Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Targeting αGal epitopes for multi-species embryo immunosurgery

Mayuko Kurome https://orcid.org/0000-0002-2725-8613 A C D * , Andrea Baehr B * , Kilian Simmet A * , Eva-Maria Jemiller A , Stefanie Egerer A , Maik Dahlhoff A , Valeri Zakhartchenko A , Hiroshi Nagashima C , Nikolai Klymiuk A , Barbara Kessler A and Eckhard Wolf A C
+ Author Affiliations
- Author Affiliations

A Chair for Molecular Animal Breeding and Biotechnology, Centre for Innovative Medical Models (CiMM), LMU Munich, Hacker strasse 27, 85764 Oberschleissheim, Germany.

B Klinikum Rechts der Isar, Innere Medizin I, TU Munich, Ismaninger strasse 22, 81675 Munich, Germany.

C Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama, Kawasaki, Kanagawa 214-8571, Japan.

D Corresponding author. Email: m.kurome@gen.vetmed.uni-muenchen.de

Reproduction, Fertility and Development 31(4) 820-826 https://doi.org/10.1071/RD18120
Submitted: 28 March 2018  Accepted: 20 September 2018   Published: 2 November 2018

Abstract

Immunosurgical isolation of the inner cell mass (ICM) from blastocysts is based on complement-mediated lysis of antibody-coated trophectoderm (TE) cells. Conventionally, anti-species antisera, containing antibodies against multiple undefined TE-cell epitopes, have been used as the antibody source. We previously generated α-1,3-galactosyltransferase deficient (GTKO) pigs to prevent hyperacute rejection of pig-to-primate xenotransplants. Since GTKO pigs lack galactosyl-α-1,3-galactose (αGal) but are exposed to this antigen (e.g. αGal on gut bacteria), they produce anti-αGal antibodies. In this study, we examined whether serum from GTKO pigs could be used as a novel antibody source for multi-species embryo immunosurgery. Mouse, rabbit, pig and cattle blastocysts were used for the experiment. Expression of αGal epitopes on the surface of TE cells was detected in blastocysts of all species tested. GTKO pig serum contained sufficient anti-αGal antibodies to induce complement-mediated lysis of TE cells in blastocysts from all species investigated. Intact ICMs could be successfully recovered and the majority showed the desired level of purity. Our study demonstrates that GTKO pig serum is a reliable and effective source of antibodies targeting the αGal epitopes of TE cells for multi-species embryo immunosurgery.

Additional keywords: α-1,3-galactosyltransferase deficient pigs, anti-αGal antibodies, complement, inner cell mass isolation.


References

Babicki, S., Arndt, D., Marcu, A., Liang, Y., Grant, J. R., Maciejewski, A., and Wishart, D. S. (2016). Heatmapper: web-enabled heat mapping for all. Nucleic Acids Res. 44, W147–W153.
Heatmapper: web-enabled heat mapping for all.Crossref | GoogleScholarGoogle Scholar |

Beshr, G., Sikandar, A., Jemiller, E. M., Klymiuk, N., Hauck, D., Wagner, S., Wolf, E., Koehnke, J., and Titz, A. (2017). Photorhabdus luminescens lectin A (PllA): a new probe for detecting alpha-galactoside-terminating glycoconjugates. J. Biol. Chem. 292, 19935–19951.
Photorhabdus luminescens lectin A (PllA): a new probe for detecting alpha-galactoside-terminating glycoconjugates.Crossref | GoogleScholarGoogle Scholar |

Brero, A., Hao, R., Schieker, M., Wierer, M., Wolf, E., Cremer, T., and Zakhartchenko, V. (2009). Reprogramming of active and repressive histone modifications following nuclear transfer with rabbit mesenchymal stem cells and adult fibroblasts. Cloning Stem Cells 11, 319–329.
Reprogramming of active and repressive histone modifications following nuclear transfer with rabbit mesenchymal stem cells and adult fibroblasts.Crossref | GoogleScholarGoogle Scholar |

Chi, H., Sato, M., Yoshida, M., and Miyoshi, K. (2012). Expression analysis of an alpha-1, 3-galactosyltransferase, an enzyme that creates xenotransplantation-related alpha-Gal epitope, in pig preimplantation embryos. Anim. Sci. J. 83, 88–93.
Expression analysis of an alpha-1, 3-galactosyltransferase, an enzyme that creates xenotransplantation-related alpha-Gal epitope, in pig preimplantation embryos.Crossref | GoogleScholarGoogle Scholar |

