Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Improved sperm motility after 4 h of ejaculatory abstinence: role of accessory sex gland secretions

Dale Goss A , Bashir Ayad A , Gerhard van der Horst https://orcid.org/0000-0003-2194-6818 A , Bongekile Skosana A and Stefan S. du Plessis https://orcid.org/0000-0003-4617-4367 A B
+ Author Affiliations
- Author Affiliations

A Division of Medical Physiology, Stellenbosch University, Private Bag X1, Matieland, 7602, Stellenbosch, South Africa.

B Corresponding author. Email: ssdp@sun.ac.za

Reproduction, Fertility and Development 31(5) 1009-1016 https://doi.org/10.1071/RD18135
Submitted: 11 April 2018  Accepted: 3 January 2019   Published: 26 March 2019

Abstract

Various studies have sought to determine the typical v. optimal abstinence period after which semen samples should be collected, with many contradictory results reported. Several factors influence the semen microenvironment, and thus sperm parameters. In this study we focused on the secretions of the prostate, seminal vesicles and the epididymis. Semen samples were obtained from healthy normozoospermic males (n = 16) after 4-day and 4-h periods of ejaculatory abstinence, and standard semen analysis was performed using computer-aided sperm analysis, whereas seminal plasma citric acid, neutral α-glucosidase and fructose concentrations were measured using assay kits. There were significant decreases in total sperm count (P < 0.001), sperm concentration (P < 0.05) and semen volume (P < 0.05) after 4 h compared with 4 days ejaculatory abstinence. Furthermore, increases were observed in total sperm motility (P < 0.05) and sperm progressive motility (P < 0.01) after a 4-h abstinence period, accompanied by significant reductions in citric acid (P < 0.05), α-glucosidase (P < 0.01) and fructose (P < 0.01) concentrations. In addition, due to the decreased number of spermatozoa, these concentrations translated to a significant decrease in fructose (P < 0.05) per spermatozoon, indicating an intrinsic mechanism capitalising on alternative sources of energy for increased metabolic function and subsequent sperm motility.

Additional keywords: citric acid, fructose, neutral α-glucosidase, seminal plasma.


References

Alipour, H., Dardmeh, F., Van Der Horst, G., Manoharan, G., Askeland, A., and Nielsena, H. I. (2015). Effect of short abstinence time on sperm motility parameters. In ‘The Proceedings of The World Congress of In Vitro Fertilization-ISIVF 2015’. (International Society of In Vitro Fertilization Copenhagen, Denmark).

Agarwal, A., Virk, G., Ong, C., and du Plessis, S. S. (2014). Effect of oxidative stress on male reproduction. World J. Mens Health 32, 1–17.
Effect of oxidative stress on male reproduction.Crossref | GoogleScholarGoogle Scholar | 24872947PubMed |

Ayad, B. M., Van der Horst, G., and du Plessis, S. S. (2018a). Short abstinence: a potential strategy for the improvement of sperm quality. Middle East Fertil. Soc. J. 23, 37–43.
Short abstinence: a potential strategy for the improvement of sperm quality.Crossref | GoogleScholarGoogle Scholar |

Ayad, B. M., Horst, G. V., and Plessis, S. S. D. (2018b). Revisiting the relationship between the ejaculatory abstinence period and semen characteristics. Int. J. Fertil. Steril. 11, 238–246.
| 29043697PubMed |

Baccetti, B. (1984). The human spermatozoon. In ‘Ultrastructure of Reproduction. Electron Microscopy in Biology and Medicine (Current Topics in Ultrastructural Research)’. Vol. 2. (Eds J. Van Blerkom and P. M. Motta.) pp. 110–126. (Springer: Boston, MA, USA.)

