Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
REVIEW

Marsupial milk: a fluid source of nutrition and immune factors for the developing pouch young

Elizabeth A. Pharo https://orcid.org/0000-0002-5573-1746
+ Author Affiliations
- Author Affiliations

A Cooperative Research Centre for Innovative Dairy Products.

B School of BioSciences, The University of Melbourne, Vic. 3010, Australia.

C Present address: CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Vic. 3220, Australia. Email: elizabeth.pharo@csiro.au

Reproduction, Fertility and Development 31(7) 1252-1265 https://doi.org/10.1071/RD18197
Submitted: 31 May 2018  Accepted: 26 November 2018   Published: 15 January 2019

Abstract

Marsupials have a very different reproductive strategy to eutherians. An Australian marsupial, the tammar wallaby (Macropus eugenii) has a very short pregnancy of about 26.5 days, with a comparatively long lactation of 300–350 days. The tammar mother gives birth to an altricial, approximately 400 mg young that spends the first 200 days postpartum (p.p.) in its mother’s pouch, permanently (0–100 days p.p.; Phase 2A) and then intermittently (100–200 days p.p.; Phase 2B) attached to the teat. The beginning of Phase 3 marks the first exit from the pouch (akin to the birth of a precocious eutherian neonate) and the supplementation of milk with herbage. The marsupial mother progressively alters milk composition (proteins, fats and carbohydrates) and individual milk constituents throughout the lactation cycle to provide nutrients and immunological factors that are appropriate for the considerable physiological development and growth of her pouch young. This review explores the changes in tammar milk components that occur during the lactation cycle in conjunction with the development of the young.

Additional keywords: carbohydrates, fats, mammary gland, proteins, tammar wallaby.


References

Amado, M., Almeida, R., Schwientek, T., and Clausen, H. (1999). Identification and characterization of large galactosyltransferase gene families: galactosyltransferases for all functions. Biochim. Biophys. Acta 1473, 35–53.
Identification and characterization of large galactosyltransferase gene families: galactosyltransferases for all functions.Crossref | GoogleScholarGoogle Scholar | 10580128PubMed |

Anraku, T., Fukuda, K., Saito, T., Messer, M., and Urashima, T. (2012). Chemical characterization of acidic oligosaccharides in milk of the red kangaroo (Macropus rufus). Glycoconj. J. 29, 147–156.
Chemical characterization of acidic oligosaccharides in milk of the red kangaroo (Macropus rufus).Crossref | GoogleScholarGoogle Scholar | 22415147PubMed |

Ayechu-Muruzabal, V., van Stigt, A. H., Mank, M., Willemsen, L. E. M., Stahl, B., Garssen, J., and van’t Land, B. (2018). Diversity of human milk oligosaccharides and effects on early life immune development. Front Pediatr. 6, 239.
Diversity of human milk oligosaccharides and effects on early life immune development.Crossref | GoogleScholarGoogle Scholar | 30250836PubMed |

Blackburn, D. G. (1993). Lactation: historical patterns and potential for manipulation. J. Dairy Sci. 76, 3195–3212.
Lactation: historical patterns and potential for manipulation.Crossref | GoogleScholarGoogle Scholar | 8227641PubMed |

Borthwick, C. R., Young, L. J., and Old, J. M. (2014). The development of the immune tissues in marsupial pouch young. J. Morphol. 275, 822–839.
The development of the immune tissues in marsupial pouch young.Crossref | GoogleScholarGoogle Scholar | 24469962PubMed |

Bradbury, J. H., Collins, J. G., Jenkins, G. A., Trifonoff, E., and Messer, M. (1983). 13C-NMR study of the structures of two branched oligosaccharides from marsupial milk. Carbohydr. Res. 122, 327–331.
13C-NMR study of the structures of two branched oligosaccharides from marsupial milk.Crossref | GoogleScholarGoogle Scholar | 6671197PubMed |

Brew, K. (2013). α-Lactalbumin. In ‘Advanced Dairy Chemistry. Volume 1A: Proteins: Basic Aspects’. 4th edn. (Eds P. L. H. McSweeney and P. F. Fox.) pp. 261–273. (Springer: New York.)

Cheng, Y., and Belov, K. (2017). Antimicrobial protection of marsupial pouch young. Front. Microbiol. 8, 354.
Antimicrobial protection of marsupial pouch young.Crossref | GoogleScholarGoogle Scholar | 28326070PubMed |

Collet, C., Joseph, R., and Nicholas, K. (1991). A marsupial β-lactoglobulin gene: characterization and prolactin-dependent expression. J. Mol. Endocrinol. 6, 9–16.
A marsupial β-lactoglobulin gene: characterization and prolactin-dependent expression.Crossref | GoogleScholarGoogle Scholar | 1707629PubMed |

Collins, J. G., Bradbury, J. H., Trifonoff, E., and Messer, M. (1981). Structures of four new oligosaccharides from marsupial milk, determined mainly by 13C-NMR spectroscopy. Carbohydr. Res. 92, 136–140.
Structures of four new oligosaccharides from marsupial milk, determined mainly by 13C-NMR spectroscopy.Crossref | GoogleScholarGoogle Scholar | 7260957PubMed |

Cork, S. J., and Dove, H. (1989). Lactation in the tammar wallaby Macropus eugenii II. Intake of milk components and maternal allocation of energy. J. Zool. 219, 399–409.
Lactation in the tammar wallaby Macropus eugenii II. Intake of milk components and maternal allocation of energy.Crossref | GoogleScholarGoogle Scholar |

Daly, K. A., Digby, M., Lefèvre, C., Mailer, S., Thomson, P., Nicholas, K., and Williamson, P. (2007). Analysis of the expression of immunoglobulins throughout lactation suggests two periods of immune transfer in the tammar wallaby (Macropus eugenii). Vet. Immunol. Immunopathol. 120, 187–200.
Analysis of the expression of immunoglobulins throughout lactation suggests two periods of immune transfer in the tammar wallaby (Macropus eugenii).Crossref | GoogleScholarGoogle Scholar | 17727962PubMed |

Davies, D. T., Holt, C., and Christie, W. W. (1983). The composition of milk. In ‘Biochemistry of Lactation’. (Ed. T. B. Mepham.) pp. 71–117. (Elsevier: Amsterdam.)

