Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Cotreatment with RepSox and LBH589 improves the in vitro developmental competence of porcine somatic cell nuclear transfer embryos

Zhao-Bo Luo A , Long Jin A , Qing Guo A , Jun-Xia Wang A , Xiao-Xu Xing A , Mei-Fu Xuan A , Qi-Rong Luo A , Guang-Lei Zhang A , Xi-Jun Yin A B and Jin-Dan Kang A B
+ Author Affiliations
- Author Affiliations

A Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering. Yanbian University, No. 977 Gongyuan Street, Yanji City, Jilin Pro 133002, China.

B Corresponding authors. Email: kangjindan@hotmail.com; yinxj33@msn.com

Reproduction, Fertility and Development 30(10) 1342-1351 https://doi.org/10.1071/RD17543
Submitted: 11 October 2017  Accepted: 22 March 2018   Published: 24 April 2018

Abstract

Accumulating evidence suggests that aberrant epigenetic reprogramming and low pluripotency of donor nuclei lead to abnormal development of cloned embryos and underlie the inefficiency of mammalian somatic cell nuclear transfer (SCNT). The present study demonstrates that treatment with the small molecule RepSox alone upregulates the expression of pluripotency-related genes in porcine SCNT embryos. Treatment with the histone deacetylase inhibitor LBH589 significantly increased the blastocyst formation rate, whereas treatment with RepSox did not. Cotreatment with 12.5 μM RepSox and 50 nM LBH589 (RepSox + LBH589) for 24 h significantly increased the blastocyst formation rate compared with that of untreated embryos (26.9% vs 8.5% respectively; P < 0.05). Furthermore, the expression of pluripotency-related genes octamer-binding transcription factor 4 (NANOG) and SRY (sex determining region Y)-box 2 (SOX2) were found to significantly increased in the RepSox + LBH589 compared with control group at both the 4-cell and blastocyst stages. In particular, the expression of NANOG was 135-fold higher at the blastocyst stage in the RepSox + LBH589 group. Moreover, RepSox + LBH589 improved epigenetic reprogramming. In summary, RepSox + LBH589 increases the expression of developmentally important genes, optimises epigenetic reprogramming and improves the in vitro development of porcine SCNT embryos.

Additional keywords: histone deacetylase inhibitor, NANOG.


References

Barthold, S. W., Bayne, K. A., Davis, M. A., Bayne, K., and Davis, M. (2011). Guide for the care and use of laboratory animals. Publication No. 85–23(rev.) 327(3), 963–965.

Beaujean, N., Taylor, J., Gardner, J., Wilmut, I., Meehan, R., and Young, L. (2004). Effect of limited DNA methylation reprogramming in the normal sheep embryo on somatic cell nuclear transfer. Biol. Reprod. 71, 185–193.
Effect of limited DNA methylation reprogramming in the normal sheep embryo on somatic cell nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltFKkur0%3D&md5=e2442800003ae811bed45ea2997089f8CAS |

Bourc’his, D., Bourhis, D. L., Patin, D., Niveleau, A., Comizzoli, P., Renard, J. P., and Viegas-Péquignot, E. (2001). Delayed and incomplete reprogramming of chromosome methylation patterns in bovine cloned embryos. Curr. Biol. 11, 1542–1546.
Delayed and incomplete reprogramming of chromosome methylation patterns in bovine cloned embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnsF2ms7o%3D&md5=c99027b76fd0dbd04d7cf3013f0e7a27CAS |

Cao, S., Han, J., Wu, J., Li, Q., Liu, S., Zhang, W., Pei, Y., Ruan, X., Liu, Z., and Wang, X. (2014). Specific gene-regulation networks during the pre-implantation development of the pig embryo as revealed by deep sequencing. BMC Genomics 15, 4.
Specific gene-regulation networks during the pre-implantation development of the pig embryo as revealed by deep sequencing.Crossref | GoogleScholarGoogle Scholar |

