, A. L., Friedman, P. P., Selgrath, J. P., and Martin, M. G. (1993). In vitro maturation of horse oocytes: characterization of chromatin configuration using fluorescence microscopy. Biol. Reprod. 48, 363–370.
In vitro maturation of horse oocytes: characterization of chromatin configuration using fluorescence microscopy.Crossref | GoogleScholarGoogle Scholar | 8439626PubMed |

Hochi, S., Kozawa, M., Fujimoto, T., Hondo, E., Yamada, J., and Oguri, N. (1996). In vitro maturation and transmission electron microscopic observation of horse oocytes after vitrification. Cryobiology 33, 300–310.
In vitro maturation and transmission electron microscopic observation of horse oocytes after vitrification.Crossref | GoogleScholarGoogle Scholar | 8689887PubMed |

Hurtt, A. E., Landim-Alvarenga, F., Seidel, G. E., and Squires, E. L. (2000). Vitrification of immature and mature equine and bovine oocytes in an ethylene glycol, ficoll and sucrose solution using open-pulled straws. Theriogenology 54, 119–128.
Vitrification of immature and mature equine and bovine oocytes in an ethylene glycol, ficoll and sucrose solution using open-pulled straws.Crossref | GoogleScholarGoogle Scholar | 10990353PubMed |

Jessberger, R. (2012). Age-related aneuploidy through cohesion exhaustion. EMBO Rep. 13, 539–546.
Age-related aneuploidy through cohesion exhaustion.Crossref | GoogleScholarGoogle Scholar | 22565322PubMed |

Lister, L. M., Kouznetsova, A., Hyslop, L. A., Kalleas, D., Pace, S. L., Barel, J. C., Nathan, A., Floros, V., Adelfalk, C., Watanabe, Y., Jessberger, R., Kirkwood, T. B., Hoog, C., and Herbert, M. (2010). Age-related meiotic segregation errors in mammalian oocytes are preceded by depletion of cohesin and Sgo2. Curr. Biol. 20, 1511–1521.
Age-related meiotic segregation errors in mammalian oocytes are preceded by depletion of cohesin and Sgo2.Crossref | GoogleScholarGoogle Scholar | 20817533PubMed |

Ma, R., Hou, X., Zhang, L., Sun, S. C., Schedl, T., Moley, K., and Wang, Q. (2014). Rab5a is required for spindle length control and kinetochore–microtubule attachment during meiosis in oocytes. FASEB J. 28, 4026–4035.
Rab5a is required for spindle length control and kinetochore–microtubule attachment during meiosis in oocytes.Crossref | GoogleScholarGoogle Scholar | 24876181PubMed |

Maclellan, L. J., Hatzel, J. N., Amoroso, F., Stokes, J. E., and Carnevale, E. M. (2018). Meiotic spindle characteristics of oocytes after vitrification at germinal vesicle stage, warming and maturation in vitro and developmental potential after ICSI. J. Equine Vet. Sci. 66, 202.
Meiotic spindle characteristics of oocytes after vitrification at germinal vesicle stage, warming and maturation in vitro and developmental potential after ICSI.Crossref | GoogleScholarGoogle Scholar |

Magnusson, V., Feitosa, W. B., Goissis, M. D., Yamada, C., Tavares, L. M., D’Avila Assumpcao, M. E., and Visintin, J. A. (2008). Bovine oocyte vitrification: effect of ethylene glycol concentrations and meiotic stages. Anim. Reprod. Sci. 106, 265–273.
Bovine oocyte vitrification: effect of ethylene glycol concentrations and meiotic stages.Crossref | GoogleScholarGoogle Scholar | 17686591PubMed |

Marco-Jiménez, F., Jiménez-Trigos, E., Almela-Miralles, V., and Vicente, J. S. (2016). Development of cheaper embryo vitrification device using the minimum volume method. PLoS One 11, e0148661.
Development of cheaper embryo vitrification device using the minimum volume method.Crossref | GoogleScholarGoogle Scholar | 26848960PubMed |

Morris, L. H., and Allen, W. R. (2002). Reproductive efficiency of intensively managed Thoroughbred mares in Newmarket. Equine Vet. J. 34, 51–60.
Reproductive efficiency of intensively managed Thoroughbred mares in Newmarket.Crossref | GoogleScholarGoogle Scholar | 11822372PubMed |