Cortés, J. L., Cobo, F., Catalina, P., Nieto, A., Cabrera, C., Montes, R., Concha, A., and Menendez, P. (2007). Evaluation of a laser technique to isolate the inner cell mass of murine blastocysts. Biotechnol. Appl. Biochem. 46, 205–209.
Evaluation of a laser technique to isolate the inner cell mass of murine blastocysts.Crossref | GoogleScholarGoogle Scholar |

Cruz, Y. P., Treichel, R. S., Harsay, E., and Chi, K. D. (1993). Mouse blastocyst immunosurgery with commercial antiserum to mouse erythrocytes. In Vitro Cell. Dev. Biol. Anim. 29, 671–675.
Mouse blastocyst immunosurgery with commercial antiserum to mouse erythrocytes.Crossref | GoogleScholarGoogle Scholar |

Dai, Y., Vaught, T. D., Boone, J., Chen, S. H., Phelps, C. J., Ball, S., Monahan, J. A., Jobst, P. M., McCreath, K. J., Lamborn, A. E., Cowell-Lucero, J. L., Wells, K. D., Colman, A., Polejaeva, I. A., and Ayares, D. L. (2002). Targeted disruption of the alpha1,3-galactosyltransferase gene in cloned pigs. Nat. Biotechnol. 20, 251–255.
Targeted disruption of the alpha1,3-galactosyltransferase gene in cloned pigs.Crossref | GoogleScholarGoogle Scholar |

de Chaumont, F., Dallongeville, S., Chenouard, N., Herve, N., Pop, S., Provoost, T., Meas-Yedid, V., Pankajakshan, P., Lecomte, T., Le Montagner, Y., Lagache, T., Dufour, A., and Olivo-Marin, J. C. (2012). Icy: an open bioimage informatics platform for extended reproducible research. Nat. Methods 9, 690–696.
Icy: an open bioimage informatics platform for extended reproducible research.Crossref | GoogleScholarGoogle Scholar |

Eckhardt, A. E., and Goldstein, I. J. (1983). Isolation and characterization of a family of alpha-D-galactosyl-containing glycopeptides from Ehrlich ascites tumor cells. Biochemistry 22, 5290–5297.
Isolation and characterization of a family of alpha-D-galactosyl-containing glycopeptides from Ehrlich ascites tumor cells.Crossref | GoogleScholarGoogle Scholar |

Fogarty, N. M. E., McCarthy, A., Snijders, K. E., Powell, B. E., Kubikova, N., Blakeley, P., Lea, R., Elder, K., Wamaitha, S. E., Kim, D., Maciulyte, V., Kleinjung, J., Kim, J. S., Wells, D., Vallier, L., Bertero, A., Turner, J. M. A., and Niakan, K. K. (2017). Genome editing reveals a role for OCT4 in human embryogenesis. Nature 550, 67–73.
Genome editing reveals a role for OCT4 in human embryogenesis.Crossref | GoogleScholarGoogle Scholar |

Galili, U. (2013). Alpha1,3galactosyltransferase knockout pigs produce the natural anti-Gal antibody and simulate the evolutionary appearance of this antibody in primates. Xenotransplantation 20, 267–276.
Alpha1,3galactosyltransferase knockout pigs produce the natural anti-Gal antibody and simulate the evolutionary appearance of this antibody in primates.Crossref | GoogleScholarGoogle Scholar |

Galili, U., Mandrell, R. E., Hamadeh, R. M., Shohet, S. B., and Griffiss, J. M. (1988a). Interaction between human natural anti-alpha-galactosyl immunoglobulin G and bacteria of the human flora. Infect. Immun. 56, 1730–1737.

Galili, U., Shohet, S. B., Kobrin, E., Stults, C. L., and Macher, B. A. (1988b). Man, apes, and Old World monkeys differ from other mammals in the expression of alpha-galactosyl epitopes on nucleated cells. J. Biol. Chem. 263, 17755–17762.

Gardner, R. L., and Johnson, M. H. (1972). An investigation of inner cell mass and trophoblast tissues following their isolation from the mouse blastocyst. J. Embryol. Exp. Morphol. 28, 279–312.

