Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Fetal bovine serum promotes the development of in vitro porcine blastocysts by activating the Rho-associated kinase signalling pathway

Shimeng Guo A , Shichao Liu A , Gerelchimeg Bou A B , Jia Guo A , Liyuan Jiang A , Zhuang Chai A , Mingming Cai A , Yanshuang Mu A and Zhonghua Liu orcid.org/0000-0002-4126-9060 A C
+ Author Affiliations
- Author Affiliations

A College of Life Science, Northeast Agricultural University of China, Harbin 150030, China.

B College of Animal Science, Inner Mongolia Agricultural University, Huhhot 018001, China.

C Corresponding author. Email: liu086@126.com

Reproduction, Fertility and Development 31(2) 366-376 https://doi.org/10.1071/RD18070
Submitted: 6 July 2017  Accepted: 13 July 2018   Published: 26 September 2018

Abstract

Fetal bovine serum (FBS) supplementation has beneficial effects on in vitro porcine embryonic development, but the underlying mechanisms are unclear. In the present study we found that the addition of FBS to PZM-3 increased the number of cells in porcine blastocysts and hatching rate in vitro primarily by promoting proliferation of the inner cell mass and further differentiation. Moreover, based on the following results, we surmise that FBS benefits blastocyst development by activating Rho-associated kinase (ROCK) signalling: (1) the ROCK signalling inhibitor Y-27632 decreased the blastocyst rate and the number of cells in blastocysts, whereas FBS rescued the developmental failure induced by Y-27632; (2) the mRNA levels of two ROCK isoforms, ROCK1 and ROCK2, were significantly increased in blastocysts derived from medium containing FBS; and (3) FBS increased RhoA/Rho-kinase expression in the nucleus of embryonic cells. These results indicate that FBS promotes the in vitro development of porcine embryos by activating ROCK signalling in a chemically defined medium.

Additional keywords: blastocyst development, FBS, ROCK signalling pathway.


References

Arman, E., Haffner-Krausz, R., Chen, Y., Heath, J. K., and Lonai, P. (1998). Targeted disruption of fibroblast growth factor (FGF) receptor 2 suggests a role for FGF signaling in pregastrulation mammalian development. Proc. Natl Acad. Sci. USA 95, 5082–5087.
Targeted disruption of fibroblast growth factor (FGF) receptor 2 suggests a role for FGF signaling in pregastrulation mammalian development.Crossref | GoogleScholarGoogle Scholar |

Beckmann, L. S., and Day, B. N. (1993). Effects of media NaCl concentration and osmolarity on the culture of early-stage porcine embryos and the viability of embryos cultured in a selected superior medium. Theriogenology 39, 611–622.
Effects of media NaCl concentration and osmolarity on the culture of early-stage porcine embryos and the viability of embryos cultured in a selected superior medium.Crossref | GoogleScholarGoogle Scholar |

Bou, G., Liu, S., Sun, M., Zhu, J., Xue, B., Guo, J., Zhao, Y., Qu, B., Weng, X., Wei, Y., Lei, L., and Liu, Z. (2017). CDX2 is essential for cell proliferation and polarity in porcine blastocysts. Development 144, 1296–1306.
CDX2 is essential for cell proliferation and polarity in porcine blastocysts.Crossref | GoogleScholarGoogle Scholar |

Cui, X. S., Jeong, Y. J., Lee, H. Y., Cheon, S. H., and Kim, N. H. (2004). Fetal bovine serum influences apoptosis and apoptosis-related gene expression in porcine parthenotes developing in vitro. Reproduction 127, 125–130.
Fetal bovine serum influences apoptosis and apoptosis-related gene expression in porcine parthenotes developing in vitro.Crossref | GoogleScholarGoogle Scholar |

Dobrinsky, J. R., Johnson, L. A., and Rath, D. (1996). Development of a culture medium (BECM-3) for porcine embryos: effects of bovine serum albumin and fetal bovine serum on embryo development. Biol. Reprod. 55, 1069–1074.
Development of a culture medium (BECM-3) for porcine embryos: effects of bovine serum albumin and fetal bovine serum on embryo development.Crossref | GoogleScholarGoogle Scholar |