Bahadur, G., Almossawi, O., Zaid, R. Z., Ilahibuccus, A., Al-Habib, A., Muneer, A., and Okolo, S. (2016). Semen characteristics in consecutive ejaculates with short abstinence in subfertile males. Reprod. Biomed. Online 32, 323–328.
Semen characteristics in consecutive ejaculates with short abstinence in subfertile males.Crossref | GoogleScholarGoogle Scholar | 26776821PubMed |

Balk, S. P., Ko, Y. J., and Bubley, G. J. (2003). Biology of prostate-specific antigen. J. Clin. Oncol. 21, 383–391.
Biology of prostate-specific antigen.Crossref | GoogleScholarGoogle Scholar | 12525533PubMed |

Bone, W., Jones, A. R., Morin, C., Nieschlag, E., and Cooper, T. G. (2001). Susceptibility of glycolytic enzyme activity and motility of spermatozoa from rat, mouse, and human to inhibition by proven and putative chlorinated antifertility compounds in vitro. J. Androl. 22, 464–470.
| 11330647PubMed |

Canale, D., Bartelloni, M., Negroni, A., Meschini, P., Izzo, P. L., Bianchi, B., and Menchini-Fabris, G. F. (1986). Zinc in human semen. Int. J. Androl. 9, 477–480.
Zinc in human semen.Crossref | GoogleScholarGoogle Scholar | 3570537PubMed |

Comar, V. A., Petersen, C. G., Mauri, A. L., Mattila, M., Vagnini, L. D., Renzi, A., Petersen, B., Nicoletti, A., Dieamant, F., Oliveira, J. B. A., and Baruffi, R. L. (2017). Influence of the abstinence period on human sperm quality: analysis of 2,458 semen samples. JBRA Assist. Reprod. 21, 306–312.
| 28985041PubMed |

Cooper, T. G., Weidner, W., and Nieschlag, E. (1990). The influence of inflammation of the human male genital tract on secretion of the seminal markers α-glucosidase, glycerophosphocholine, carnitine, fructose and citric acid. Int. J. Androl. 13, 329–336.
The influence of inflammation of the human male genital tract on secretion of the seminal markers α-glucosidase, glycerophosphocholine, carnitine, fructose and citric acid.Crossref | GoogleScholarGoogle Scholar | 2283178PubMed |

Eddy, E. M., Toshimori, K., and O’Brien, D. A. (2003). Fibrous sheath of mammalian spermatozoa. Microsc. Res. Tech. 61, 103–115.
Fibrous sheath of mammalian spermatozoa.Crossref | GoogleScholarGoogle Scholar | 12672126PubMed |

Elzanaty, S., Richthoff, J., Malm, J., and Giwercman, A. (2002). The impact of epididymal and accessory sex gland function on sperm motility. Hum. Reprod. 17, 2904–2911.
The impact of epididymal and accessory sex gland function on sperm motility.Crossref | GoogleScholarGoogle Scholar | 12407047PubMed |

Elzanaty, S., Malm, J., and Giwercman, A. (2005). Duration of sexual abstinence: epididymal and accessory sex gland secretions and their relationship to sperm motility. Hum. Reprod. 20, 221–225.
Duration of sexual abstinence: epididymal and accessory sex gland secretions and their relationship to sperm motility.Crossref | GoogleScholarGoogle Scholar | 15550495PubMed |

Fourie, M. H., Du Toit, D., Bornman, M. S., Van Der Merwe, M. P., and Du Plessis, D. J. (1991). α-Glucosidase, sperm ATP concentrations, and epididymal function. Arch. Androl. 26, 139–141.
α-Glucosidase, sperm ATP concentrations, and epididymal function.Crossref | GoogleScholarGoogle Scholar | 1872646PubMed |

Fraser, L. R., Harrison, R. A. P., and Herod, J. E. (1990). Characterization of a decapacitation factor associated with epididymal mouse spermatozoa. J. Reprod. Fertil. 89, 135–148.
Characterization of a decapacitation factor associated with epididymal mouse spermatozoa.Crossref | GoogleScholarGoogle Scholar | 2197409PubMed |