Harlow, G. M., and Quinn, P. (1979). Isolation of inner cell masses from mouse blastocysts by immunosurgery or exposure to the calcium ionophore A23187. Aust. J. Biol. Sci. 32, 483–491.
Isolation of inner cell masses from mouse blastocysts by immunosurgery or exposure to the calcium ionophore A23187.Crossref | GoogleScholarGoogle Scholar |

Hosseini, S. M., Dufort, I., Caballero, J., Moulavi, F., Ghanaei, H. R., and Sirard, M. A. (2015). Transcriptome profiling of bovine inner cell mass and trophectoderm derived from in vivo generated blastocysts. BMC Dev. Biol. 15, 49.
Transcriptome profiling of bovine inner cell mass and trophectoderm derived from in vivo generated blastocysts.Crossref | GoogleScholarGoogle Scholar |

Iqbal, K., Chitwood, J. L., Meyers-Brown, G. A., Roser, J. F., and Ross, P. J. (2014). RNA-seq transcriptome profiling of equine inner cell mass and trophectoderm. Biol. Reprod. 90, 61.
RNA-seq transcriptome profiling of equine inner cell mass and trophectoderm.Crossref | GoogleScholarGoogle Scholar |

Kang, M., Garg, V., and Hadjantonakis, A. K. (2017). Lineage establishment and progression within the inner cell mass of the mouse blastocyst requires FGFR1 and FGFR2. Dev. Cell 41, 496–510.e5.
Lineage establishment and progression within the inner cell mass of the mouse blastocyst requires FGFR1 and FGFR2.Crossref | GoogleScholarGoogle Scholar |

Khan, D. R., Dube, D., Gall, L., Peynot, N., Ruffini, S., Laffont, L., Le Bourhis, D., Degrelle, S., Jouneau, A., and Duranthon, V. (2012). Expression of pluripotency master regulators during two key developmental transitions: EGA and early lineage specification in the bovine embryo. PLoS One 7, e34110.
Expression of pluripotency master regulators during two key developmental transitions: EGA and early lineage specification in the bovine embryo.Crossref | GoogleScholarGoogle Scholar |

Kuijk, E. W., Chuva de Sousa Lopes, S. M., Geijsen, N., Macklon, N., and Roelen, B. A. (2011). The different shades of mammalian pluripotent stem cells. Hum. Reprod. Update 17, 254–271.
The different shades of mammalian pluripotent stem cells.Crossref | GoogleScholarGoogle Scholar |

Kuijk, E. W., van Tol, L. T., Van de Velde, H., Wubbolts, R., Welling, M., Geijsen, N., and Roelen, B. A. (2012). The roles of FGF and MAP kinase signaling in the segregation of the epiblast and hypoblast cell lineages in bovine and human embryos. Development 139, 871–882.
The roles of FGF and MAP kinase signaling in the segregation of the epiblast and hypoblast cell lineages in bovine and human embryos.Crossref | GoogleScholarGoogle Scholar |

Kurome, M., Leuchs, S., Kessler, B., Kemter, E., Jemiller, E. M., Foerster, B., Klymiuk, N., Zakhartchenko, V., and Wolf, E. (2017). Direct introduction of gene constructs into the pronucleus-like structure of cloned embryos: a new strategy for the generation of genetically modified pigs. Transgenic Res. 26, 309–318.
Direct introduction of gene constructs into the pronucleus-like structure of cloned embryos: a new strategy for the generation of genetically modified pigs.Crossref | GoogleScholarGoogle Scholar |

Lai, L., Kolber-Simonds, D., Park, K. W., Cheong, H. T., Greenstein, J. L., Im, G. S., Samuel, M., Bonk, A., Rieke, A., Day, B. N., Murphy, C. N., Carter, D. B., Hawley, R. J., and Prather, R. S. (2002). Production of alpha-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science 295, 1089–1092.
Production of alpha-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning.Crossref | GoogleScholarGoogle Scholar |

Lavagi, I., Krebs, S., Simmet, K., Beck, A., Zakhartchenko, V., Wolf, E., and Blum, H. (2018). Single-cell RNA sequencing reveals developmental heterogeneity of blastomeres during major genome activation in bovine embryos. Sci. Rep. 8, 4071.
Single-cell RNA sequencing reveals developmental heterogeneity of blastomeres during major genome activation in bovine embryos.Crossref | GoogleScholarGoogle Scholar |

Li, M., Zhang, D., Hou, Y., Jiao, L., Zheng, X., and Wang, W. H. (2003). Isolation and culture of embryonic stem cells from porcine blastocysts. Mol. Reprod. Dev. 65, 429–434.
Isolation and culture of embryonic stem cells from porcine blastocysts.Crossref | GoogleScholarGoogle Scholar |

