Marsupial genomics meet marsupial reproduction
Jennifer A. Marshall GravesSchool of Biological Science, La Trobe University, Bundoora, Vic. 3164 Australia. Email: j.graves@latrobe.edu.au
Reproduction, Fertility and Development 31(7) 1181-1188 https://doi.org/10.1071/RD18234
Submitted: 21 June 2018 Accepted: 8 October 2018 Published: 28 November 2018
Abstract
We came from very different backgrounds, with different skills and interests. Marilyn Renfree was recognised as ‘a giant of marsupial embryology’; I had spent my working life studying genes and chromosomes. We teamed up out of mutual respect (awe on my side) to form, with Des Cooper, the ARC Centre of Excellence in Kangaroo Genomics. This is the story of how our collaboration came to be, and what it has produced for our knowledge of some of the world’s most remarkable animals.
Additional keywords: gene mapping, genomic imprinting, sex chromosomes, sex determination, X chromosome inactivation.
References
Al Nadaf, S., Waters, P. E., Koina, E., Deakin, J. E., Jordan, K. S., and Graves, J. A. M. (2010). Activity map of the tammar X chromosome shows that marsupial X inactivation is incomplete and escape is stochastic. Genome Biol. 11, R122.| Activity map of the tammar X chromosome shows that marsupial X inactivation is incomplete and escape is stochastic.Crossref | GoogleScholarGoogle Scholar |
Chess, A. (2012). Mechanisms and consequences of widespread random monoallelic expression. Nat. Rev. Genet. 13, 421–428.
| Mechanisms and consequences of widespread random monoallelic expression.Crossref | GoogleScholarGoogle Scholar |
Cooper, D. W., Edwards, C., James, E., Sharman, G. B., VandeBerg, J. L., and Graves, J. A. M. (1977). Studies on metatherian sex chromosomes VI. A third state of an X-linked gene: partial activity for the paternally derived Pgk-A allele in cultured fibroblasts of Macropus giganteus and M. parryi. Aust. J. Biol. Sci. 30, 431–444.
| Studies on metatherian sex chromosomes VI. A third state of an X-linked gene: partial activity for the paternally derived Pgk-A allele in cultured fibroblasts of Macropus giganteus and M. parryi.Crossref | GoogleScholarGoogle Scholar |
Cooper, D. W., Johnston, P. G., Graves, J. A. M., and Watson, J. M. (1993). X-inactivation in marsupials and monotremes. Semin. Dev. Biol. 4, 117–128.
| X-inactivation in marsupials and monotremes.Crossref | GoogleScholarGoogle Scholar |
Dawson, G. W., and Graves, J. A. M. (1984). Gene mapping in marsupials and monotremes I. The chromosomes of rodent-marsupial (Macropus) cell hybrids, and gene assignments to the grey kangaroo X chromosome. Chromosoma 91, 20–27.
| Gene mapping in marsupials and monotremes I. The chromosomes of rodent-marsupial (Macropus) cell hybrids, and gene assignments to the grey kangaroo X chromosome.Crossref | GoogleScholarGoogle Scholar |
Deakin, J. E., Koina, E., Waters, P. D., Doherty, R., Patel, V., Delbridge, M. L., Dobson, B., Fong, J., Hu, Y., van den Hurk, C., Pask, A. J., Shaw, G., Smith, C., Thompson, K., Wakefield, M. J., Yu, H., Renfree, M. B., and Graves, J. A. M. (2008). Physical map of two tammar wallaby chromosomes: a strategy for mapping in non-model mammals. Chromosome Res. 16, 1159–1175.
| Physical map of two tammar wallaby chromosomes: a strategy for mapping in non-model mammals.Crossref | GoogleScholarGoogle Scholar |
Deakin, J. E., Waters, P. D., and Graves, J. A. M. (Eds) (2010). ‘Marsupial Genetics and Genomics.’ (Springer: Berlin.)