Deane, E. M., and Cooper, D. W. (1984). Immunology of pouch young marsupials. I. Levels of immunoglobulin transferrin and albumin in the blood and milk of euros and wallaroos (hill kangaroos: Marsupialia). Dev. Comp. Immunol. 8, 863–876.
Immunology of pouch young marsupials. I. Levels of immunoglobulin transferrin and albumin in the blood and milk of euros and wallaroos (hill kangaroos: Marsupialia).Crossref | GoogleScholarGoogle Scholar | 6519341PubMed |

Deane, E. M., and Cooper, D. W. (1988). Immunological development of pouch young marsupials. In ‘The Developing Marsupial. Models for Biomedical Research’. (Eds C. H. Tyndale-Biscoe and P. A. Janssens.) pp. 190–199. (Springer-Verlag: Berlin.)

Deane, E. M., and Miller, R. D. (2000). Marsupial immunology: out of the pouch. Dev. Comp. Immunol. 24, 443–444.
Marsupial immunology: out of the pouch.Crossref | GoogleScholarGoogle Scholar | 10785269PubMed |

Deane, E. M., Cooper, D. W., and Renfree, M. B. (1990). Immunoglobulin G levels in fetal and newborn tammar wallabies (Macropus eugenii). Reprod. Fertil. Dev. 2, 369–375.
Immunoglobulin G levels in fetal and newborn tammar wallabies (Macropus eugenii).Crossref | GoogleScholarGoogle Scholar | 2120744PubMed |

Demmer, J., Stasiuk, S. J., Grigor, M. R., Simpson, K. J., and Nicholas, K. R. (2001). Differential expression of the whey acidic protein gene during lactation in the brushtail possum (Trichosurus vulpecula). Biochim. Biophys. Acta 1522, 187–194.
Differential expression of the whey acidic protein gene during lactation in the brushtail possum (Trichosurus vulpecula).Crossref | GoogleScholarGoogle Scholar | 11779633PubMed |

Dove, H., and Cork, S. J. (1989). Lactation in the tammar wallaby Macropus eugenii I. Milk consumption and the algebraic description of the lactation curve. J. Zool. 219, 385–397.
Lactation in the tammar wallaby Macropus eugenii I. Milk consumption and the algebraic description of the lactation curve.Crossref | GoogleScholarGoogle Scholar |

Edwards, M. J., and Deakin, J. E. (2013). The marsupial pouch: implications for reproductive success and mammalian evolution. Aust. J. Zool. 61, 41–47.
The marsupial pouch: implications for reproductive success and mammalian evolution.Crossref | GoogleScholarGoogle Scholar |

Edwards, M. J., Hinds, L. A., Deane, E. M., and Deakin, J. E. (2012). A review of complementary mechanisms which protect the developing marsupial pouch young. Dev. Comp. Immunol. 37, 213–220.
A review of complementary mechanisms which protect the developing marsupial pouch young.Crossref | GoogleScholarGoogle Scholar | 22504164PubMed |

Findlay, L. (1982a). Lactation in the marsupial, Macropus eugenii. Ph.D. Thesis, Murdoch University, Perth.

Findlay, L. (1982b). The mammary glands of the tammar wallaby (Macropus eugenii) during pregnancy and lactation. J. Reprod. Fertil. 65, 59–66.
The mammary glands of the tammar wallaby (Macropus eugenii) during pregnancy and lactation.Crossref | GoogleScholarGoogle Scholar | 7077604PubMed |

Findlay, L., and Renfree, M. B. (1984). Growth, development and secretion of the mammary gland of macropodid marsupials. In ‘Symposia of the Zoological Society of London. Physiological Strategies in Lactation’. Vol. 51. (Eds M. Peaker, R. G. Vernon, and C. H. Knight.) pp. 403–432. (Academic Press: London.)

Flower, D. R., North, A. C. T., and Sansom, C. E. (2000). The lipocalin protein family: structural and sequence overview. Biochim. Biophys. Acta 1482, 9–24.
The lipocalin protein family: structural and sequence overview.Crossref | GoogleScholarGoogle Scholar | 11058743PubMed |

Fox, P. F., Uniacke-Lowe, T., McSweeney, P. L. H., and O’Mahony, J. A. (2015) ‘Dairy Chemistry and Biochemistry.’ (Springer International Publishing: Cham.)

Green, B. (1984). Composition of milk and energetics of growth in marsupials. In ‘Symposia of the Zoological Society of London. Physiological Strategies in Lactation’. Vol. 51. (Eds M. Peaker, R. G. Vernon, and C. H. Knight.) pp. 369–387. (Academic Press: London.)

Green, B., and Merchant, J. C. (1988). The composition of marsupial milk. In ‘The Developing Marsupial. Models for Biomedical Research’. (Eds C. H. Tyndale-Biscoe and P. A. Janssens.) pp. 41–54. (Springer-Verlag: Berlin.)