Lin, T., Lee, J. E., Oqani, R. K., Kim, S. Y., Cho, E. S., Jeong, Y. D., Baek, J. J., and Jin, D. I. (2017). Delayed blastocyst formation or an extra day culture increases apoptosis in pig blastocysts. Anim. Reprod. Sci. 185, 128–139.
Delayed blastocyst formation or an extra day culture increases apoptosis in pig blastocysts.Crossref | GoogleScholarGoogle Scholar |

Nagatomo, H., Kagawa, S., Kishi, Y., Takuma, T., Sada, A., Yamanaka, K., Abe, Y., Wada, Y., Takahashi, M., Kono, T., and Kawahara, M. (2013). Transcriptional wiring for establishing cell lineage specification at the blastocyst stage in cattle. Biol. Reprod. 88, 158.
Transcriptional wiring for establishing cell lineage specification at the blastocyst stage in cattle.Crossref | GoogleScholarGoogle Scholar |

Nakamura, Y., Tajima, S., and Kikuchi, K. (2017). The quality after culture in vitro or in vivo of porcine oocytes matured and fertilized in vitro and their ability to develop to term. Anim. Sci. J. 88, 1916–1924.
The quality after culture in vitro or in vivo of porcine oocytes matured and fertilized in vitro and their ability to develop to term.Crossref | GoogleScholarGoogle Scholar |

Nakano, K., Watanabe, M., Matsunari, H., Matsuda, T., Honda, K., Maehara, M., Kanai, T., Hayashida, G., Kobayashi, M., Kuramoto, M., Arai, Y., Umeyama, K., Fujishiro, S. H., Mizukami, Y., Nagaya, M., Hanazono, Y., and Nagashima, H. (2013). Generating porcine chimeras using inner cell mass cells and parthenogenetic preimplantation embryos. PLoS One 8, e61900.
Generating porcine chimeras using inner cell mass cells and parthenogenetic preimplantation embryos.Crossref | GoogleScholarGoogle Scholar |

Negrón-Pérez, V. M., Zhang, Y., and Hansen, P. J. (2017). Single-cell gene expression of the bovine blastocyst. Reproduction 154, 627–644.
Single-cell gene expression of the bovine blastocyst.Crossref | GoogleScholarGoogle Scholar |

Nguyen, D. T., Choi, H., Jo, H., Kim, J. H., Dirisala, V. R., Lee, K. T., Kim, T. H., Park, K. K., Seo, K., and Park, C. (2011). Molecular characterization of the human ABO blood group orthologous system in pigs. Anim. Genet. 42, 325–328.
Molecular characterization of the human ABO blood group orthologous system in pigs.Crossref | GoogleScholarGoogle Scholar |

Ohnishi, Y., Huber, W., Tsumura, A., Kang, M., Xenopoulos, P., Kurimoto, K., Oles, A. K., Arauzo-Bravo, M. J., Saitou, M., Hadjantonakis, A. K., and Hiiragi, T. (2014). Cell-to-cell expression variability followed by signal reinforcement progressively segregates early mouse lineages. Nat. Cell Biol. 16, 27–37.
Cell-to-cell expression variability followed by signal reinforcement progressively segregates early mouse lineages.Crossref | GoogleScholarGoogle Scholar |

Ozawa, M., and Hansen, P. J. (2011). A novel method for purification of inner cell mass and trophectoderm cells from blastocysts using magnetic activated cell sorting. Fertil. Steril. 95, 799–802.
A novel method for purification of inner cell mass and trophectoderm cells from blastocysts using magnetic activated cell sorting.Crossref | GoogleScholarGoogle Scholar |

Ozawa, M., Sakatani, M., Hankowski, K. E., Terada, N., Dobbs, K. B., and Hansen, P. J. (2012a). Importance of culture conditions during the morula-to-blastocyst period on capacity of inner cell-mass cells of bovine blastocysts for establishment of self-renewing pluripotent cells. Theriogenology 78, 1243–1251.e1–2.
Importance of culture conditions during the morula-to-blastocyst period on capacity of inner cell-mass cells of bovine blastocysts for establishment of self-renewing pluripotent cells.Crossref | GoogleScholarGoogle Scholar |