Cao, Z., Li, Y., Zhen, C., Wang, H., Zhang, M., Zhou, N., Wu, R., Ling, Y., Fang, F., and Ning, L. (2015). Genome-wide dynamic profiling of histone methylation during nuclear transfer-mediated porcine somatic cell reprogramming. PLoS One 10, e0144897.
Genome-wide dynamic profiling of histone methylation during nuclear transfer-mediated porcine somatic cell reprogramming.Crossref | GoogleScholarGoogle Scholar |

Chambers, I., Colby, D., Robertson, M., Nichols, J., Lee, S., Tweedie, S., and Smith, A. (2003). Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113, 643–655.
Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXksFehur8%3D&md5=7a8732c3df52f53eb57ecd6ebffd7749CAS |

Chung, Y. G., Matoba, S., Liu, Y., Eum, J. H., Lu, F., Jiang, W., Lee, J. E., Sepilian, V., Cha, K. Y., and Lee, D. R. (2015). Histone demethylase expression enhance human somatic cell nuclear transfer efficiency and promotes derivation of pluripotent stem cells. Cell Stem Cell 17, 758–66.
Histone demethylase expression enhance human somatic cell nuclear transfer efficiency and promotes derivation of pluripotent stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhslGltbnJ&md5=7c242981ca7c428e362225cdb2a4ef5fCAS |

Dean, W., Santos, F., Stojkovic, M., Zakhartchenko, V., Walter, J., Wolf, E., and Reik, W. (2001). Conservation of methylation reprogramming in mammalian development: aberrant reprogramming in cloned embryos. Proc. Natl Acad. Sci. USA 98, 13734–13738.
Conservation of methylation reprogramming in mammalian development: aberrant reprogramming in cloned embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXovVyntrs%3D&md5=4fb01859e59a7d91cca94a9146f9106fCAS |

Deshmukh, R. S., Østrup, O., Strejcek, F., Vejlsted, M., Lucashahn, A., Petersen, B., Li, J., Callesen, H., Niemann, H., and Hyttel, P. (2012). Early aberrations in chromatin dynamics in embryos produced under in vitro conditions. Cell. Reprogram. 14, 225–234.
Early aberrations in chromatin dynamics in embryos produced under in vitro conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XotlCgtLo%3D&md5=b9dbe4347b7761742a0e355139ce5864CAS |

Ekser, B., Ezzelarab, M., Hara, H., Windt, D. J. V. D., Wijkstrom, M., Bottino, R., Trucco, M., and Cooper, D. K. (2012). Clinical xenotransplantation: the next medical revolution? Lancet 379, 672–683.
Clinical xenotransplantation: the next medical revolution?Crossref | GoogleScholarGoogle Scholar |

Hou, P., Li, Y., Zhang, X., Liu, C., Guan, J., Li, H., Zhao, T., Ye, J., Yang, W., and Liu, K. (2013). Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science 341, 651–654.
Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1WqtbvO&md5=869d401aa199f225a05bf79e4800eda2CAS |

Ichida, J. K., Blanchard, J., Lam, K., Son, E. Y., Chung, J. E., Egli, D., Loh, K. M., Carter, A. C., Di Giorgio, F. P., Koszka, K., Huangfu, D., Akutsu, H., Liu, D. R., Rubin, L. L., and Eggan, K. (2009). A small-molecule inhibitor of tgf-Beta signaling replaces sox2 in reprogramming by inducing nanog. Cell Stem Cell 5, 491–503.
A small-molecule inhibitor of tgf-Beta signaling replaces sox2 in reprogramming by inducing nanog.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFKltLvE&md5=b30fd6c14e181a08f93412de8b918d03CAS |

Jin, J. X., Li, S., Gao, Q. S., Hong, Y., Jin, L., Zhu, H. Y., Yan, C. G., Kang, J. D., and Yin, X. J. (2013). Significant improvement of pig cloning efficiency by treatment with LBH589 after somatic cell nuclear transfer. Theriogenology 80, 630–635.
Significant improvement of pig cloning efficiency by treatment with LBH589 after somatic cell nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFWjtLjJ&md5=3d3d731ca4da276cd9c0ef2c5956be0cCAS |

