Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
REVIEW

Functions of promyelocytic leukaemia zinc finger (Plzf) in male germline stem cell development and differentiation

Daguia Zambe John Clotaire A B , Yudong Wei A , Xiuwei Yu A , Tamgue Ousman C and Jinlian Hua A D
+ Author Affiliations
- Author Affiliations

A College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.

B Laboratoire des sciences Agronomiques et Biologiques pour le Développement (LASBAD), Faculty of Science, University of Bangui, Bangui, 999111, Central Africa.

C Department of Biochemistry, University of Douala, Douala, 999108, Cameroon.

D Corresponding author. Email: jinlianhua@nwsuaf.edu.cn

Reproduction, Fertility and Development 31(8) 1315-1320 https://doi.org/10.1071/RD18252
Submitted: 1 July 2018  Accepted: 16 February 2019   Published: 23 April 2019

Abstract

Promyelocytic leukaemia zinc finger (Plzf), also known as zinc finger and BTB domain containing 16 (ZBTB16) or zinc-finger protein 145 (ZFP145), is a critical zinc finger protein of male germline stem cells (mGSCs). Multiple lines of evidence indicate that Plzf has a central role in the development, differentiation and maintenance of many stem cells, including mGSCs, and Plzf has been validated as an essential transcription factor for mammalian testis development and spermatogenesis. This review summarises current literature focusing on the significance of Plzf in maintaining and regulating self-renewal and differentiation of mGSCs, especially goat mGSCs. The review summarises evidence of the specificity of Plzf expression in germ cell development stage, the known functions of Plzf and the microRNA-mediated mechanisms that control Plzf expression in mGSCs.

Additional keywords: heterochromatin, microRNAs, self-renewal.


References

Agrawal Singh, S., Lerdrup, M., Gomes, A. R., van de Werken, H. J., Vilstrup Johansen, J., Andersson, R., Sandelin, A., Helin, K., and Hansen, K. (2019). PLZF targets developmental enhancers for activation during osteogenic differentiation of human mesenchymal stem cells. eLife 8, e40364.
PLZF targets developmental enhancers for activation during osteogenic differentiation of human mesenchymal stem cells.Crossref | GoogleScholarGoogle Scholar | 30672466PubMed |

Aponte, P. M., Soda, T., van de Kant, H. J. G., and de Rooij, D. G. (2006). Basic features of bovine spermatogonial culture and effects of glial cell line-derived neurotrophic factor. Theriogenology 65, 1828–1847.
Basic features of bovine spermatogonial culture and effects of glial cell line-derived neurotrophic factor.Crossref | GoogleScholarGoogle Scholar | 16321433PubMed |

Buaas, F. W., Kirsh, A. L., Sharma, M., McLean, D. J., Morris, J. L., Griswold, M. D., de Rooij, D. G., and Braun, R. E. (2004). Plzf is required in adult male germ cells for stem cell self-renewal. Nat. Genet. 36, 647–652.
Plzf is required in adult male germ cells for stem cell self-renewal.Crossref | GoogleScholarGoogle Scholar | 15156142PubMed |

Cheng, H.-Y. M., Papp, J. W., Varlamova, O., Dziema, H., Russell, B., Curfman, J. P., Nakazawa, T., Shimizu, K., Okamura, H., Impey, S., and Obrietan, K. (2007). microRNA modulation of circadian-clock period and entrainment. Neuron 54, 813–829.
microRNA modulation of circadian-clock period and entrainment.Crossref | GoogleScholarGoogle Scholar |

Choi, W.-I., Kim, M.-Y., Jeon, B.-N., Koh, D.-I., Yun, C.-O., Li, Y., Lee, C.-E., Oh, J., Kim, K., and Hur, M.-W. (2014a). Role of promyelocytic leukemia zinc finger (PLZF) in cell proliferation and cyclin-dependent kinase inhibitor 1A (p21WAF/CDKN1A) gene repression. J. Biol. Chem. 289, 18625–18640.
Role of promyelocytic leukemia zinc finger (PLZF) in cell proliferation and cyclin-dependent kinase inhibitor 1A (p21WAF/CDKN1A) gene repression.Crossref | GoogleScholarGoogle Scholar | 24821727PubMed |