Goodson, S. G., Qiu, Y., Sutton, K. A., Xie, G., Jia, W., and O’Brien, D. A. (2012). Metabolic substrates exhibit differential effects on functional parameters of mouse sperm capacitation. Biol. Reprod. 87, 75.
Metabolic substrates exhibit differential effects on functional parameters of mouse sperm capacitation.Crossref | GoogleScholarGoogle Scholar | 22837480PubMed |

Gosálvez, J., González-Martínez, M., López-Fernández, C., Fernández, J. L., and Sánchez-Martín, P. (2011). Shorter abstinence decreases sperm deoxyribonucleic acid fragmentation in ejaculate. Fertil. Steril. 96, 1083–1086.
Shorter abstinence decreases sperm deoxyribonucleic acid fragmentation in ejaculate.Crossref | GoogleScholarGoogle Scholar | 21924714PubMed |

Guerin, J. F., Ben Ali, H., Cottinet, D., and Rollet, J. (1990). Seminal alpha-glycosidase activity as a marker of epididymal pathology in normozoospermic men consulting for infertility. J. Androl. 11, 240–245.
| 2200770PubMed |

Iwasaki, A., and Gagnon, C. (1992). Formation of reactive oxygen species in spermatozoa of infertile patients. Fertil. Steril. 57, 409–416.
Formation of reactive oxygen species in spermatozoa of infertile patients.Crossref | GoogleScholarGoogle Scholar | 1735495PubMed |

Kao, S. H., Chao, H. T., Chen, H. W., Hwang, T. I., Liao, T. L., and Wei, Y. H. (2008). Increase of oxidative stress in human sperm with lower motility. Fertil. Steril. 89, 1183–1190.
Increase of oxidative stress in human sperm with lower motility.Crossref | GoogleScholarGoogle Scholar | 17669405PubMed |

Kavanagh, J. P. (1994). Isocitric and citric acid in human prostatic and seminal fluid: implications for prostatic metabolism and secretion. Prostate 24, 139–142.
Isocitric and citric acid in human prostatic and seminal fluid: implications for prostatic metabolism and secretion.Crossref | GoogleScholarGoogle Scholar | 8115279PubMed |

Kessopoulou, E., Tomlinson, M. J., Barratt, C. L. R., Bolton, A. E., and Cooke, I. D. (1992). Origin of reactive oxygen species in human semen: spermatozoa or leucocytes? J. Reprod. Fertil. 94, 463–470.
Origin of reactive oxygen species in human semen: spermatozoa or leucocytes?Crossref | GoogleScholarGoogle Scholar | 1593545PubMed |

Krause, W., and Bohring, C. (1999). Why do we determine α-glycosidase activity in human semen during infertility work-up? Andrologia 31, 289–294.
Why do we determine α-glycosidase activity in human semen during infertility work-up?Crossref | GoogleScholarGoogle Scholar | 10526638PubMed |

Levitas, E., Lunenfeld, E., Weiss, N., Friger, M., Har-Vardi, I., Koifman, A., and Potashnik, G. (2005). Relationship between the duration of sexual abstinence and semen quality: analysis of 9,489 semen samples. Fertil. Steril. 83, 1680–1686.
Relationship between the duration of sexual abstinence and semen quality: analysis of 9,489 semen samples.Crossref | GoogleScholarGoogle Scholar | 15950636PubMed |

Mann, T. (1946). Studies on the metabolism of semen: 3. Fructose as a normal constituent of seminal plasma. Site of formation and function of fructose in semen. Biochem. J. 40, 481–491.
Studies on the metabolism of semen: 3. Fructose as a normal constituent of seminal plasma. Site of formation and function of fructose in semen.Crossref | GoogleScholarGoogle Scholar | 20273629PubMed |

Martínez-Heredia, J., Estanyol, J. M., Ballescà, J. L., and Oliva, R. (2006). Proteomic identification of human sperm proteins. Proteomics 6, 4356–4369.
Proteomic identification of human sperm proteins.Crossref | GoogleScholarGoogle Scholar | 16819732PubMed |