Green, S. W., and Renfree, M. B. (1982). Changes in the milk proteins during lactation in the tammar wallaby, Macropus eugenii. Aust. J. Biol. Sci. 35, 145–152.
Changes in the milk proteins during lactation in the tammar wallaby, Macropus eugenii.Crossref | GoogleScholarGoogle Scholar | 7126055PubMed |

Green, B., Newgrain, K., and Merchant, J. (1980). Changes in milk composition during lactation in the tammar wallaby (Macropus eugenii). Aust. J. Biol. Sci. 33, 35–42.
Changes in milk composition during lactation in the tammar wallaby (Macropus eugenii).Crossref | GoogleScholarGoogle Scholar | 7396806PubMed |

Green, B., Griffiths, M., and Leckie, R. M. (1983). Qualitative and quantitative changes in milk fat during lactation in the tammar wallaby (Macropus eugenii). Aust. J. Biol. Sci. 36, 455–461.
Qualitative and quantitative changes in milk fat during lactation in the tammar wallaby (Macropus eugenii).Crossref | GoogleScholarGoogle Scholar | 6675645PubMed |

Griffiths, M., McIntosh, D. L., and Leckie, R. M. C. (1972). The mammary glands of the red kangaroo with observations on the fatty acid components of the milk triglycerides. J. Zool. 166, 265–275.
The mammary glands of the red kangaroo with observations on the fatty acid components of the milk triglycerides.Crossref | GoogleScholarGoogle Scholar |

Hajjoubi, S., Rival-Gervier, S., Hayes, H., Floriot, S., Eggen, A., Piumi, F., Chardon, P., Houdebine, L. M., and Thepot, D. (2006). Ruminants genome no longer contains whey acidic protein gene but only a pseudogene. Gene 370, 104–112.
Ruminants genome no longer contains whey acidic protein gene but only a pseudogene.Crossref | GoogleScholarGoogle Scholar | 16483732PubMed |

Hambraeus, L., and Lonnerdal, B. (2003). Nutritional aspects of milk proteins. In ‘Advanced Dairy Chemistry. Volume 1: Proteins’. 3rd edn. (Eds P. F. Fox and P. L. H. McSweeney.) pp. 605–646. (Kluwer Academic/Plenum Publishers: New York.)

Hickford, D., Frankenberg, S., and Renfree, M. B. (2010). The tammar wallaby, Macropus eugenii: a model kangaroo for the study of developmental and reproductive biology. In ‘Emerging Model Organisms: A Laboratory Manual’. Volume 2. (Eds R. R. Behringer, A. D. Johnson, R. E. Krumlauf, M. Levine, N. Patel and N. Sinha.) pp. 449–494. (Cold Spring Harbor Laboratory Press: Cold Spring Harbor.)

Hirayama, K., Taufik, E., Kikuchi, M., Nakamura, T., Fukuda, K., Saito, T., Newgrain, K., Green, B., Messer, M., and Urashima, T. (2016). Chemical characterization of milk oligosaccharides of the common wombat (Vombatus ursinus). Anim. Sci. J. 87, 1167–1177.
Chemical characterization of milk oligosaccharides of the common wombat (Vombatus ursinus).Crossref | GoogleScholarGoogle Scholar | 26608481PubMed |

Holt, A. B., Renfree, M. B., and Cheek, D. B. (1981). Comparative aspects of brain growth: a critical evaluation of mammalian species used in brain growth research with emphasis on the Tammar wallaby. In ‘Fetal Brain Disorders – Recent Approaches to the Problem of Mental Deficiency’. (Eds B. S. Hetzel and R. M. Smith.) pp. 17–43. (Elsevier/North-Holland Biomedical Press: Amsterdam.)

Hurley, W. L., and Theil, P. K. (2013). Immunoglobulins in mammary secretions. In ‘Advanced Dairy Chemistry. Volume 1A: Proteins: Basic Aspects’. 4th edn. (Eds P. L. H. McSweeney and P. F. Fox.) pp. 275–294. (Kluwer Academic/Plenum Publishers: New York.)

Isaacs, C. E. (2001). The antimicrobial function of milk lipids. Adv. Nutr. Res. 10, 271–285.
| 11795045PubMed |

Janssens, P. A., Hulbert, A. J., and Baudinette, R. V. (1997). Development of the pouch young from birth to pouch vacation. In ‘Marsupial Biology. Recent Research, New Perspectives’. (Eds N. R. Saunders and L. Hinds.) pp. 71–89. (University of New South Wales Press: Sydney.)

Jenness, R. (1986). Lactational performance of various mammalian species. J. Dairy Sci. 69, 869–885.
Lactational performance of various mammalian species.Crossref | GoogleScholarGoogle Scholar | 3519706PubMed |

Jørgensen, A. L. W., Juul-Madsen, H. R., and Stagsted, J. (2010). Colostrum and bioactive, colostral peptides differentially modulate the innate immune response of intestinal epithelial cells. J. Pept. Sci. 16, 21–30.
Colostrum and bioactive, colostral peptides differentially modulate the innate immune response of intestinal epithelial cells.Crossref | GoogleScholarGoogle Scholar |

Joss, J., Molloy, M., Hinds, L., and Deane, E. (2007). Proteomic analysis of early lactation milk of the tammar wallaby (Macropus eugenii). Comp. Biochem. Physiol. Part D Genomics Proteomics 2, 150–164.
Proteomic analysis of early lactation milk of the tammar wallaby (Macropus eugenii).Crossref | GoogleScholarGoogle Scholar | 20483289PubMed |

Joss, J. L., Molloy, M. P., Hinds, L., and Deane, E. (2009). A longitudinal study of the protein components of marsupial milk from birth to weaning in the tammar wallaby (Macropus eugenii). Dev. Comp. Immunol. 33, 152–161.
A longitudinal study of the protein components of marsupial milk from birth to weaning in the tammar wallaby (Macropus eugenii).Crossref | GoogleScholarGoogle Scholar | 18778730PubMed |

Jost, T., Lacroix, C., Braegger, C., and Chassard, C. (2015). Impact of human milk bacteria and oligosaccharides on neonatal gut microbiota establishment and gut health. Nutr. Rev. 73, 426–437.
Impact of human milk bacteria and oligosaccharides on neonatal gut microbiota establishment and gut health.Crossref | GoogleScholarGoogle Scholar | 26081453PubMed |