Choi, W.-I., Yoon, J.-H., Kim, M.-Y., Koh, D.-I., Licht, J. D., Kim, K., and Hur, M.-W. (2014b). Promyelocytic leukemia zinc finger-retinoic acid receptor alpha (PLZF-RAR alpha), an oncogenic transcriptional repressor of cyclin-dependent kinase inhibitor 1A (p21WAF/CDKN1A) and tumor protein p53 (TP53) genes. J. Biol. Chem. 289, 18641–18656.
Promyelocytic leukemia zinc finger-retinoic acid receptor alpha (PLZF-RAR alpha), an oncogenic transcriptional repressor of cyclin-dependent kinase inhibitor 1A (p21WAF/CDKN1A) and tumor protein p53 (TP53) genes.Crossref | GoogleScholarGoogle Scholar | 24821728PubMed |

Costoya, J. A., Hobbs, R. M., Barna, M., Cattoretti, G., Manova, K., Sukhwani, M., Orwig, K. E., Wolgemuth, D. J., and Pandolfi, P. P. (2004). Essential role of Plzf in maintenance of spermatogonial stem cells. Nat. Genet. 36, 653–659.
Essential role of Plzf in maintenance of spermatogonial stem cells.Crossref | GoogleScholarGoogle Scholar | 15156143PubMed |

Costoya, J. A., Hobbs, R. M., and Pandolfi, P. P. (2008). Cyclin-dependent kinase antagonizes promyelocytic leukemia zinc-finger through phosphorylation. Oncogene 27, 3789–3796.
Cyclin-dependent kinase antagonizes promyelocytic leukemia zinc-finger through phosphorylation.Crossref | GoogleScholarGoogle Scholar | 18246121PubMed |

Daguia Zambe, J. C., Du, X., Wei, Y., Yang, D., and Hua, J. (2018a). miR-19b-3p integrates Jak–Stat signaling pathway through Plzf to regulate self-renewal in dairy goat male germline stem cells. Int. J. Biochem. Cell Biol. 105, 104–114.
miR-19b-3p integrates Jak–Stat signaling pathway through Plzf to regulate self-renewal in dairy goat male germline stem cells.Crossref | GoogleScholarGoogle Scholar |

Daguia Zambe, J. C., Zhai, Y., Zhou, Z., Du, X., Wei, Y., Ma, F., and Hua, J. (2018b). miR-19b-3p induces cell proliferation and reduces heterochromatin-mediated senescence through PLZF in goat male germline stem cells. J. Cell. Physiol. 233, 4652–4665.
miR-19b-3p induces cell proliferation and reduces heterochromatin-mediated senescence through PLZF in goat male germline stem cells.Crossref | GoogleScholarGoogle Scholar | 29171024PubMed |

Doulatov, S., Notta, F., Rice, K. L., Howell, L., Zelent, A., Licht, J. D., and Dick, J. E. (2009). PLZF is a regulator of homeostatic and cytokine-induced myeloid development. Genes Dev. 23, 2076–2087.
PLZF is a regulator of homeostatic and cytokine-induced myeloid development.Crossref | GoogleScholarGoogle Scholar | 19723763PubMed |

Filipponi, D., Hobbs, R. M., Ottolenghi, S., Rossi, P., Jannini, E. A., Pandolfi, P. P., and Dolci, S. (2007). Repression of kit expression by Plzf in germ cells. Mol. Cell. Biol. 27, 6770–6781.
Repression of kit expression by Plzf in germ cells.Crossref | GoogleScholarGoogle Scholar | 17664282PubMed |

Gaber, Z. B., Butler, S. J., and Novitch, B. G. (2013). PLZF regulates fibroblast growth factor responsiveness and maintenance of neural progenitors. PLoS Biol. 11, e1001676.
PLZF regulates fibroblast growth factor responsiveness and maintenance of neural progenitors.Crossref | GoogleScholarGoogle Scholar | 24115909PubMed |

Galasso, M., Sandhu, S. K., and Volinia, S. (2012). MicroRNA expression signatures in solid malignancies. Cancer J. 18, 238–243.
MicroRNA expression signatures in solid malignancies.Crossref | GoogleScholarGoogle Scholar | 22647360PubMed |