Deakin, J. E., Graves, J. A. M., and Rens, W. R. (2012). The evolution of marsupial and monotreme chromosomes. Cytogenet. Genome Res. 137, 113–129.
| The evolution of marsupial and monotreme chromosomes.Crossref | GoogleScholarGoogle Scholar |
Deeb, S. S., Wakefield, M. J., Tada, T., Marotte, L., Yokoyama, S., and Graves, J. A. M. (2003). The cone visual pigments of an Australian marsupial, the tammar wallaby (Macropus eugenii): sequence, spectral tuning and evolution. Mol. Biol. Evol. 20, 1642–1649.
| The cone visual pigments of an Australian marsupial, the tammar wallaby (Macropus eugenii): sequence, spectral tuning and evolution.Crossref | GoogleScholarGoogle Scholar |
Delbridge, M. L., Lingenfelter, P. A., Disteche, C. M., and Graves, J. A. M. (1999). The candidate spermatogenesis gene RBMY has a homologue on the human X chromosome. Nat. Genet. 22, 223–224.
| The candidate spermatogenesis gene RBMY has a homologue on the human X chromosome.Crossref | GoogleScholarGoogle Scholar |
Delbridge, M. L., Longepied, G., Depetris, D., Mattei, M.-G., Disteche, C. M., Graves, J. A. M., and Mitchell, M. J. (2004). TSPY, the candidate gonadoblastoma gene on the human Y chromosome, has a widely expressed homologue on the X – implications for Y chromosome evolution. Chromosome Res. 12, 345–356.
| TSPY, the candidate gonadoblastoma gene on the human Y chromosome, has a widely expressed homologue on the X – implications for Y chromosome evolution.Crossref | GoogleScholarGoogle Scholar |
Dobrovic, A., and Graves, J. A. M. (1986). Gene mapping in marsupials and monotremes II. Assignments to the X chromosome of dasyurid species. Cytogenet. Cell Genet. 41, 9–13.
| Gene mapping in marsupials and monotremes II. Assignments to the X chromosome of dasyurid species.Crossref | GoogleScholarGoogle Scholar |
Edwards, C. A., Rens, W., Clarke, O., Mungall, A. J., Hore, T. A., Graves, J. A. M., Dunham, I., Ferguson-Smith, A. C., and Ferguson-Smith, M. A. (2007). The evolution of imprinting: chromosomal mapping of orthologues of mammalian imprinted domains in monotreme and marsupial mammals. BMC Evol. Biol. 7, 157.
| The evolution of imprinting: chromosomal mapping of orthologues of mammalian imprinted domains in monotreme and marsupial mammals.Crossref | GoogleScholarGoogle Scholar |
Edwards, C. A., Mungall, A. J., Matthews, L., Ryder, E., Gray, D. J., Pask, A. J., Shaw, G., Graves, J. A. M., Rogers, J., the SAVOIR Consortium Dunham, I., Renfree, M. B., and Ferguson-Smith, A. C. (2008). The evolution of the DLK1-DIO3 imprinted domain in mammals. PLoS Biol. 6, e135.
| The evolution of the DLK1-DIO3 imprinted domain in mammals.Crossref | GoogleScholarGoogle Scholar |
Feigin, C. Y., Newton, A. H., Doronina, L., Schmitz, J., Hipsley, C. A., Mitchell, K. J., Gower, G., Llamas, B., Soubrier, J., Heider, T. N., Menzies, B. R., Cooper, A., O’Neill, R. J., and Pask, A. J. (2018). Genome of the Tasmanian tiger provides insights into the evolution and demography of an extinct marsupial carnivore. Nat. Ecol. Evol. 2, 182–192.
| Genome of the Tasmanian tiger provides insights into the evolution and demography of an extinct marsupial carnivore.Crossref | GoogleScholarGoogle Scholar |
Foster, J. W., and Graves, J. A. M. (1994). An SRY-related sequence on the marsupial X chromosome: implications for the evolution of the mammalian testis-determining gene. Proc. Natl Acad. Sci. USA 91, 1927–1931.
| An SRY-related sequence on the marsupial X chromosome: implications for the evolution of the mammalian testis-determining gene.Crossref | GoogleScholarGoogle Scholar |
Foster, J. W., Brennan, F. E., Hampikian, G. K., Goodfellow, P. N., Sinclair, A. H., Lovell-Badge, R., Selwood, L., Renfree, M. B., Cooper, D. W., and Graves, J. A. M. (1992). Evolution of sex determination and the Y chromosome: SRY-related sequences in marsupials. Nature 359, 531–533.
| Evolution of sex determination and the Y chromosome: SRY-related sequences in marsupials.Crossref | GoogleScholarGoogle Scholar |
Frankenberg, S., Pask, A., and Renfree, M. B. (2010). The evolution of class V POU domain transcription factors in vertebrates and their characterisation in a marsupial. Dev. Biol. 337, 162–170.