Medrano, A., Fernández-Novell, J. M., Ramió, L., Alvarez, J., Goldberg, E., Rivera, M., Guinovart, J. J., Rigau, T., and Rodríguez-Gil, J. E. (2006). Utilization of citrate and lactate through a lactate dehydrogenase and ATP-regulated pathway in boar spermatozoa. Mol. Reprod. Dev. 73, 369–378.
Utilization of citrate and lactate through a lactate dehydrogenase and ATP-regulated pathway in boar spermatozoa.Crossref | GoogleScholarGoogle Scholar | 16362974PubMed |

Miki, K., Qu, W., Goulding, E. H., Willis, W. D., Bunch, D. O., Strader, L. F., Perreault, S. D., Eddy, E. M., and O’Brien, D. A. (2004). Glyceraldehyde 3-phosphate dehydrogenase-S, a sperm-specific glycolytic enzyme, is required for sperm motility and male fertility. Proc. Natl. Acad. Sci. USA 101, 16501–16506.
Glyceraldehyde 3-phosphate dehydrogenase-S, a sperm-specific glycolytic enzyme, is required for sperm motility and male fertility.Crossref | GoogleScholarGoogle Scholar | 15546993PubMed |

Padova, G., Tita, P., Briguglia, G., and Giuffrida, D. (1988). Influence of abstinence length on ejaculate characteristics. Acta Eur. Fertil. 19, 29–31.
| 3414329PubMed |

Patel, S. M., Skandhan, K. P., and Mehta, Y. B. (1988). Seminal plasma fructose and glucose in normal and pathological conditions. Acta Eur. Fertil. 19, 329–332.
| 3251390PubMed |

Rao, M., Zhao, X. L., Yang, J., Hu, S. F., Lei, H., Xia, W., and Zhu, C. H. (2015). Effect of transient scrotal hyperthermia on sperm parameters, seminal plasma biochemical markers, and oxidative stress in men. Asian J. Androl. 17, 668–675.
Effect of transient scrotal hyperthermia on sperm parameters, seminal plasma biochemical markers, and oxidative stress in men.Crossref | GoogleScholarGoogle Scholar | 25652627PubMed |

Raziel, A., Friedler, S., Schachter, M., Kaufman, S., Omanski, A., Soffer, Y., and Ron-El, R. (2001). Influence of a short or long abstinence period on semen parameters in the ejaculate of patients with non-obstructive azoospermia. Fertil. Steril. 76, 485–490.
Influence of a short or long abstinence period on semen parameters in the ejaculate of patients with non-obstructive azoospermia.Crossref | GoogleScholarGoogle Scholar | 11532469PubMed |

Rees, J. M., Ford, W. C. L., and Hull, M. G. R. (1990). Effect of caffeine and of pentoxifylline on the motility and metabolism of human spermatozoa. J. Reprod. Fertil. 90, 147–156.
Effect of caffeine and of pentoxifylline on the motility and metabolism of human spermatozoa.Crossref | GoogleScholarGoogle Scholar | 2231536PubMed |

Said, L., Galeraud‐Denis, I., Carreau, S., and Saâd, A. (2009). Relationship between semen quality and seminal plasma components: alpha-glucosidase, fructose and citrate in infertile men compared with a normospermic population of Tunisian men. Andrologia 41, 150–156.
Relationship between semen quality and seminal plasma components: alpha-glucosidase, fructose and citrate in infertile men compared with a normospermic population of Tunisian men.Crossref | GoogleScholarGoogle Scholar | 19400848PubMed |

Saleh, R. A., Agarwal, A., Nada, E. A., El-Tonsy, M. H., Sharma, R. K., Meyer, A., Nelson, D. R., and Thomas, A. J. (2003). Negative effects of increased sperm DNA damage in relation to seminal oxidative stress in men with idiopathic and male factor infertility. Fertil. Steril. 79, 1597–1605.
Negative effects of increased sperm DNA damage in relation to seminal oxidative stress in men with idiopathic and male factor infertility.Crossref | GoogleScholarGoogle Scholar | 12801566PubMed |