Girard, N., Tremblay, M., Humbert, M., Grondin, B., Haman, A., Labrecque, J., Chen, B., Chen, Z., Chen, S.-J., and Trang, H. (2013). RAR alpha-PLZF oncogene inhibits C/EBP alpha function in myeloid cells. Proc. Natl. Acad. Sci. USA 110, 13522–13527.
RAR alpha-PLZF oncogene inhibits C/EBP alpha function in myeloid cells.Crossref | GoogleScholarGoogle Scholar | 23898169PubMed |

Hayashi, K., Lopes, S. M. C. S., Kaneda, M., Tang, F., Hajkova, P., Lao, K., O’Carroll, D., Das, P. P., Tarakhovsky, A., Miska, E. A., and Surani, M. A. (2008). MicroRNA biogenesis is required for mouse primordial germ cell development and spermatogenesis. PLoS One 3, e1738.
MicroRNA biogenesis is required for mouse primordial germ cell development and spermatogenesis.Crossref | GoogleScholarGoogle Scholar | 18665239PubMed |

Hobbs, R. M., Seandel, M., Falciatori, I., Rafii, S., and Pandolfi, P. P. (2010). Plzf regulates germline progenitor self-renewal by opposing mTORC1. Cell 142, 468–479.
Plzf regulates germline progenitor self-renewal by opposing mTORC1.Crossref | GoogleScholarGoogle Scholar | 20691905PubMed |

Hu, K., Zhang, J., and Liang, M. (2017). LncRNA AK015322 promotes proliferation of spermatogonial stem cell C18-4 by acting as a decoy for microRNA-19b-3p. In Vitro Cell. Dev. Biol. Anim. 53, 277–284.
LncRNA AK015322 promotes proliferation of spermatogonial stem cell C18-4 by acting as a decoy for microRNA-19b-3p.Crossref | GoogleScholarGoogle Scholar | 27822884PubMed |

Imamura, M., Hikabe, O., Lin, Z. Y.-C., and Okano, H. (2014). Generation of germ cells in vitro in the era of induced pluripotent stem cells. Mol. Reprod. Dev. 81, 2–19.
Generation of germ cells in vitro in the era of induced pluripotent stem cells.Crossref | GoogleScholarGoogle Scholar | 23996404PubMed |

Jiang, X., Zhang, H., Yin, S., Zhang, Y., Yang, W., Zheng, W., Wang, L., Wang, Z., Bukhari, I., Cooke, H. J., Iqbal, F., and Shi, Q. (2014). Specific deficiency of Plzf paralog, Zbtb20, in Sertoli cells does not affect spermatogenesis and fertility in mice. Sci. Rep. 4, 7062.
Specific deficiency of Plzf paralog, Zbtb20, in Sertoli cells does not affect spermatogenesis and fertility in mice.Crossref | GoogleScholarGoogle Scholar | 25395169PubMed |

Kanatsu-Shinohara, M., Morimoto, H., and Shinohara, T. (2016). Fertility of male germline stem cells following spermatogonial transplantation in infertile mouse models. Biol. Reprod. 94, 112.
Fertility of male germline stem cells following spermatogonial transplantation in infertile mouse models.Crossref | GoogleScholarGoogle Scholar | 27053363PubMed |

Kaufmann, S., Sauter, M., Schmitt, M., Baumert, B., Best, B., Boese, A., Roemer, K., and Mueller-Lantzsch, N. (2010). Human endogenous retrovirus protein Rec interacts with the testicular zinc-finger protein and androgen receptor. J. Gen. Virol. 91, 1494–1502.
Human endogenous retrovirus protein Rec interacts with the testicular zinc-finger protein and androgen receptor.Crossref | GoogleScholarGoogle Scholar | 20147518PubMed |

Kofman, A. E., Huszar, J. M., and Payne, C. J. (2013). Transcriptional analysis of histone deacetylase family members reveal similarities between differentiating and aging spermatogonial stem cells. Stem Cell Rev. 9, 59–64.
Transcriptional analysis of histone deacetylase family members reveal similarities between differentiating and aging spermatogonial stem cells.Crossref | GoogleScholarGoogle Scholar | 22729928PubMed |