| The evolution of class V POU domain transcription factors in vertebrates and their characterisation in a marsupial.Crossref | GoogleScholarGoogle Scholar |
Grant, J., Mahadevaiah, S. K., Khil, P., Sangrithi, M. N., Royo, H., Duckworth, J., McCarrey, J. R., VandeBerg, J. L., Renfree, M. B., Taylor, W., Elgar, G., Camerini-Otero, R. D., Gilchrist, M. J., and Turner, J. M. (2012). Rsx is a metatherian RNA with Xist-like properties in X-chromosome inactivation. Nature 487, 254–258.
| Rsx is a metatherian RNA with Xist-like properties in X-chromosome inactivation.Crossref | GoogleScholarGoogle Scholar |
Graves, J. A. M. (1967). DNA synthesis in chromosomes of cultured leucocytes from two marsupial species. Exp. Cell Res. 46, 37–57.
| DNA synthesis in chromosomes of cultured leucocytes from two marsupial species.Crossref | GoogleScholarGoogle Scholar |
Graves, J. A. M. (2006). Sex chromosome specialization and degeneration in mammals. Cell 124, 901–914.
| Sex chromosome specialization and degeneration in mammals.Crossref | GoogleScholarGoogle Scholar |
Graves, J. A. M. (2016). Evolution of vertebrate sex chromosomes and dosage compensation. Nat. Rev. Genet. 17, 33–46.
| Evolution of vertebrate sex chromosomes and dosage compensation.Crossref | GoogleScholarGoogle Scholar |
Graves, J. A. M., and Renfree, M. B. (2013). Marsupials in the age of genomics. Annu. Rev. Genomics Hum. Genet. 14, 393–420.
| Marsupials in the age of genomics.Crossref | GoogleScholarGoogle Scholar |
Graves, J. A. M., Chew, G. K., Cooper, D. W., and Johnston, P. G. (1979). Marsupial–mouse cell hybrids containing fragments of the marsupial X chromosome. Somatic Cell Genet. 5, 481–489.
| Marsupial–mouse cell hybrids containing fragments of the marsupial X chromosome.Crossref | GoogleScholarGoogle Scholar |
Graves, J. A. M., Hope, R. M., and Cooper, D. W. (Eds) (1990). ‘Mammals from Pouches and Eggs: Genetics, Breeding and Evolution of Marsupials and Monotremes.’ (CSIRO Publishing: Melbourne.)
Graves, J. A. M., Gecz, J., and Hameister, H. (2002a). Evolution of the human X – a smart and sexy chromosome that controls speciation and development. Cytogenet. Genome Res. 99, 141–145.
| Evolution of the human X – a smart and sexy chromosome that controls speciation and development.Crossref | GoogleScholarGoogle Scholar |
Graves, J. A. M., Wakefield, M. J., Renfree, M. B., Cooper, D. W., Speed, T., Lindblad-Toh, K., Lander, E. S., and Wilson, R. K. (2002b). Proposal to sequence the genome of the model marsupial Macropus eugenii (tammar wallaby). Available at http://www.genome.gov/Pages/Research/Sequencing/SeqProposals/WallabySEQ.pdf [verified 22 October 2018].
Graves, J. A. M., Koina, E., and Sankovic, N. (2006). How the gene content of human sex chromosomes evolved. Curr. Opin. Genet. Dev. 16, 219–224.
| How the gene content of human sex chromosomes evolved.Crossref | GoogleScholarGoogle Scholar |
Heard, E., and Disteche, C. M. (2006). Dosage compensation in mammals: fine-tuning the expression of the X chromosome. Genes Dev. 20, 1848–1867.
| Dosage compensation in mammals: fine-tuning the expression of the X chromosome.Crossref | GoogleScholarGoogle Scholar |
Hore, T. A., Koina, E., Wakefield, M. J., and Graves, J. A. M. (2007). The region homologous to the X-chromosome inactivation centre has been disrupted in marsupial and monotreme mammals. Chromosome Res. 15, 147–161.
| The region homologous to the X-chromosome inactivation centre has been disrupted in marsupial and monotreme mammals.Crossref | GoogleScholarGoogle Scholar |
Huyhn, K., Renfree, M. B., Graves, J. A. M., and Pask, A. J. (2011). ATRX has a critical and conserved role in mammalian sexual differentiation. BMC Dev. Biol. 11, 39.
| ATRX has a critical and conserved role in mammalian sexual differentiation.Crossref | GoogleScholarGoogle Scholar |
Johnson, R. N., O’Meally, D., Chen, Z., Etherington, G. J., Ho, S. Y. W., Nash, W. J., Grueber, C. E., Cheng, Y., Whittington, C. M., Dennison, S., et al. (2018). Adaptation and conservation insights from the koala genome. Nat. Genet. 50, 1102–1111.