Jin, L., Zhu, H. Y., Guo, Q., Li, X. C., Zhang, Y. C., Cui, C. D., Li, W. X., Cui, Z. Y., Yin, X. J., and Kang, J. D. (2017a). Effect of histone acetylation modification with MGCD0103, a histone deacetylase inhibitor, on nuclear reprogramming and the developmental competence of porcine somatic cell nuclear transfer embryos. Theriogenology 87, 298–305.
Effect of histone acetylation modification with MGCD0103, a histone deacetylase inhibitor, on nuclear reprogramming and the developmental competence of porcine somatic cell nuclear transfer embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xhs1Smu7%2FM&md5=d877da2fd513a7ba0d39e54fe2c4b8f3CAS |

Jin, L., Guo, Q., Zhu, H. Y., Xing, X. X., Zhang, G. L., Xuan, M. F., Luo, Q. R., Luo, Z. B., Wang, J. X., and Choe, H. M. (2017b). Histone deacetylase inhibitor M344 significantly improves nuclear reprogramming, blastocyst quality, and in vitro developmental capacity of cloned pig embryos. J. Anim. Sci. 95, 1388–1395.
Histone deacetylase inhibitor M344 significantly improves nuclear reprogramming, blastocyst quality, and in vitro developmental capacity of cloned pig embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXhtV2nsbvI&md5=f9653733868680ce97df12967484c579CAS |

Jin, J. X., Lee, S., Taweechaipaisankul, A., Kim, G. A., and Lee, B. C. (2017c). The HDAC inhibitor LAQ824 enhances epigenetic reprogramming and in vitro development of porcine SCNT embryos. Cell. Physiol. Biochem. 41, 1255–1266.
The HDAC inhibitor LAQ824 enhances epigenetic reprogramming and in vitro development of porcine SCNT embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXntFejtb8%3D&md5=80d5495fe15eec7101d7be26c4ea869dCAS |

Kang, Y. K., Koo, D. B., Park, J. S., Choi, Y. H., Chung, A. S., Lee, K. K., and Han, Y. M. (2001). Aberrant methylation of donor genome in cloned bovine embryos. Nat. Genet. 28, 173–177.
Aberrant methylation of donor genome in cloned bovine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXktFOrtb8%3D&md5=d5f46ea35998704a455a557afcd2e631CAS |

Kang, J. D., Li, S., Lu, Y., Wang, W., Liang, S., Liu, X., Jin, J. X., Hong, Y., Yan, C. G., and Yin, X. J. (2013). Valproic acid improved invitro development of pig cloning embryos but did not improve survival of cloned pigs to adulthood. Theriogenology 79, 306–311.
Valproic acid improved invitro development of pig cloning embryos but did not improve survival of cloned pigs to adulthood.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1Gktb%2FI&md5=49bba7ad5bd01a1ce5dae22fabd68054CAS |

Lee, J. H., Hart, S. R. L., and Skalnik, D. G. (2004). Histone deacetylase activity is required for embryonic stem cell differentiation. Genesis 38, 32–38.
Histone deacetylase activity is required for embryonic stem cell differentiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXitFWns70%3D&md5=8fe2572b2d2653f4cc39da3295befdb3CAS |

Ma, D. K., Chiang, C. J., Ponnusamy, K., Ming, G., and Song, H. (2008). G9a and Jhdm2a regulate embryonic stem cell fusion-induced reprogramming of adult neural stem cells. Stem Cells 26, 2131–2141.
G9a and Jhdm2a regulate embryonic stem cell fusion-induced reprogramming of adult neural stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVKmt7rK&md5=6775fb7feeed8168d202392a8b57d0f8CAS |

Mason, K., Liu, Z., Aguirre-Lavin, T., and Beaujean, N. (2012). Chromatin and epigenetic modifications during early mammalian development. Anim. Reprod. Sci. 134, 45–55.
Chromatin and epigenetic modifications during early mammalian development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1CgtL3J&md5=8b22d9485a022786ed7ffa21b6131251CAS |