Sánchez-Martín, P., Sánchez-Martín, F., González-Martínez, M., and Gosálvez, J. (2013). Increased pregnancy after reduced male abstinence. Syst. Biol. Reprod. Med. 59, 256–260.
Increased pregnancy after reduced male abstinence.Crossref | GoogleScholarGoogle Scholar | 23651301PubMed |

Schoenfeld, C., Amelar, R. D., Dubin, L., and Numeroff, M. (1979). Prolactin, fructose, and zinc levels found in human seminal plasma. Fertil. Steril. 32, 206–208.
Prolactin, fructose, and zinc levels found in human seminal plasma.Crossref | GoogleScholarGoogle Scholar | 467703PubMed |

Storey, B. T. (2008). Mammalian sperm metabolism: oxygen and sugar, friend and foe. Int. J. Dev. Biol. 52, 427–437.
Mammalian sperm metabolism: oxygen and sugar, friend and foe.Crossref | GoogleScholarGoogle Scholar | 18649255PubMed |

Storey, B. T., and Kayne, F. J. (1975). Energy metabolism of spermatozoa. V. The Embden–Myerhof pathway of glycolysis: activities of pathway enzymes in hypotonically treated rabbit epididymal spermatozoa. Fertil. Steril. 26, 1257–1265.
Energy metabolism of spermatozoa. V. The Embden–Myerhof pathway of glycolysis: activities of pathway enzymes in hypotonically treated rabbit epididymal spermatozoa.Crossref | GoogleScholarGoogle Scholar | 803042PubMed |

Travis, A. J., Foster, J. A., Rosenbaum, N. A., Visconti, P. E., Gerton, G. L., Kopf, G. S., and Moss, S. B. (1998). Targeting of a germ cell-specific type 1 hexokinase lacking a porin-binding domain to the mitochondria as well as to the head and fibrous sheath of murine spermatozoa. Mol. Biol. Cell 9, 263–276.
Targeting of a germ cell-specific type 1 hexokinase lacking a porin-binding domain to the mitochondria as well as to the head and fibrous sheath of murine spermatozoa.Crossref | GoogleScholarGoogle Scholar | 9450953PubMed |

Turner, R. M. (2003). Tales from the tail: what do we really know about sperm motility? J. Androl. 24, 790–803.
Tales from the tail: what do we really know about sperm motility?Crossref | GoogleScholarGoogle Scholar | 14581499PubMed |

Viljoen, M. H., Bornman, M. S., Van der Merwe, M. P., and Du Plessis, D. J. (1990). Alpha‐glucosidase activity and sperm motility: α‐Glucosidaseaktivität und Spermatozoen‐Motilität. Andrologia 22, 205–208.
Alpha‐glucosidase activity and sperm motility: α‐Glucosidaseaktivität und Spermatozoen‐Motilität.Crossref | GoogleScholarGoogle Scholar | 2240618PubMed |

Visconti, P. E. (2012). Sperm bioenergetics in a nutshell. Biol. Reprod. 87, 72.
Sperm bioenergetics in a nutshell.Crossref | GoogleScholarGoogle Scholar | 22914312PubMed |

Williams, A. C., and Ford, W. C. L. (2001). The role of glucose in supporting motility and capacitation in human spermatozoa. J. Androl. 22, 680–695.
| 11451366PubMed |

World Medical Association (2003). World Medical Association Declaration of Helsinki. Ethical principles for medical research involving human subjects. Bull. World Health Organ. 79, 373–374.

World Health Organization (2010). ‘WHO Laboratory Manual for the Examination of Human Semen and Sperm–Cervical Mucus Interaction.’ 5th edn. (Cambridge University Press.)