| Adaptation and conservation insights from the koala genome.Crossref | GoogleScholarGoogle Scholar |
Koepfli, K. P., Paten, B., Genome 10K Community of Scientists, O’Brien, S. J. (2015). The Genome 10K Project: a way forward. Annu. Rev. Anim. Biosci. 3, 57–111.
| The Genome 10K Project: a way forward.Crossref | GoogleScholarGoogle Scholar |
Kohn, M., Keher-Sawatzki, H., Vogel, W., Graves, J. A. M., and Hameister, H. (2004). Wide genome comparisons reveal the origin of the human X chromosome. Trends Genet. 20, 598–603.
| Wide genome comparisons reveal the origin of the human X chromosome.Crossref | GoogleScholarGoogle Scholar |
Lewin, H. A., Robinson, G. E., Kress, W. J., Lewin, H. A., Robinson, G. E., Kress, W. J., Baker, W. J., Coddington, J., Crandall, K. A., Durbin, R., Edwards, S. V., Forest, F., Gilbert, M. T. P., et al (2018). Earth BioGenome project: sequencing life for the future of life. Proc. Natl Acad. Sci. USA , .
| Earth BioGenome project: sequencing life for the future of life.Crossref | GoogleScholarGoogle Scholar |
Lyon, M. F. (1961). Gene action in the X-chromosome of the mouse (Mus musculus L). Nature 190, 372–373.
| Gene action in the X-chromosome of the mouse (Mus musculus L).Crossref | GoogleScholarGoogle Scholar |
Mikkelsen, T. S., Wakefield, M. J., Aken, B., Amemiya, C. T., Chang, J. L., Duke, S., Garber, M., Gentles, A. J., Goodstadt, L., Heger, A., et al. (2007). Genome of the marsupial Monodelphis domestica reveals innovation in non-coding sequences. Nature 447, 167–177.
| Genome of the marsupial Monodelphis domestica reveals innovation in non-coding sequences.Crossref | GoogleScholarGoogle Scholar |
Murtagh, V. J., O’Meally, D., Sankovic, N., Delbridge, M. L., Kuroki, Y., Boore, J. L., Toyoda, A., Jordan, K. S., Pask, A. J., Renfree, M. B., Fujiyama, A., Graves, J. A. M., and Waters, P. D. (2012). Evolutionary history of novel genes on the tammar wallaby Y chromosome: implications for sex chromosome evolution. Genome Res. 22, 498–507.
| Evolutionary history of novel genes on the tammar wallaby Y chromosome: implications for sex chromosome evolution.Crossref | GoogleScholarGoogle Scholar |
Nishimoto, M., Katano, M., Yamagishi, T., Hishida, T., Kamon, M., Nabeshima, Y., Katsura, Y., Satt, Y., Deakin, J. E., Graves, J.A.M., Kuroki, Y., Ono, R., Ishino, F., Kato, H., and Okuda, A. (2013). In vivo function and evolution of the eutherian-specific pluriopotency marker UTF1. PLoS One 8, e68119.
| In vivo function and evolution of the eutherian-specific pluriopotency marker UTF1.Crossref | GoogleScholarGoogle Scholar |
O, W. S., Short, R. V., Renfree, M. B., and Shaw, G. (1988). Primary genetic control of somatic sexual differentiation in a mammal. Nature 331, 716–717.
| Primary genetic control of somatic sexual differentiation in a mammal.Crossref | GoogleScholarGoogle Scholar |
Ohlsson, R., Paldi, A., and Graves, J. A. M. (2001). Did genomic imprinting and X chromosome inactivation arise from stochastic expression? Trends Genet. 17, 136–141.
| Did genomic imprinting and X chromosome inactivation arise from stochastic expression?Crossref | GoogleScholarGoogle Scholar |
Ohno, S. (1967). ‘Sex Chromosomes and Sex Linked Genes.’ (Springer-Verlag: New York.)