Matoba, S., Liu, Y., Lu, F., Iwabuchi, K. A., Shen, L., Inoue, A., and Zhang, Y. (2014). Embryonic development following somatic cell nuclear transfer impeded by persisting histone methylation. Cell 159, 884–895.
Embryonic development following somatic cell nuclear transfer impeded by persisting histone methylation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVGks7nO&md5=3ad8c4204c8615fb0d726f52e975c05dCAS |

Mitsui, K., Tokuzawa, Y., Itoh, H., Segawa, K., Murakami, M., Takahashi, K., Maruyama, M., Maeda, M., and Yamanaka, S. (2003). The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113, 631–642.
The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXksFehur4%3D&md5=18d26905a260245ece9cc4217d619dfaCAS |

Nottke, A., Colaiácovo, M. P., and Shi, Y. (2009). Developmental roles of the histone lysine demethylases. Development 136, 879–889.
Developmental roles of the histone lysine demethylases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksFWrur8%3D&md5=2530231955e90b6ba1cf8225e75c002fCAS |

Prather, R. S., Hawley, R. J., Carter, D. B., Lai, L., and Greenstein, J. L. (2003). Transgenic swine for biomedicine and agriculture. Theriogenology 59, 115–123.
Transgenic swine for biomedicine and agriculture.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38jjslKktg%3D%3D&md5=9be83e88c0b8acf5e0c3fcef377c0dedCAS |

Shao, W., Growney, J. D., Feng, Y., O’Connor, G., Pu, M., Zhu, W., Yao, Y. M., Kwon, P., Fawell, S., and Atadja, P. (2010). Activity of deacetylase inhibitor panobinostat (LBH589) in cutaneous T‐cell lymphoma models: defining molecular mechanisms of resistance. Int. J. Cancer 127, 2199–2208.
Activity of deacetylase inhibitor panobinostat (LBH589) in cutaneous T‐cell lymphoma models: defining molecular mechanisms of resistance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFSisrjI&md5=d3ae799e9b0f8b30ddc452ecd1e5ab79CAS |

Song, Y., Hai, T., Wang, Y., Guo, R., Li, W., Wang, L., and Zhou, Q. (2014). Epigenetic reprogramming, gene expression and in vitro development of porcine SCNT embryos are significantly improved by a histone deacetylase inhibitor – m-carboxycinnamic acid bishydroxamide (CBHA). Protein Cell 5, 382–393.
Epigenetic reprogramming, gene expression and in vitro development of porcine SCNT embryos are significantly improved by a histone deacetylase inhibitor – m-carboxycinnamic acid bishydroxamide (CBHA).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXks1OntLo%3D&md5=10bd8b41dc210d5aee1ed7af32efeaf2CAS |

Vignon, X., Zhou, Q., and Renard, J. P. (2002). Chromatin as a regulative architecture of the early developmental functions of mammalian embryos after fertilization or nuclear transfer. Cloning Stem Cells 4, 363–377.
Chromatin as a regulative architecture of the early developmental functions of mammalian embryos after fertilization or nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnvFegtA%3D%3D&md5=c1c8d56a25d2d8bf5d376b1725073badCAS |

Yin, X. J., Tani, T., Yonemura, I., Kawakami, M., Miyamoto, K., Hasegawa, R., Kato, Y., and Tsunoda, Y. (2002). Production of cloned pigs from adult somatic cells by chemically assisted removal of maternal chromosomes. Biol. Reprod. 67, 442–446.
Production of cloned pigs from adult somatic cells by chemically assisted removal of maternal chromosomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlsFKqtrc%3D&md5=f0090009bfacb3b3ffca003f23b0177aCAS |

Yoshioka, K., Suzuki, C., Tanaka, A., Anas, I. M., and Iwamura, S. (2002). Birth of piglets derived from porcine zygotes cultured in a chemically defined medium. Biol. Reprod. 66, 112–119.
Birth of piglets derived from porcine zygotes cultured in a chemically defined medium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xht1yksQ%3D%3D&md5=3d3c2d1aef2215592b2772f46d574c8aCAS |