Ozawa, M., Sakatani, M., Yao, J., Shanker, S., Yu, F., Yamashita, R., Wakabayashi, S., Nakai, K., Dobbs, K. B., Sudano, M. J., Farmerie, W. G., and Hansen, P. J. (2012b). Global gene expression of the inner cell mass and trophectoderm of the bovine blastocyst. BMC Dev. Biol. 12, 33.
Global gene expression of the inner cell mass and trophectoderm of the bovine blastocyst.Crossref | GoogleScholarGoogle Scholar |

Schiewe, M. C., Hansen, C. T., and Schmidt, P. M. (1992). Lack of antibody specificity by mouse trophectoderm during immunosurgery. Theriogenology 38, 21–32.
Lack of antibody specificity by mouse trophectoderm during immunosurgery.Crossref | GoogleScholarGoogle Scholar |

Schmid, D. O., Buschmann, H. G., and Hammer, C. (2003). ‘Blood Groups in Animals’. (Pabst Science Publishers: Lengerich.)

Simmet, K., Reichenbach, M., Reichenbach, H. D., and Wolf, E. (2015). Phytohemagglutinin facilitates the aggregation of blastomere pairs from Day 5 donor embryos with Day 4 host embryos for chimeric bovine embryo multiplication. Theriogenology 84, 1603–1610.
Phytohemagglutinin facilitates the aggregation of blastomere pairs from Day 5 donor embryos with Day 4 host embryos for chimeric bovine embryo multiplication.Crossref | GoogleScholarGoogle Scholar |

Simmet, K., Zakhartchenko, V., Philippou-Massier, J., Blum, H., Klymiuk, N., and Wolf, E. (2018). OCT4/POU5F1 is required for NANOG expression in bovine blastocysts. Proc. Natl. Acad. Sci. USA 115, 2770–2775.
OCT4/POU5F1 is required for NANOG expression in bovine blastocysts.Crossref | GoogleScholarGoogle Scholar |

Solter, D., and Knowles, B. B. (1975). Immunosurgery of mouse blastocyst. Proc. Natl. Acad. Sci. USA 72, 5099–5102.
Immunosurgery of mouse blastocyst.Crossref | GoogleScholarGoogle Scholar |

Tanemura, M., Maruyama, S., and Galili, U. (2000). Differential expression of alpha-GAL epitopes (Galalpha1–3Galbeta1–4GlcNAc-R) on pig and mouse organs. Transplantation 69, 187–190.
Differential expression of alpha-GAL epitopes (Galalpha1–3Galbeta1–4GlcNAc-R) on pig and mouse organs.Crossref | GoogleScholarGoogle Scholar |

Tempel, W., Tschampel, S., and Woods, R. J. (2002). The xenograft antigen bound to Griffonia simplicifolia lectin 1-B(4). X-ray crystal structure of the complex and molecular dynamics characterization of the binding site. J. Biol. Chem. 277, 6615–6621.
The xenograft antigen bound to Griffonia simplicifolia lectin 1-B(4). X-ray crystal structure of the complex and molecular dynamics characterization of the binding site.Crossref | GoogleScholarGoogle Scholar |

Vaughan, H. A., Loveland, B. E., and Sandrin, M. S. (1994). Gal alpha(1,3)Gal is the major xenoepitope expressed on pig endothelial cells recognized by naturally occurring cytotoxic human antibodies. Transplantation 58, 879–882.
Gal alpha(1,3)Gal is the major xenoepitope expressed on pig endothelial cells recognized by naturally occurring cytotoxic human antibodies.Crossref | GoogleScholarGoogle Scholar |

Wu, J., and Izpisua Belmonte, J. C. (2015). Dynamic pluripotent stem cell states and their applications. Cell Stem Cell 17, 509–525.
Dynamic pluripotent stem cell states and their applications.Crossref | GoogleScholarGoogle Scholar |

Wuensch, A., Baehr, A., Bongoni, A. K., Kemter, E., Blutke, A., Baars, W., Haertle, S., Zakhartchenko, V., Kurome, M., Kessler, B., Faber, C., Abicht, J. M., Reichart, B., Wanke, R., Schwinzer, R., Nagashima, H., Rieben, R., Ayares, D., Wolf, E., and Klymiuk, N. (2014). Regulatory sequences of the porcine THBD gene facilitate endothelial-specific expression of bioactive human thrombomodulin in single- and multitransgenic pigs. Transplantation 97, 138–147.
Regulatory sequences of the porcine THBD gene facilitate endothelial-specific expression of bioactive human thrombomodulin in single- and multitransgenic pigs.Crossref | GoogleScholarGoogle Scholar |