Page, D. C., Mosher, R., Simpson, E. M., Fisher, E. M., Mardon, G., Pollack, J., McGillivray, B., de la Chapelle, A., and Brown, L. G. (1987). The sex-determining region of the human Y chromosome encodes a finger protein. Cell 51, 1091–1104.
| The sex-determining region of the human Y chromosome encodes a finger protein.Crossref | GoogleScholarGoogle Scholar |
Park, D. J., Pask, A. J., Huynh, K., Harley, V. R., Renfree, M. B., and Graves, J. A. M. (2005). Characterisation of the marsupial ATRY gene: implications for the evolution of male-specific function Gene 362, 29–36.
| Characterisation of the marsupial ATRY gene: implications for the evolution of male-specific functionCrossref | GoogleScholarGoogle Scholar |
Pask, A., and Renfree, M. (2010). Molecular regulation of marsupial reproduction and development. In ‘Marsupial Genetics and Genomics’. (Eds J. Deakin, P. Waters, and J. Graves.) pp. 285–316. (Springer: Berlin.)
Pask, A., Renfree, M. B., and Graves, J. A. M. (2000). The human sex-reversing ATRX gene has a homologue on the marsupial Y chromosome, ATRY: implications for the evolution of mammalian sex determination. Proc. Natl Acad. Sci. USA 97, 13198–13202.
| The human sex-reversing ATRX gene has a homologue on the marsupial Y chromosome, ATRY: implications for the evolution of mammalian sex determination.Crossref | GoogleScholarGoogle Scholar |
Patel, V. S., Deakin, J. E., Cooper, S. J., and Graves, J. A. M. (2008). Platypus globin genes and flanking markers suggest a new insertional model for β-globin evolution in birds and mammals. BMC Biol. 6, 34.
| Platypus globin genes and flanking markers suggest a new insertional model for β-globin evolution in birds and mammals.Crossref | GoogleScholarGoogle Scholar |
Premzl, M., Sangiogio, L., Strumbo, B., Graves, J. A. M., Simonic, T., and Gready, J. E. (2003). Shadoo, a new protein highly conserved from fish to mammals and with similarity to prion protein. Gene 314, 89–102.
| Shadoo, a new protein highly conserved from fish to mammals and with similarity to prion protein.Crossref | GoogleScholarGoogle Scholar |
Rapkins, R. W., Hore, T., Smithwick, M., Ager, E., Pask, A., Renfree, M. B., Kohn, M., Hameister, H., Nicholls, R. D., Deakin, J. E., and Graves, J. A. M. (2006). Recent assembly and initiating of imprinting in the Prader–Willi/Angelman imprinted domain. PLoS Genet. 2, e182.
| Recent assembly and initiating of imprinting in the Prader–Willi/Angelman imprinted domain.Crossref | GoogleScholarGoogle Scholar |
Renfree, M. B., Hore, T. A., Shaw, G., Pask, A. J., and Graves, J. A. M. (2009). Evolution of genomic imprinting: insights from marsupials and monotremes. Annu. Rev. Genomics Hum. Genet. 10, 241–262.
| Evolution of genomic imprinting: insights from marsupials and monotremes.Crossref | GoogleScholarGoogle Scholar |
Renfree, M. B., Papenfuss, A. T., Deakin, J. E., Lindsay, J., Heider, T., Belov, K., Rens, W., Waters, P. D., Pharo, E. A., Shaw, G., et al. (2011). Genome sequence of an Australian kangaroo, Macropus eugenii, provides insight into the evolution of mammalian reproduction and development. Genome Biol. 12, R81.
| Genome sequence of an Australian kangaroo, Macropus eugenii, provides insight into the evolution of mammalian reproduction and development.Crossref | GoogleScholarGoogle Scholar |
Richardson, B. J., Czuppon, A. B., and Sharman, G. B. (1971). Inheritance of glucose-6-phosphate dehydrogenase variation in kangaroos. Nat. New Biol. 230, 154–155.
| Inheritance of glucose-6-phosphate dehydrogenase variation in kangaroos.Crossref | GoogleScholarGoogle Scholar |
Sharman, G. B. (1971). Late DNA replication in the paternally derived X chromosome of female kangaroos. Nature 230, 231–232.
| Late DNA replication in the paternally derived X chromosome of female kangaroos.Crossref | GoogleScholarGoogle Scholar |
Sharman, G. B., Robinson, E. S., Walton, S. M., and Berger, R. J. (1970). Sex chromosomes and reproductive anatomy of some intersexual marsupials. J. Reprod. Fertil. 21, 57–68.
| Sex chromosomes and reproductive anatomy of some intersexual marsupials.Crossref | GoogleScholarGoogle Scholar |
Sinclair, A. H., Wrigley, J. M., and Graves, J. A. M. (1987). Autosomal assignment of OTC in marsupials and monotremes: implications for the evolution of sex chromosomes. Genet. Res. 50, 131–136.