Labbaye, C., Spinello, I., Quaranta, M. T., Pelosi, E., Pasquini, L., Petrucci, E., Biffoni, M., Nuzzolo, E. R., Billi, M., Foa, R., Brunetti, E., Grignani, F., Testa, U., and Peschle, C. (2008). A three-step pathway comprising PLZF/miR-146a/CXCR4 controls megakaryopoiesis. Nat. Cell Biol. 10, 788–801.
A three-step pathway comprising PLZF/miR-146a/CXCR4 controls megakaryopoiesis.Crossref | GoogleScholarGoogle Scholar | 18568019PubMed |

Li, N., Ma, W., Shen, Q., Zhang, M., Du, Z., Wu, C., Niu, B., Liu, W., and Hua, J. (2019). Reconstitution of male germline cell specification from mouse embryonic stem cells using defined factors in vitro. Cell Death Differ. , .
Reconstitution of male germline cell specification from mouse embryonic stem cells using defined factors in vitro.Crossref | GoogleScholarGoogle Scholar | 30683919PubMed |

Lian, J., Tian, H., Liu, L., Zhang, X. S., Li, W. Q., Deng, Y. M., Yao, G. D., Yin, M. M., and Sun, F. (2010). Downregulation of microRNA-383 is associated with male infertility and promotes testicular embryonal carcinoma cell proliferation by targeting IRF1. Cell Death Dis. 1, e94.
Downregulation of microRNA-383 is associated with male infertility and promotes testicular embryonal carcinoma cell proliferation by targeting IRF1.Crossref | GoogleScholarGoogle Scholar | 21368870PubMed |

Liu, T. M., Lee, E. H., Lim, B., and Shyh-Chang, N. (2016). Concise review: balancing stem cell self-renewal and differentiation with PLZF. Stem Cells 34, 277–287.
Concise review: balancing stem cell self-renewal and differentiation with PLZF.Crossref | GoogleScholarGoogle Scholar | 26676652PubMed |

Lovelace, D. L., Gao, Z., Mutoji, K., Song, Y. C., Ruan, J., and Hermann, B. P. (2016). The regulatory repertoire of PLZF and SALL4 in undifferentiated spermatogonia. Development 143, 1893–1906.
The regulatory repertoire of PLZF and SALL4 in undifferentiated spermatogonia.Crossref | GoogleScholarGoogle Scholar | 27068105PubMed |

Mao, A.-P., Constantinides, M. G., Mathew, R., Zuo, Z., Chen, X., Weirauch, M. T., and Bendelac, A. (2016). Multiple layers of transcriptional regulation by PLZF in NKT-cell development. Proc. Natl Acad. Sci. USA 113, 7602–7607.
Multiple layers of transcriptional regulation by PLZF in NKT-cell development.Crossref | GoogleScholarGoogle Scholar | 27325774PubMed |

Matsui, Y., Takehara, A., Tokitake, Y., Ikeda, M., Obara, Y., Morita-Fujimura, Y., Kimura, T., and Nakano, T. (2014). The majority of early primordial germ cells acquire pluripotency by AKT activation. Development 141, 4457–4467.
The majority of early primordial germ cells acquire pluripotency by AKT activation.Crossref | GoogleScholarGoogle Scholar | 25359722PubMed |

McIver, S. C., Roman, S. D., Nixon, B., and McLaughlin, E. A. (2012). miRNA and mammalian male germ cells. Hum. Reprod. Update 18, 44–59.
miRNA and mammalian male germ cells.Crossref | GoogleScholarGoogle Scholar | 21989172PubMed |

Mu, H., Li, N., Wu, J., Zheng, L., Zhai, Y., Li, B., Song, W., Wang, J., Zhu, H., Li, G., and Hua, J. (2016). PLZF-induced upregulation of CXCR4 promotes dairy goat male germline stem cell proliferation by targeting Mir146a. J. Cell. Biochem. 117, 844–852.
PLZF-induced upregulation of CXCR4 promotes dairy goat male germline stem cell proliferation by targeting Mir146a.Crossref | GoogleScholarGoogle Scholar | 26365432PubMed |