Koletzko, B. (2016). Human milk lipids. Ann. Nutr. Metab. 69, 28–40.
Human milk lipids.Crossref | GoogleScholarGoogle Scholar | 28103608PubMed |

Kruse, P. E. (1983). The importance of colostral immunoglobulins and their absorption from the intestine of the newborn animals. Ann. Rech. Vet. 14, 349–353.
| 6677175PubMed |

Kwek, J. H., Iongh, R. D., Digby, M. R., Renfree, M. B., Nicholas, K. R., and Familari, M. (2009). Cross-fostering of the tammar wallaby (Macropus eugenii) pouch young accelerates fore-stomach maturation. Mech. Dev. 126, 449–463.
Cross-fostering of the tammar wallaby (Macropus eugenii) pouch young accelerates fore-stomach maturation.Crossref | GoogleScholarGoogle Scholar | 19368802PubMed |

Langer, P. (2008). The phases of maternal investment in eutherian mammals. Zoology 111, 148–162.
The phases of maternal investment in eutherian mammals.Crossref | GoogleScholarGoogle Scholar | 18222662PubMed |

Laskowski, M., and Laskowski, M. (1951). Crystalline trypsin inhibitor from colostrum. J. Biol. Chem. 190, 563–573.
| 14841207PubMed |

Lefèvre, C. M., Menzies, K., Sharp, J. A., and Nicholas, K. R. (2010). Comparative genomics and transcriptomics of lactation. In ‘Evolutionary Biology – Concepts, Molecular and Morphological Evolution’. (Ed. P. Pontarotti.) pp. 115–132. (Springer: Berlin.)

Lenton, S., Nylander, T., Teixeira, S. C., and Holt, C. (2015). A review of the biology of calcium phosphate sequestration with special reference to milk. Dairy Sci. Technol. 95, 3–14.
A review of the biology of calcium phosphate sequestration with special reference to milk.Crossref | GoogleScholarGoogle Scholar | 25632319PubMed |

Martin, P., Cebo, C., and Miranda, G. (2013). Interspecies comparison of milk proteins: quantitative variability and molecular diversity. In ‘Advanced Dairy Chemistry. Volume 1A: Proteins: Basic Aspects’. 4th edn. (Eds P. L. H. McSweeney and P. F. Fox.) pp. 387–429. (Springer: New York.)

McMahon, D. J., and Oommen, B. S. (2013). Casein micelle structure, functions, and interactions. In ‘Advanced Dairy Chemistry. Volume 1A: Proteins: Basic Aspects’. 4th edn. (Eds P. L. H. McSweeney and P. F. Fox.) pp. 185–209. (Springer: New York.)

Menzies, B. R., Shaw, G., Fletcher, T. P., Pask, A. J., and Renfree, M. B. (2012). Maturation of the growth axis in marsupials occurs gradually during post-natal life and over an equivalent developmental stage relative to eutherian species. Mol. Cell. Endocrinol. 349, 189–194.
Maturation of the growth axis in marsupials occurs gradually during post-natal life and over an equivalent developmental stage relative to eutherian species.Crossref | GoogleScholarGoogle Scholar | 22056413PubMed |

Messer, M., and Green, B. (1979). Milk carbohydrates of marsupials. II. Quantitative and qualitative changes in milk carbohydrates during lactation in the tammar wallaby (Macropus eugenii). Aust. J. Biol. Sci. 32, 519–531.
Milk carbohydrates of marsupials. II. Quantitative and qualitative changes in milk carbohydrates during lactation in the tammar wallaby (Macropus eugenii).Crossref | GoogleScholarGoogle Scholar | 549552PubMed |

Messer, M., and Mossop, G. S. (1977). Milk carbohydrates of marsupials. I. Partial separation and characterization of neutral milk oligosaccharides of the eastern grey kangaroo. Aust. J. Biol. Sci. 30, 379–388.
Milk carbohydrates of marsupials. I. Partial separation and characterization of neutral milk oligosaccharides of the eastern grey kangaroo.Crossref | GoogleScholarGoogle Scholar |

Messer, M., and Urashima, T. (2002). Evolution of milk oligosacharides and lactose. Trends Glycosci. Glycotechnol. 14, 153–176.
Evolution of milk oligosacharides and lactose.Crossref | GoogleScholarGoogle Scholar |

Messer, M., Trifonoff, E., Stern, W., Collins, J. G., and Bradbury, J. H. (1980). Structure of a marsupial-milk trisaccharide. Carbohydr. Res. 83, 327–334.
Structure of a marsupial-milk trisaccharide.Crossref | GoogleScholarGoogle Scholar | 7407802PubMed |

Messer, M., Trifonoff, E., Collins, J. G., and Bradbury, J. H. (1982). Structure of a branched tetrasaccharide from marsupial milk. Carbohydr. Res. 102, 316–320.
Structure of a branched tetrasaccharide from marsupial milk.Crossref | GoogleScholarGoogle Scholar | 7093977PubMed |

Messer, M., Griffiths, M., and Green, B. (1984). Changes in milk carbohydrates and electrolytes during early lactation in the tammar wallaby, Macropus eugenii. Aust. J. Biol. Sci. 37, 1–6.
Changes in milk carbohydrates and electrolytes during early lactation in the tammar wallaby, Macropus eugenii.Crossref | GoogleScholarGoogle Scholar |

Messer, M., FitzGerald, P. A., Merchant, J. C., and Green, B. (1987). Changes in milk carbohydrates during lactation in the eastern quoll, Dasyurus viverrinus (Marsupialia). Comp. Biochem. Physiol. B 88, 1083–1086.
Changes in milk carbohydrates during lactation in the eastern quoll, Dasyurus viverrinus (Marsupialia).Crossref | GoogleScholarGoogle Scholar | 3427929PubMed |