| Autosomal assignment of OTC in marsupials and monotremes: implications for the evolution of sex chromosomes.Crossref | GoogleScholarGoogle Scholar |
Sinclair, A. H., Foster, J. W., Spencer, J. A., Page, D. C., Palmer, M., Goodfellow, P. N., and Graves, J. A. M. (1988). Sequences homologous to ZFY, a candidate human sex-determining gene, are autosomal in marsupials. Nature 336, 780–783.
| Sequences homologous to ZFY, a candidate human sex-determining gene, are autosomal in marsupials.Crossref | GoogleScholarGoogle Scholar |
Sinclair, A. H., Berta, P., Palmer, M. S., Hawkins, J. R., Griffiths, B. L., Smith, M. J., Foster, J. W., Frischauf, A. M., Lovell-Badge, R., and Goodfellow, P. N. (1990). A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature 346, 240–244.
| A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif.Crossref | GoogleScholarGoogle Scholar |
Spencer, J. A., Watson, J. M., and Graves, J. A. M. (1991a). The X chromosome of marsupials shares a highly conserved region with eutherians. Genomics 9, 598–604.
| The X chromosome of marsupials shares a highly conserved region with eutherians.Crossref | GoogleScholarGoogle Scholar |
Spencer, J. A., Sinclair, A. H., Watson, J. M., and Graves, J. A. (1991b). Genes on the short arm of the human X chromosome are not shared with the marsupial X. Genomics 11, 339–345.
| Genes on the short arm of the human X chromosome are not shared with the marsupial X.Crossref | GoogleScholarGoogle Scholar |
Sutton, E., Hughes, J., White, S., Sekido, R., Tan, J., Arboleda, V., Rogers, N., Knower, K., Rowley, L., Eyre, H., et al. (2011). Identification of SOX3 as an XX male sex reversal gene in mice and humans. J. Clin. Invest. 121, 328–341.
| Identification of SOX3 as an XX male sex reversal gene in mice and humans.Crossref | GoogleScholarGoogle Scholar |
Suzuki, S., Ono, R., Narita, T., Pask, A. J., Shaw, G., Wang, C., Kohda, T., Alsop, A. E., Graves, J. A. M., Kohara, Y., Ishino, F., Renfree, M. B., and Kaneko-Ishino, T. (2007). Retrotransposon silencing by DNA methylation can drive mammalian genomic imprinting. PLoS Genet. 3, e55.
| Retrotransposon silencing by DNA methylation can drive mammalian genomic imprinting.Crossref | GoogleScholarGoogle Scholar |
Tyndale-Biscoe, C. H., and Renfree, M. B. (1987). ‘Reproductive Physiology of Marsupials.’ (Cambridge University Press: Cambridge, UK.)
Wakefield, M. J., and Graves, J. A. M. (1996). Comparative maps of vertebrates. Mamm. Genome 7, 715–716.
| Comparative maps of vertebrates.Crossref | GoogleScholarGoogle Scholar |
Wang, C., Deakin, J. E., Rens, W., Zenger, K. L., Belov, K., Graves, J. A. M., and Nicholas, F. W. (2011). An integrated tammar wallaby map and its use in creating a virtual tammar wallaby genome map. BMC Genomics 12, 422.
| An integrated tammar wallaby map and its use in creating a virtual tammar wallaby genome map.Crossref | GoogleScholarGoogle Scholar |
Waters, P. D., Duffy, B., Frost, C. J., Delbridge, M. L., and Graves, J. A. M. (2001). The human Y chromosome derives largely from a single autosomal region added 80–130 million years ago. Cytogenet. Cell Genet. 92, 74–79.
| The human Y chromosome derives largely from a single autosomal region added 80–130 million years ago.Crossref | GoogleScholarGoogle Scholar |
Wilcox, S. A., Watson, J. M., Spencer, J. A., and Graves, J. A. M. (1996). Comparative mapping identifies the fusion point of an ancient mammalian X-autosomal rearrangement. Genomics 35, 66–70.
| Comparative mapping identifies the fusion point of an ancient mammalian X-autosomal rearrangement.Crossref | GoogleScholarGoogle Scholar |
Yu, H., Lindsay, J., Feng, Z. P., Frankenberg, S., Hu, Y., Carone, D., Shaw, G., Pask, A. J., O’Neill, R., Papenfuss, A. T., and Renfree, M. B. (2012). Evolution of coding and non-coding genes in HOX clusters of a marsupial. BMC Genomics 13, 251.
| Evolution of coding and non-coding genes in HOX clusters of a marsupial.Crossref | GoogleScholarGoogle Scholar |