Naito, M., Vongsa, S., Tsukune, N., Ohashi, A., and Takahashi, T. (2015). Promyelocytic leukemia zinc finger mediates glucocorticoid-induced cell cycle arrest in the chondroprogenitor cell line ATDC5. Mol. Cell. Endocrinol. 417, 114–123.
Promyelocytic leukemia zinc finger mediates glucocorticoid-induced cell cycle arrest in the chondroprogenitor cell line ATDC5.Crossref | GoogleScholarGoogle Scholar | 26419928PubMed |

Niu, Z., Goodyear, S. M., Rao, S., Wu, X., Tobias, J. W., Avarbock, M. R., and Brinster, R. L. (2011). MicroRNA-21 regulates the self-renewal of mouse spermatogonial stem cells. Proc. Natl Acad. Sci. USA 108, 12740–12745.
MicroRNA-21 regulates the self-renewal of mouse spermatogonial stem cells.Crossref | GoogleScholarGoogle Scholar | 21768389PubMed |

Phillips, B. T., Gassei, K., and Orwig, K. E. (2010). Spermatogonial stem cell regulation and spermatogenesis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365, 1663–1678.
Spermatogonial stem cell regulation and spermatogenesis.Crossref | GoogleScholarGoogle Scholar | 20403877PubMed |

Pobezinsky, L. A., Etzensperger, R., Jeurling, S., Alag, A., Kadakia, T., McCaughtry, T. M., Kimura, M. Y., Sharrow, S. O., Guinter, T. I., Feigenbaum, L., and Singer, A. (2015). Let-7 microRNAs target the lineage-specific transcription factor PLZF to regulate terminal NKT cell differentiation and effector function. Nat. Immunol. 16, 517–524.
Let-7 microRNAs target the lineage-specific transcription factor PLZF to regulate terminal NKT cell differentiation and effector function.Crossref | GoogleScholarGoogle Scholar | 25848867PubMed |

Puszyk, W., Down, T., Grimwade, D., Chomienne, C., Oakey, R. J., Solomon, E., and Guidez, F. (2013). The epigenetic regulator PLZF represses L1 retrotransposition in germ and progenitor cells. EMBO J. 32, 1941–1952.
The epigenetic regulator PLZF represses L1 retrotransposition in germ and progenitor cells.Crossref | GoogleScholarGoogle Scholar | 23727884PubMed |

Sadler, A. J., Rossello, F. J., Yu, L., Deane, J. A., Yuan, X., Wang, D., Irving, A. T., Kaparakis-Liaskos, M., Gantier, M. P., Ying, H., Yim, H. C. H., Hartland, E. L., Notini, A. J., de Boer, S., White, S. J., Mansell, A., Liu, J.-P., Watkins, D. N., Gerondakis, S., Williams, B. R. G., and Xu, D. (2015). BTB-ZF transcriptional regulator PLZF modifies chromatin to restrain inflammatory signaling programs. Proc. Natl Acad. Sci. USA 112, 1535–1540.
BTB-ZF transcriptional regulator PLZF modifies chromatin to restrain inflammatory signaling programs.Crossref | GoogleScholarGoogle Scholar | 25605927PubMed |

Shaknovich, R., Yeyati, P. L., Ivins, S., Melnick, A., Lempert, C., Waxman, S., Zelent, A., and Licht, J. D. (1998). The promyelocytic leukemia zinc finger protein affects myeloid cell growth, differentiation, and apoptosis. Mol. Cell. Biol. 18, 5533–5545.
The promyelocytic leukemia zinc finger protein affects myeloid cell growth, differentiation, and apoptosis.Crossref | GoogleScholarGoogle Scholar | 9710637PubMed |

Shen, H., Zhan, M., Zhang, Y., Huang, S., Xu, S., Huang, X., He, M., Yao, Y., Man, M., and Wang, J. (2018). PLZF inhibits proliferation and metastasis of gallbladder cancer by regulating IFIT2. Cell Death Dis. 9, 71.
PLZF inhibits proliferation and metastasis of gallbladder cancer by regulating IFIT2.Crossref | GoogleScholarGoogle Scholar | 29358655PubMed |