Mizejewski, G. J. (2001). Alpha-fetoprotein structure and function: relevance to isoforms, epitopes, and conformational variants. Exp. Biol. Med. (Maywood) 226, 377–408.
Alpha-fetoprotein structure and function: relevance to isoforms, epitopes, and conformational variants.Crossref | GoogleScholarGoogle Scholar | 11393167PubMed |

Montalbetti, N., Dalghi, M. G., Albrecht, C., and Hediger, M. A. (2014). Nutrient transport in the mammary gland: calcium, trace minerals and water soluble vitamins. J. Mammary Gland Biol. Neoplasia 19, 73–90.
Nutrient transport in the mammary gland: calcium, trace minerals and water soluble vitamins.Crossref | GoogleScholarGoogle Scholar | 24567109PubMed |

Morris, K. M., O’Meally, D., Zaw, T., Song, X., Gillett, A., Molloy, M. P., Polkinghorne, A., and Belov, K. (2016). Characterisation of the immune compounds in koala milk using a combined transcriptomic and proteomic approach. Sci. Rep. 6, 35011.
Characterisation of the immune compounds in koala milk using a combined transcriptomic and proteomic approach.Crossref | GoogleScholarGoogle Scholar | 27713568PubMed |

Naqvi, M. A., Irani, K. A., Katanishooshtari, M., and Rousseau, D. (2016). Disorder in milk proteins: formation, structure, function, isolation and applications of casein phosphopeptides. Curr. Protein Pept. Sci. 17, 368–379.
Disorder in milk proteins: formation, structure, function, isolation and applications of casein phosphopeptides.Crossref | GoogleScholarGoogle Scholar | 26630980PubMed |

Nicholas, K. R. (1988). Control of milk protein synthesis in the marsupial Macropus eugenii: a model system to study prolactin-dependent development. In ‘The Developing Marsupial. Models for Biomedical Research’. (Eds C. H. Tyndale-Biscoe and P. A. Janssens.) pp. 68–85. (Springer-Verlag: Berlin.)

Nicholas, K. R., Simpson, K. J., Wilson, M., Trott, J., and Shaw, D. (1997). The tammar wallaby: a model to study putative autocrine-induced changes in milk composition. J. Mammary Gland Biol. Neoplasia 2, 299–310.
The tammar wallaby: a model to study putative autocrine-induced changes in milk composition.Crossref | GoogleScholarGoogle Scholar |

Nicholas, K., Sharp, J., Watt, A., Wanyonyi, S., Crowley, T., Gillespie, M., and Lefevre, C. (2012). The tammar wallaby: a model system to examine domain-specific delivery of milk protein bioactives. Semin. Cell Dev. Biol. 23, 547–556.
The tammar wallaby: a model system to examine domain-specific delivery of milk protein bioactives.Crossref | GoogleScholarGoogle Scholar | 22498725PubMed |

Nukumi, N., Iwamori, T., Kano, K., Naito, K., and Tojo, H. (2007). Reduction of tumorigenesis and invasion of human breast cancer cells by whey acidic protein (WAP). Cancer Lett. 252, 65–74.
Reduction of tumorigenesis and invasion of human breast cancer cells by whey acidic protein (WAP).Crossref | GoogleScholarGoogle Scholar | 17215074PubMed |

Oftedal, O. T., and Dhouailly, D. (2013). Evo-devo of the mammary gland. J. Mammary Gland Biol. Neoplasia 18, 105–120.
Evo-devo of the mammary gland.Crossref | GoogleScholarGoogle Scholar | 23681303PubMed |

Old, J. M., and Deane, E. M. (2000). Development of the immune system and immunological protection in marsupial pouch young. Dev. Comp. Immunol. 24, 445–454.
Development of the immune system and immunological protection in marsupial pouch young.Crossref | GoogleScholarGoogle Scholar | 10785270PubMed |

Peel, E., Cheng, Y., Djordjevic, J. T., Kuhn, M., Sorrell, T., and Belov, K. (2017). Marsupial and monotreme cathelicidins display antimicrobial activity, including against methicillin-resistant Staphylococcus aureus. Microbiology 163, 1457–1465.
Marsupial and monotreme cathelicidins display antimicrobial activity, including against methicillin-resistant Staphylococcus aureus.Crossref | GoogleScholarGoogle Scholar | 28949902PubMed |

Pharo, E. A., De Leo, A. A., Renfree, M. B., Thomson, P. C., Lefevre, C. M., and Nicholas, K. R. (2012). The mammary gland-specific marsupial ELP and eutherian CTI share a common ancestral gene. BMC Evol. Biol. 12, 80.
The mammary gland-specific marsupial ELP and eutherian CTI share a common ancestral gene.Crossref | GoogleScholarGoogle Scholar | 22681678PubMed |

Pharo, E. A., Cane, K. N., McCoey, J., Buckle, A. M., Oosthuizen, W. H., Guinet, C., and Arnould, J. P. Y. (2016). A colostrum trypsin inhibitor gene expressed in the cape fur seal mammary gland during lactation. Gene 578, 7–16.
A colostrum trypsin inhibitor gene expressed in the cape fur seal mammary gland during lactation.Crossref | GoogleScholarGoogle Scholar | 26639991PubMed |

Picciano, M. F. (2001). Nutrient composition of human milk. Pediatr. Clin. North Am. 48, 53–67.
Nutrient composition of human milk.Crossref | GoogleScholarGoogle Scholar | 11236733PubMed |

Piotte, C. P., and Grigor, M. R. (1996). A novel marsupial protein expressed by the mammary gland only during the early lactation and related to the Kunitz proteinase inhibitors. Arch. Biochem. Biophys. 330, 59–64.
A novel marsupial protein expressed by the mammary gland only during the early lactation and related to the Kunitz proteinase inhibitors.Crossref | GoogleScholarGoogle Scholar | 8651704PubMed |

Pond, C. M. (1984). Physiological and ecological importance of energy storage in the evolution of lactation: evidence for a common pattern of anatomical organization of adipose tissue in mammals. In ‘Symposia of the Zoological Society of London. Physiological Strategies in Lactation’. Vol. 51. (Eds M. Peaker, R. G. Vernon, and C. H. Knight.) pp. 1–32. (Academic Press: London.)