Ortiz-Escribano, N., Bogado Pascottini, O., Woelders, H., Vandenberghe, L., De Schauwer, C., Govaere, J., Van den Abbeel, E., Vullers, T., Ververs, C., Roels, K., Van De Velde, M., Van Soom, A., and Smits, K. (2018). An improved vitrification protocol for equine immature oocytes, resulting in a first live foal. Equine Vet. J. 50, 391–397.
An improved vitrification protocol for equine immature oocytes, resulting in a first live foal.Crossref | GoogleScholarGoogle Scholar | 28833413PubMed |

Park, S. E., Son, W. Y., Lee, S. H., Lee, K. A., Ko, J. J., and Cha, K. Y. (1997). Chromosome and spindle configurations of human oocytes matured in vitro after cryopreservation at the germinal vesicle stage. Fertil. Steril. 68, 920–926.
Chromosome and spindle configurations of human oocytes matured in vitro after cryopreservation at the germinal vesicle stage.Crossref | GoogleScholarGoogle Scholar | 9389826PubMed |

Rader, K., Choi, Y. H., and Hinrichs, K. (2016). Intracytoplasmic sperm injection, embryo culture, and transfer of in vitro-produced blastocysts. Vet. Clin. North Am. Equine Pract. 32, 401–413.
Intracytoplasmic sperm injection, embryo culture, and transfer of in vitro-produced blastocysts.Crossref | GoogleScholarGoogle Scholar | 27726990PubMed |

Rambags, B. P., van Boxtel, D. C., Tharasanit, T., Lenstra, J. A., Colenbrander, B., and Stout, T. A. (2014). Advancing maternal age predisposes to mitochondrial damage and loss during maturation of equine oocytes in vitro. Theriogenology 81, 959–965.
Advancing maternal age predisposes to mitochondrial damage and loss during maturation of equine oocytes in vitro.Crossref | GoogleScholarGoogle Scholar | 24576711PubMed |

Rizzo, M., de Ruijter-Villani, M., Deelen, C., Beitsma, M., Cristarella, S., Quartuccio, M., and Stout, T. A. E. (2016). Oocytes from aged mares show reduced expression of mRNA for key spindle assembly checkpoint components. J. Equine Vet. Sci. 41, 84.
Oocytes from aged mares show reduced expression of mRNA for key spindle assembly checkpoint components.Crossref | GoogleScholarGoogle Scholar |

Rizzo, M., Ducheyne, K. D., Deelen, C., Beitsma, M., Cristarella, S., Quartuccio, M., Stout, T. A. E., and de Ruijter-Villani, M. (2019). Advanced mare age impairs the ability of in vitro-matured oocytes to correctly align chromosomes on the metaphase plate. Equine Vet. J. 51, 252–257.
Advanced mare age impairs the ability of in vitro-matured oocytes to correctly align chromosomes on the metaphase plate.Crossref | GoogleScholarGoogle Scholar | 30025174PubMed |

Rojas, C., Palomo, M. J., Albarracin, J. L., and Mogas, T. (2004). Vitrification of immature and in vitro matured pig oocytes: study of distribution of chromosomes, microtubules, and actin microfilaments. Cryobiology 49, 211–220.
Vitrification of immature and in vitro matured pig oocytes: study of distribution of chromosomes, microtubules, and actin microfilaments.Crossref | GoogleScholarGoogle Scholar | 15615607PubMed |

Roser, J. F., and Meyers-Brown, G. (2012). Superovulation in the mare: a work in progress. J. Equine Vet. Sci. 32, 376–386.
Superovulation in the mare: a work in progress.Crossref | GoogleScholarGoogle Scholar |

Shomper, M., Lappa, C., and FitzHarris, G. (2014). Kinetochore microtubule establishment is defective in oocytes from aged mice. Cell Cycle 13, 1171–1179.
Kinetochore microtubule establishment is defective in oocytes from aged mice.Crossref | GoogleScholarGoogle Scholar | 24553117PubMed |

Simerly, C., and Schatten, G. (1993). Techniques for localization of specific molecules in oocytes and embryos. Methods Enzymol. 225, 516–553.
Techniques for localization of specific molecules in oocytes and embryos.Crossref | GoogleScholarGoogle Scholar | 8231872PubMed |