Etienne-Manneville, S., and Hall, A. (2002). Rho GTPases in cell biology. Nature 420, 629–635.
Rho GTPases in cell biology.Crossref | GoogleScholarGoogle Scholar |

Graf, U., Casanova, E. A., and Cinelli, P. (2011). The role of the leukemia inhibitory factor (LIF) – pathway in derivation and maintenance of murine pluripotent stem cells. Genes (Basel) 2, 280–297.
The role of the leukemia inhibitory factor (LIF) – pathway in derivation and maintenance of murine pluripotent stem cells.Crossref | GoogleScholarGoogle Scholar |

Han, M. S., and Niwa, K. (2003). Effects of BSA and fetal bovine serum in culture medium on development of rat embryos. J. Reprod. Dev. 49, 235–242.
Effects of BSA and fetal bovine serum in culture medium on development of rat embryos.Crossref | GoogleScholarGoogle Scholar |

Iden, S., and Collard, J. G. (2008). Crosstalk between small GTPases and polarity proteins in cell polarization. Nat. Rev. Mol. Cell Biol. 9, 846–859.
Crosstalk between small GTPases and polarity proteins in cell polarization.Crossref | GoogleScholarGoogle Scholar |

Kim, H. S., Lee, G. S., Hyun, S. H., Lee, S. H., Nam, D. H., Jeong, Y. W., Kim, S., Kang, S. K., Lee, B. C., and Hwang, W. S. (2004). Improved in vitro development of porcine embryos with different energy substrates and serum. Theriogenology 61, 1381–1393.
Improved in vitro development of porcine embryos with different energy substrates and serum.Crossref | GoogleScholarGoogle Scholar |

Kim, M. K., Lee, H. Y., Kwak, J. Y., Park, J. I., Yun, J., and Bae, Y. S. (2006). Sphingosine-1-phosphate stimulates rat primary chondrocyte proliferation. Biochem. Biophys. Res. Commun. 345, 67–73.
Sphingosine-1-phosphate stimulates rat primary chondrocyte proliferation.Crossref | GoogleScholarGoogle Scholar |

Kwon, J., Kim, N. H., and Choi, I. (2016). ROCK activity regulates functional tight junction assembly during blastocyst formation in porcine parthenogenetic embryos. PeerJ 4, e1914.
ROCK activity regulates functional tight junction assembly during blastocyst formation in porcine parthenogenetic embryos.Crossref | GoogleScholarGoogle Scholar |

Laeno, A. M., Tamashiro, D. A., and Alarcon, V. B. (2013). Rho-associated kinase activity is required for proper morphogenesis of the inner cell mass in the mouse blastocyst. Biol. Reprod. 89, 122.
Rho-associated kinase activity is required for proper morphogenesis of the inner cell mass in the mouse blastocyst.Crossref | GoogleScholarGoogle Scholar |

Lanner, F., and Rossant, J. (2010). The role of FGF/Erk signaling in pluripotent cells. Development 137, 3351–3360.
The role of FGF/Erk signaling in pluripotent cells.Crossref | GoogleScholarGoogle Scholar |

Larue, L., Ohsugi, M., Hirchenhain, J., and Kemler, R. (1994). E-cadherin null mutant embryos fail to form a trophectoderm epithelium. Proc. Natl Acad. Sci. USA 91, 8263–8267.
E-cadherin null mutant embryos fail to form a trophectoderm epithelium.Crossref | GoogleScholarGoogle Scholar |

Liu, S., Bou, G., Sun, R., Guo, S., Xue, B., Wei, R., Cooney, A. J., and Liu, Z. (2015). Sox2 is the faithful marker for pluripotency in pig: evidence from embryonic studies. Dev. Dyn. 244, 619–627.
Sox2 is the faithful marker for pluripotency in pig: evidence from embryonic studies.Crossref | GoogleScholarGoogle Scholar |

Lockman, K., Hinson, J. S., Medlin, M. D., Morris, D., Taylor, J. M., and Mack, C. P. (2004). Sphingosine 1-phosphate stimulates smooth muscle cell differentiation and proliferation by activating separate serum response factor co-factors. J. Biol. Chem. 279, 42422–42430.
Sphingosine 1-phosphate stimulates smooth muscle cell differentiation and proliferation by activating separate serum response factor co-factors.Crossref | GoogleScholarGoogle Scholar |