Renfree, M. B. (2006). Life in the pouch: womb with a view. Reprod. Fertil. Dev. 18, 721–734.
Life in the pouch: womb with a view.Crossref | GoogleScholarGoogle Scholar | 17032580PubMed |

Renfree, M. B., Holt, A. B., Green, S. W., Carr, J. P., and Cheek, D. B. (1982). Ontogeny of the brain in a marsupial (Macropus eugenii) throughout pouch life. I. Brain growth. Brain Behav. Evol. 20, 57–71.
Ontogeny of the brain in a marsupial (Macropus eugenii) throughout pouch life. I. Brain growth.Crossref | GoogleScholarGoogle Scholar | 7104670PubMed |

Renfree, M. B., Fletcher, T. P., Blanden, D. R., Lewis, D. R., Shaw, G., Gordon, K., Short, R. V., Parer-Cook, E., and Parer, D. (1989). Physiological and behavioural events around the time of birth in macropodid marsupials. In ‘Kangaroos, Wallabies and Rat-Kangaroos.’ (Eds G. Grigg, P. J. Jarman, and I. D. Hume.) pp. 323–337. (Surrey Beatty and Sons: Sydney.)

Renfree, M. B., Papenfuss, A. T., Deakin, J. E., Lindsay, J., Heider, T., Belov, K., Rens, W., Waters, P. D., Pharo, E. A., Shaw, G., et al. (2011). Genome sequence of an Australian kangaroo, Macropus eugenii, provides insight into the evolution of mammalian reproduction and development. Genome Biol. 12, R81.
Genome sequence of an Australian kangaroo, Macropus eugenii, provides insight into the evolution of mammalian reproduction and development.Crossref | GoogleScholarGoogle Scholar | 21854559PubMed |

Reynolds, M. L., and Saunders, N. R. (1988). Development of the neocortex. In ‘The Developing Marsupial. Models for Biomedical Research’. (Eds C. H. Tyndale-Biscoe and P. A. Janssens.) pp. 101–116. (Springer-Verlag: Berlin.)

Reynolds, M. L., Cavanagh, M. E., Dziegielewska, K. M., Hinds, L. A., Saunders, N. R., and Tyndale-Biscoe, C. H. (1985). Postnatal development of the telencephalon of the tammar wallaby (Macropus eugenii). An accessible model of neocortical differentiation. Anat. Embryol. (Berl.) 173, 81–94.
Postnatal development of the telencephalon of the tammar wallaby (Macropus eugenii). An accessible model of neocortical differentiation.Crossref | GoogleScholarGoogle Scholar | 4073534PubMed |

Rival-Gervier, S., Thepot, D., Jolivet, G., and Houdebine, L. M. (2003). Pig whey acidic protein gene is surrounded by two ubiquitously expressed genes. Biochim. Biophys. Acta 1627, 7–14.
Pig whey acidic protein gene is surrounded by two ubiquitously expressed genes.Crossref | GoogleScholarGoogle Scholar | 12759187PubMed |

Sawyer, L. (2013). β-Lactoglobulin. ‘Advanced Dairy Chemistry. Volume 1A: Proteins: Basic Aspects’. 4th edn. (Eds P. L. H. McSweeney and P. F. Fox.) pp. 211–259. (Springer: New York.)

Schneider, N. Y., Fletcher, T. P., Shaw, G., and Renfree, M. B. (2009). The olfactory system of the tammar wallaby is developed at birth and directs the neonate to its mother’s pouch odours. Reproduction 138, 849–857.
The olfactory system of the tammar wallaby is developed at birth and directs the neonate to its mother’s pouch odours.Crossref | GoogleScholarGoogle Scholar | 19638443PubMed |

Sharman, G. B. (1962). Initiation and maintenance of lactation in marsupial, Trichosurus vulpecula. J. Endocrinol. 25, 375–386.
Initiation and maintenance of lactation in marsupial, Trichosurus vulpecula.Crossref | GoogleScholarGoogle Scholar | 13976894PubMed |

Sharp, J. A., Lefevre, C., and Nicholas, K. R. (2007). Molecular evolution of monotreme and marsupial whey acidic protein genes. Evol. Dev. 9, 378–392.
Molecular evolution of monotreme and marsupial whey acidic protein genes.Crossref | GoogleScholarGoogle Scholar | 17651362PubMed |

Sharp, J. A., Wanyonyi, S., Modepalli, V., Watt, A., Kuruppath, S., Hinds, L. A., Kumar, A., Abud, H. E., Lefevre, C., and Nicholas, K. R. (2017). The tammar wallaby: a marsupial model to examine the timed delivery and role of bioactives in milk. Gen. Comp. Endocrinol. 244, 164–177.
The tammar wallaby: a marsupial model to examine the timed delivery and role of bioactives in milk.Crossref | GoogleScholarGoogle Scholar | 27528357PubMed |

Simpson, K. J., and Nicholas, K. R. (2002). The comparative biology of whey proteins. J. Mammary Gland Biol. Neoplasia 7, 313–326.
The comparative biology of whey proteins.Crossref | GoogleScholarGoogle Scholar | 12751894PubMed |

Simpson, K., Shaw, D., and Nicholas, K. (1998). Developmentally-regulated expression of a putative protease inhibitor gene in the lactating mammary gland of the tammar wallaby, Macropus eugenii. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 120, 535–541.
Developmentally-regulated expression of a putative protease inhibitor gene in the lactating mammary gland of the tammar wallaby, Macropus eugenii.Crossref | GoogleScholarGoogle Scholar | 9787813PubMed |

Thormar, H., and Hilmarsson, H. (2007). The role of microbicidal lipids in host defense against pathogens and their potential as therapeutic agents. Chem. Phys. Lipids 150, 1–11.
The role of microbicidal lipids in host defense against pathogens and their potential as therapeutic agents.Crossref | GoogleScholarGoogle Scholar | 17686469PubMed |

Thormar, H., Hilmarsson, H., and Bergsson, G. (2013). Antimicrobial lipids: role in innate immunity and potential use in prevention and treatment of infections. In ‘Microbial Pathogens and Strategies for Combating Them: Science, Technology and Education’. Vol. 3. (Ed. A. Méndez-Vilas.) pp. 1474–1488. (Formatex Research Center: Badajoz.)