Slaidina, M., and Lehmann, R. (2014). Translational control in germline stem cell development. J. Cell Biol. 207, 13–21.
Translational control in germline stem cell development.Crossref | GoogleScholarGoogle Scholar | 25313405PubMed |

Song, W., Zhu, H., Li, M., Li, N., Wu, J., Mu, H., Yao, X., Han, W., Liu, W., and Hua, J. (2013). Promyelocytic leukaemia zinc finger maintains self-renewal of male germline stem cells (mGSCs) and its expression pattern in dairy goat testis. Cell Prolif. 46, 457–468.
Promyelocytic leukaemia zinc finger maintains self-renewal of male germline stem cells (mGSCs) and its expression pattern in dairy goat testis.Crossref | GoogleScholarGoogle Scholar | 23869766PubMed |

Song, W., Mu, H., Wu, J., Liao, M., Zhu, H., Zheng, L., He, X., Niu, B., Zhai, Y., Bai, C., Lei, A., Li, G., and Hua, J. (2015). miR-544 regulates dairy goat male germline stem cell self-renewal via targeting PLZF. J. Cell. Biochem. 116, 2155–2165.
miR-544 regulates dairy goat male germline stem cell self-renewal via targeting PLZF.Crossref | GoogleScholarGoogle Scholar | 25808723PubMed |

Vasanthakumar, A., Xu, D., Lun, A. T. L., Kueh, A. J., van Gisbergen, K. P. J. M., Iannarella, N., Li, X., Yu, L., Wang, D., Williams, B. R. G., Lee, S. C. W., Majewski, I. J., Godfrey, D. I., Smyth, G. K., Alexander, W. S., Herold, M. J., Kallies, A., Nutt, S. L., and Allan, R. S. (2017). A non-canonical function of Ezh2 preserves immune homeostasis. EMBO Rep. 18, 619–631.
A non-canonical function of Ezh2 preserves immune homeostasis.Crossref | GoogleScholarGoogle Scholar | 28223321PubMed |

Wang, P., Suo, L.-J., Shang, H., Li, Y., Li, G.-X., Li, Q.-W., and Hu, J.-H. (2014). Differentiation of spermatogonial stem cell-like cells from murine testicular tissue into haploid male germ cells in vitro. Cytotechnology 66, 365–372.
Differentiation of spermatogonial stem cell-like cells from murine testicular tissue into haploid male germ cells in vitro.Crossref | GoogleScholarGoogle Scholar | 23728854PubMed |

Xiao, G.-Q., Unger, P., Yang, Q., Kinoshita, Y., Singh, K., McMahon, L., Nastiuk, K., Sha, K., Krolewski, J., and Burstein, D. (2015). Loss of PLZF expression in prostate cancer by immunohistochemistry correlates with tumor aggressiveness and metastasis. PLoS One 10, e0121318.
Loss of PLZF expression in prostate cancer by immunohistochemistry correlates with tumor aggressiveness and metastasis.Crossref | GoogleScholarGoogle Scholar | 26656155PubMed |

Yan, N., Lu, Y., Sun, H., Qiu, W., Tao, D., Liu, Y., Chen, H., Yang, Y., Zhang, S., Li, X., and Ma, Y. (2009). Microarray profiling of microRNAs expressed in testis tissues of developing primates. J. Assist. Reprod. Genet. 26, 179–186.
Microarray profiling of microRNAs expressed in testis tissues of developing primates.Crossref | GoogleScholarGoogle Scholar | 19242788PubMed |

Ying, S.-Y., Chang, D. C., and Lin, S.-L. (2008). The microRNA (miRNA): overview of the RNA genes that modulate gene function. Mol. Biotechnol. 38, 257–268.
The microRNA (miRNA): overview of the RNA genes that modulate gene function.Crossref | GoogleScholarGoogle Scholar | 17999201PubMed |

Yu, M., Mu, H., Niu, Z., Chu, Z., Zhu, H., and Hua, J. (2014). miR-34c enhances mouse spermatogonial stem cells differentiation by targeting Nanos2. J. Cell. Biochem. 115, 232–242.
miR-34c enhances mouse spermatogonial stem cells differentiation by targeting Nanos2.Crossref | GoogleScholarGoogle Scholar | 24038201PubMed |