Maekawa, M., Yamamoto, T., Kohno, M., Takeichi, M., and Nishida, E. (2007). Requirement for ERK MAP kinase in mouse preimplantation development. Development 134, 2751–2759.
Requirement for ERK MAP kinase in mouse preimplantation development.Crossref | GoogleScholarGoogle Scholar |

Massague, J. (2003). Integration of Smad and MAPK pathways: a link and a linker revisited. Genes Dev. 17, 2993–2997.
Integration of Smad and MAPK pathways: a link and a linker revisited.Crossref | GoogleScholarGoogle Scholar |

Men, H., Agca, Y., Critser, E. S., and Critser, J. K. (2005). Beneficial effects of serum supplementation during in vitro production of porcine embryos on their ability to survive cryopreservation by open pulled straw vitrification. Theriogenology 64, 1340–1349.
Beneficial effects of serum supplementation during in vitro production of porcine embryos on their ability to survive cryopreservation by open pulled straw vitrification.Crossref | GoogleScholarGoogle Scholar |

Miller, E., Yang, J., DeRan, M., Wu, C., Su, A. I., Bonamy, G. M., Liu, J., Peters, E. C., and Wu, X. (2012). Identification of serum-derived sphingosine-1-phosphate as a small molecule regulator of YAP. Chem. Biol. 19, 955–962.
Identification of serum-derived sphingosine-1-phosphate as a small molecule regulator of YAP.Crossref | GoogleScholarGoogle Scholar |

Miranda, G. E., Abrahan, C. E., Politi, L. E., and Rotstein, N. P. (2009). Sphingosine-1-phosphate is a key regulator of proliferation and differentiation in retina photoreceptors. Invest. Ophthalmol. Vis. Sci. 50, 4416–4428.
Sphingosine-1-phosphate is a key regulator of proliferation and differentiation in retina photoreceptors.Crossref | GoogleScholarGoogle Scholar |

Nishioka, N., Inoue, K., Adachi, K., Kiyonari, H., Ota, M., Ralston, A., Yabuta, N., Hirahara, S., Stephenson, R. O., Ogonuki, N., Makita, R., Kurihara, H., Morin-Kensicki, E. M., Nojima, H., Rossant, J., Nakao, K., Niwa, H., and Sasaki, H. (2009). The Hippo signaling pathway components Lats and Yap pattern Tead4 activity to distinguish mouse trophectoderm from inner cell mass. Dev. Cell 16, 398–410.
The Hippo signaling pathway components Lats and Yap pattern Tead4 activity to distinguish mouse trophectoderm from inner cell mass.Crossref | GoogleScholarGoogle Scholar |

Niwa, H., Toyooka, Y., Shimosato, D., Strumpf, D., Takahashi, K., Yagi, R., and Rossant, J. (2005). Interaction between Oct3/4 and Cdx2 determines trophectoderm differentiation. Cell 123, 917–929.
Interaction between Oct3/4 and Cdx2 determines trophectoderm differentiation.Crossref | GoogleScholarGoogle Scholar |

Okada, K., Krylov, V., Kren, R., and Fulka, J. (2006). Development of pig embryos after electro-activation and in vitro fertilization in PZM-3 or PZM supplemented with fetal bovine serum. J. Reprod. Dev. 52, 91–98.
Development of pig embryos after electro-activation and in vitro fertilization in PZM-3 or PZM supplemented with fetal bovine serum.Crossref | GoogleScholarGoogle Scholar |

Pollard, J. W., Plante, C., and Leibo, S. P. (1995). Comparison of development of pig zygotes and embryos in simple and complex culture media. J. Reprod. Fertil. 103, 331–337.
Comparison of development of pig zygotes and embryos in simple and complex culture media.Crossref | GoogleScholarGoogle Scholar |

Riento, K., and Ridley, A. J. (2003). Rocks: multifunctional kinases in cell behaviour. Nat. Rev. Mol. Cell Biol. 4, 446–456.
Rocks: multifunctional kinases in cell behaviour.Crossref | GoogleScholarGoogle Scholar |