Succu, S., Leoni, G. G., Bebbere, D., Berlinguer, F., Mossa, F., Bogliolo, L., Madeddu, M., Ledda, S., and Naitana, S. (2007). Vitrification devices affect structural and molecular status of in vitro matured ovine oocytes. Mol. Reprod. Dev. 74, 1337–1344.
Vitrification devices affect structural and molecular status of in vitro matured ovine oocytes.Crossref | GoogleScholarGoogle Scholar | 17290423PubMed |

Succu, S., Bebbere, D., Bogliolo, L., Ariu, F., Fois, S., Leoni, G. G., Berlinguer, F., Naitana, S., and Ledda, S. (2008). Vitrification of in vitro matured ovine oocytes affects in vitro pre-implantation development and mRNA abundance. Mol. Reprod. Dev. 75, 538–546.
Vitrification of in vitro matured ovine oocytes affects in vitro pre-implantation development and mRNA abundance.Crossref | GoogleScholarGoogle Scholar | 17886274PubMed |

Tharasanit, T., Colleoni, S., Lazzari, G., Colenbrander, B., Galli, C., and Stout, T. A. (2006). Effect of cumulus morphology and maturation stage on the cryopreservability of equine oocytes. Reproduction 132, 759–769.
Effect of cumulus morphology and maturation stage on the cryopreservability of equine oocytes.Crossref | GoogleScholarGoogle Scholar | 17071777PubMed |

Tomari, H., Honjo, K., Kunitake, K., Aramaki, N., Kuhara, S., Hidaka, N., Nishimura, K., Nagata, Y., and Horiuchi, T. (2018). Meiotic spindle size is a strong indicator of human oocyte quality. Reprod. Med. Biol. 17, 268–274.
Meiotic spindle size is a strong indicator of human oocyte quality.Crossref | GoogleScholarGoogle Scholar | 30013428PubMed |

Tsutsumi, M., Fujiwara, R., Nishizawa, H., Ito, M., Kogo, H., Inagaki, H., Ohye, T., Kato, T., Fujii, T., and Kurahashi, H. (2014). Age-related decrease of meiotic cohesins in human oocytes. PLoS One 9, e96710.
Age-related decrease of meiotic cohesins in human oocytes.Crossref | GoogleScholarGoogle Scholar | 24806359PubMed |

Vogt, E., Kirsch-Volders, M., Parry, J., and Eichenlaub-Ritter, U. (2008). Spindle formation, chromosome segregation and the spindle checkpoint in mammalian oocytes and susceptibility to meiotic error. Mutat. Res. 651, 14–29.
Spindle formation, chromosome segregation and the spindle checkpoint in mammalian oocytes and susceptibility to meiotic error.Crossref | GoogleScholarGoogle Scholar | 18096427PubMed |

Wang, Z. W., Zhang, G. L., Schatten, H., Carroll, J., and Sun, Q. Y. (2016). Cytoplasmic determination of meiotic spindle size revealed by a unique inter-species germinal vesicle transfer model. Sci. Rep. 6, 19827.
Cytoplasmic determination of meiotic spindle size revealed by a unique inter-species germinal vesicle transfer model.Crossref | GoogleScholarGoogle Scholar | 26813698PubMed |

Wang, N., Li, C. Y., Zhu, H. B., Hao, H. S., Wang, H. Y., Yan, C. L., Zhao, S. J., Du, W. H., Wang, D., Liu, Y., Pang, Y. W., and Zhao, X. M. (2017). Effect of vitrification on the mRNA transcriptome of bovine oocytes. Reprod. Domest. Anim. 52, 531–541.
Effect of vitrification on the mRNA transcriptome of bovine oocytes.Crossref | GoogleScholarGoogle Scholar | 28295644PubMed |

Wen, Y., Quintero, R., Chen, B., Shu, Y., Polan, M. L., and Behr, B. (2007). Expression of CD9 in frozen–thawed mouse oocytes: preliminary experience. Fertil. Steril. 88, 526–529.
Expression of CD9 in frozen–thawed mouse oocytes: preliminary experience.Crossref | GoogleScholarGoogle Scholar | 17307168PubMed |