Topcic, D., Auguste, A., De Leo, A. A., Lefevre, C., Digby, M. R., and Nicholas, K. R. (2009). Characterization of the tammar wallaby (Macropus eugenii) whey acidic protein gene: new insights into the function of the protein. Evol. Dev. 11, 363–375.
Characterization of the tammar wallaby (Macropus eugenii) whey acidic protein gene: new insights into the function of the protein.Crossref | GoogleScholarGoogle Scholar | 19601970PubMed |

Trott, J. F., Simpson, K. J., Moyle, R. L., Hearn, C. M., Shaw, G., Nicholas, K. R., and Renfree, M. B. (2003). Maternal regulation of milk composition, milk production, and pouch young development during lactation in the tammar wallaby (Macropus eugenii). Biol. Reprod. 68, 929–936.
| 12604644PubMed |
      Trott, J. F., Wilson, M. J., Hovey, R. C., Shaw, D. C., and Nicholas, K. R. (2002). Expression of novel lipocalin-like milk protein gene is developmentally-regulated during lactation in the tammar wallaby, Macropus eugenii. Gene 283, 287–297.
Expression of novel lipocalin-like milk protein gene is developmentally-regulated during lactation in the tammar wallaby, Macropus eugenii.Crossref | GoogleScholarGoogle Scholar |

Tyndale-Biscoe, C. H. (2001). Australasian marsupials – to cherish and to hold. Reprod. Fertil. Dev. 13, 477–485.
Australasian marsupials – to cherish and to hold.Crossref | GoogleScholarGoogle Scholar | 11999297PubMed |

Tyndale-Biscoe, C. H. (2005) ‘Life of Marsupials.’ (CSIRO Publishing: Melbourne.)

Tyndale-Biscoe, C. H., and Janssens, P. A. (1988). Introduction. In ‘The Developing Marsupial. Models for Biomedical Research’. (Eds C. H. Tyndale-Bisco and P. A. Janssens.) pp. 1–7. (Springer-Verlag: Berlin.)

Tyndale-Biscoe, H., and Renfree, M. (1987). ‘Reproductive Physiology of Marsupials.’ (Cambridge University Press: Cambridge.)

Urashima, T., and Messer, M. (2017). Evolution of milk oligosaccharides and their function in monotremes and marsupials. In ‘Evolutionary Biology: Self/Nonself Evolution, Species and Complex Traits Evolution, Methods and Concepts’. (Ed. P. Pontarotti.) pp. 237–256. (Springer International Publishing: Cham.)

Urashima, T., Messer, M., and Bubb, W. A. (1992). Biosynthesis of marsupial milk oligosaccharides. II: Characterization of a β6-N-acetylglucosaminyltransferase in lactating mammary glands of the tammar wallaby, Macropus eugenii. Biochim. Biophys. Acta 1117, 223–231.
Biosynthesis of marsupial milk oligosaccharides. II: Characterization of a β6-N-acetylglucosaminyltransferase in lactating mammary glands of the tammar wallaby, Macropus eugenii.Crossref | GoogleScholarGoogle Scholar | 1388055PubMed |

Urashima, T., Saito, T., Tsuji, Y., Taneda, Y., Takasawa, T., and Messer, M. (1994). Chemical characterization of sialyl oligosaccharides isolated from tammar wallaby (Macropus eugenii) milk. Biochim. Biophys. Acta 1200, 64–72.
Chemical characterization of sialyl oligosaccharides isolated from tammar wallaby (Macropus eugenii) milk.Crossref | GoogleScholarGoogle Scholar | 8186234PubMed |

Urashima, T., Saito, T., Nakamura, T., and Messer, M. (2001). Oligosaccharides of milk and colostrum in non-human mammals. Glycoconj. J. 18, 357–371.
Oligosaccharides of milk and colostrum in non-human mammals.Crossref | GoogleScholarGoogle Scholar | 11925504PubMed |

Urashima, T., Asakuma, S., and Messer, M. (2007) Milk oligosaccharides. In ‘Comprehensive Glycoscience’. Vol. 4. (Eds P. Johannis and J. Kamerling.) pp. 695–724. (Elsevier: Oxford.)

Urashima, T., Taufik, E., Fukuda, R., Nakamura, T., Fukuda, K., Saito, T., and Messer, M. (2013). Chemical characterization of milk oligosaccharides of the koala (Phascolarctos cinereus). Glycoconj. J. 30, 801–811.
Chemical characterization of milk oligosaccharides of the koala (Phascolarctos cinereus).Crossref | GoogleScholarGoogle Scholar | 23824565PubMed |

Urashima, T., Fujita, S., Fukuda, K., Nakamura, T., Saito, T., Cowan, P., and Messer, M. (2014a). Chemical characterization of milk oligosaccharides of the common brushtail possum (Trichosurus vulpecula). Glycoconj. J. 31, 387–399.
Chemical characterization of milk oligosaccharides of the common brushtail possum (Trichosurus vulpecula).Crossref | GoogleScholarGoogle Scholar | 24906475PubMed |

Urashima, T., Messer, M., and Oftedal, O. T. (2014b). Comparative biochemistry and evolution of milk oligosaccharides of monotremes, marsupials, and eutherians. In ‘Evolutionary Biology: Genome Evolution, Speciation, Coevolution and Origin of Life’. (Ed. P. Pontarotti.) pp. 3–33. (Springer International Publishing: Cham.)