Roberts, R. E. (2004). The role of Rho kinase and extracellular regulated kinase-mitogen-activated protein kinase in alpha2-adrenoceptor-mediated vasoconstriction in the porcine palmar lateral vein. J. Pharmacol. Exp. Ther. 311, 742–747.
The role of Rho kinase and extracellular regulated kinase-mitogen-activated protein kinase in alpha2-adrenoceptor-mediated vasoconstriction in the porcine palmar lateral vein.Crossref | GoogleScholarGoogle Scholar |

Robl, J. M., and Davis, D. L. (1981). Effects of serum on swine morulae and blastocysts in vitro. J. Anim. Sci. 52, 1450–1456.
Effects of serum on swine morulae and blastocysts in vitro.Crossref | GoogleScholarGoogle Scholar |

Rouach, N., Pebay, A., Meme, W., Cordier, J., Ezan, P., Etienne, E., Giaume, C., and Tence, M. (2006). S1P inhibits gap junctions in astrocytes: involvement of G and Rho GTPase/ROCK. Eur. J. Neurosci. 23, 1453–1464.
S1P inhibits gap junctions in astrocytes: involvement of G and Rho GTPase/ROCK.Crossref | GoogleScholarGoogle Scholar |

Wang, W. H., Abeydeera, L. R., Han, Y. M., Prather, R. S., and Day, B. N. (1999). Morphologic evaluation and actin filament distribution in porcine embryos produced in vitro and in vivo. Biol. Reprod. 60, 1020–1028.
Morphologic evaluation and actin filament distribution in porcine embryos produced in vitro and in vivo.Crossref | GoogleScholarGoogle Scholar |

Wang, H., Ding, T., Brown, N., Yamamoto, Y., Prince, L. S., Reese, J., and Paria, B. C. (2008). Zonula occludens-1 (ZO-1) is involved in morula to blastocyst transformation in the mouse. Dev. Biol. 318, 112–125.
Zonula occludens-1 (ZO-1) is involved in morula to blastocyst transformation in the mouse.Crossref | GoogleScholarGoogle Scholar |

Xiang, S. Y., Dusaban, S. S., and Brown, J. H. (2013). Lysophospholipid receptor activation of RhoA and lipid signaling pathways. Biochim. Biophys. Acta 1831, 213–222.
Lysophospholipid receptor activation of RhoA and lipid signaling pathways.Crossref | GoogleScholarGoogle Scholar |

Yamanaka, Y., Lanner, F., and Rossant, J. (2010). FGF signal-dependent segregation of primitive endoderm and epiblast in the mouse blastocyst. Development 137, 715–724.
FGF signal-dependent segregation of primitive endoderm and epiblast in the mouse blastocyst.Crossref | GoogleScholarGoogle Scholar |

Yoshioka, K., Suzuki, C., Tanaka, A., Anas, I. M., and Iwamura, S. (2002). Birth of piglets derived from porcine zygotes cultured in a chemically defined medium. Biol. Reprod. 66, 112–119.
Birth of piglets derived from porcine zygotes cultured in a chemically defined medium.Crossref | GoogleScholarGoogle Scholar |

Abeydeera, L. R., and Day, B. N. (1997). In vitro penetration of pig oocytes in a modified Tris-buffered medium: effect of BSA, caffeine and calcium Theriogenology 48, 537–544.

Duan, X., Chen, K. L., Zhang, Y., Cui, X. S., Kim, N. H., and Sun, S. C. (2014). ROCK inhibition prevents early mouse embryo development. Histochem Cell Biol. 142, 227–233.

Kwon, J., Kim, N. H., and Choi, I. (2016). ROCK activity regulates functional tight junction assembly during blastocyst formation in porcine parthenogenetic embryos. PeerJ4 4, e1914.

Zhang, J. Y., Dong, H. S., Oqani, R. K., Lin, T., Kang, J. W., and Jin, D. I. (2014). Distinct roles of ROCK1 and ROCK2 during development of porcine preimplantation embryos. Reproduction 148, 99–107.