Urashima, T., Sun, Y., Fukuda, K., Hirayama, K., Taufik, E., Nakamura, T., Saito, T., Merchant, J., Green, B., and Messer, M. (2015). Chemical characterization of milk oligosaccharides of the eastern quoll (Dasyurus viverrinus). Glycoconj. J. 32, 361–370.
Chemical characterization of milk oligosaccharides of the eastern quoll (Dasyurus viverrinus).Crossref | GoogleScholarGoogle Scholar | 26047593PubMed |

Urashima, T., Yamamoto, T., Hirayama, K., Fukuda, K., Nakamura, T., Saito, T., Newgrain, K., Merchant, J., Green, B., and Messer, M. (2016). Chemical characterization of milk oligosaccharides of the tiger quoll (Dasyurus maculatus), a marsupial. Glycoconj. J. 33, 797–807.
Chemical characterization of milk oligosaccharides of the tiger quoll (Dasyurus maculatus), a marsupial.Crossref | GoogleScholarGoogle Scholar | 27206413PubMed |

Varki, A., and Schauer, R. (2009). Sialic acids. In ‘Essentials of Glycobiology’. 2nd edn. (Eds A. Varki, R. D. Cummings, J. D. Esko, H. H. Freeze, P. Stanley, C. R. Bertozzi, G. W. Hart, and M. E. Etzler.) pp. 195–209. (Cold Spring Harbor Laboratory Press: Cold Spring Harbor.)

Vilotte, J. L., Chanat, E., Le Provost, F., Whitelaw, C. B. A., Kolb, A., and Shennan, D. B. (2013). Genetics and biosynthesis of milk proteins. In ‘Advanced Dairy Chemistry. Volume 1A: Proteins: Basic Aspects’. 4th edn. (Eds P. L. H. McSweeney and P. F. Fox.) pp. 431–461. (Springer: New York.)

Vorbach, C., Capecchi, M. R., and Penninger, J. M. (2006). Evolution of the mammary gland from the innate immune system? BioEssays 28, 606–616.
Evolution of the mammary gland from the innate immune system?Crossref | GoogleScholarGoogle Scholar | 16700061PubMed |

Walcott, P. J., and Messer, M. (1980). Intestinal lactase (β-galactosidase) and other glycosidase activities in suckling and adult tammar wallabies (Macropus eugenii). Aust. J. Biol. Sci. 33, 521–530.
Intestinal lactase (β-galactosidase) and other glycosidase activities in suckling and adult tammar wallabies (Macropus eugenii).Crossref | GoogleScholarGoogle Scholar | 6783021PubMed |

Wang, B. (2009). Sialic acid is an essential nutrient for brain development and cognition. Annu. Rev. Nutr. 29, 177–222.
Sialic acid is an essential nutrient for brain development and cognition.Crossref | GoogleScholarGoogle Scholar | 19575597PubMed |

Wang, J., Wong, E. S., Whitley, J. C., Li, J., Stringer, J. M., Short, K. R., Renfree, M. B., Belov, K., and Cocks, B. G. (2011). Ancient antimicrobial peptides kill antibiotic-resistant pathogens: Australian mammals provide new options. PLoS One 6, e24030.
Ancient antimicrobial peptides kill antibiotic-resistant pathogens: Australian mammals provide new options.Crossref | GoogleScholarGoogle Scholar | 22216343PubMed |

Wanyonyi, S. S., Sharp, J. A., Khalil, E., Lefevre, C., and Nicholas, K. R. (2011). Tammar wallaby mammary cathelicidins are differentially expressed during lactation and exhibit antimicrobial and cell proliferative activity. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 160, 431–439.
Tammar wallaby mammary cathelicidins are differentially expressed during lactation and exhibit antimicrobial and cell proliferative activity.Crossref | GoogleScholarGoogle Scholar | 21824524PubMed |

Watson, R. P., Demmer, J., Baker, E. N., and Arcus, V. L. (2007). Three-dimensional structure and ligand binding properties of trichosurin, a metatherian lipocalin from the milk whey of the common brushtail possum Trichosurus vulpecula. Biochem. J. 408, 29–38.
Three-dimensional structure and ligand binding properties of trichosurin, a metatherian lipocalin from the milk whey of the common brushtail possum Trichosurus vulpecula.Crossref | GoogleScholarGoogle Scholar | 17685895PubMed |

Watt, A. P., Sharp, J. A., Lefevre, C., and Nicholas, K. R. (2012). WFDC2 is differentially expressed in the mammary gland of the tammar wallaby and provides immune protection to the mammary gland and the developing pouch young. Dev. Comp. Immunol. 36, 584–590.
WFDC2 is differentially expressed in the mammary gland of the tammar wallaby and provides immune protection to the mammary gland and the developing pouch young.Crossref | GoogleScholarGoogle Scholar | 22024352PubMed |

Yadav, M. (1971). The transmission of antibodies across the gut of pouch young marsupials. Immunology 21, 839–851.
| 5115612PubMed |

Young, L., Basden, K., Cooper, D. W., and Deane, E. M. (1997). Cellular components of the milk of the tammar wallaby (Macropus eugenii). Aust. J. Zool. 45, 423–433.
Cellular components of the milk of the tammar wallaby (Macropus eugenii).Crossref | GoogleScholarGoogle Scholar |

Yu, Z.-T., Chen, C., and Newburg, D. S. (2013). Utilization of major fucosylated and sialylated human milk oligosaccharides by isolated human gut microbes. Glycobiology 23, 1281–1292.
Utilization of major fucosylated and sialylated human milk oligosaccharides by isolated human gut microbes.Crossref | GoogleScholarGoogle Scholar | 24013960PubMed |