Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Change in distribution of cytoskeleton-associated proteins, lasp-1 and palladin, during uterine receptivity in the rat endometrium

Leigh Nicholson A B , Laura Lindsay A and Christopher R. Murphy A
+ Author Affiliations
- Author Affiliations

A Cell and Reproductive Biology Laboratory, Discipline of Anatomy and Histology, School of Medical Sciences, University of Sydney, Camperdown, NSW 2050, Australia.

B Corresponding author. Email: leigh.nicholson@sydney.edu.au

Reproduction, Fertility and Development 30(11) 1482-1490 https://doi.org/10.1071/RD17530
Submitted: 14 December 2017  Accepted: 16 April 2018   Published: 9 May 2018

Abstract

The epithelium of the uterine lumen is the first point of contact with the blastocyst before implantation. To facilitate pregnancy, these uterine epithelial cells (UECs) undergo morphological changes specific to the receptive uterus. These changes include basal, lateral and apical alterations in the plasma membrane of UECs. This study looked at the cytoskeletal and focal adhesion-associated proteins, lasp-1 and palladin, in the uterus during early pregnancy in the rat. Two palladin isoforms, 140 kDa and 90 kDa, were analysed, with the migration-associated 140-kDa isoform increasing significantly at the time of implantation when compared with the time of fertilisation. Lasp-1 was similarly increased at this time, whilst also being located predominantly apically and laterally in the UECs, suggesting a role in the initial contact between the UECs and the blastocyst. This is the first study to investigate palladin and lasp-1 in the uterine luminal epithelium and suggests an importance for these cytoskeletal proteins in the morphological changes the UECs undergo for pregnancy to occur.

Additional keywords: terminal web, adherens junction, implantation, pregnancy, uterus.


References

Brentnall, T. A., Lai, L. A., Coleman, J., Bronner, M. P., Pan, S., and Chen, R. (2012). Arousal of cancer-associated stroma: overexpression of palladin activates fibroblasts to promote tumor invasion. PLoS One 7, e30219.
Arousal of cancer-associated stroma: overexpression of palladin activates fibroblasts to promote tumor invasion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xit1Chtrw%3D&md5=2c4e69d01c9abf565c69dea359489503CAS |

Chew, C., Parente, J., Zhou, C.-J., Baranco, E., and Chen, X. (1998). Lasp-1 is a regulated phosphoprotein within the cAMP signaling pathway in the gastric parietal cell. Am. J. Physiol. 275, C56–C67.
Lasp-1 is a regulated phosphoprotein within the cAMP signaling pathway in the gastric parietal cell.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXkvVOns7c%3D&md5=c51ff87670876c804375bdbd78275f3aCAS |

Chew, C. S., Parente, J. A., Chen, X., Chaponnier, C., and Cameron, R. S. (2000). The LIM and SH3 domain-containing protein, lasp-1, may link the cAMP signaling pathway with dynamic membrane restructuring activities in ion transporting epithelia. J. Cell Sci. 113, 2035–2045.
| 1:CAS:528:DC%2BD3cXksVKntrY%3D&md5=35300de4c2d143a987a97a350d520ebaCAS |

Dowland, S. N., Madawala, R. J., Lindsay, L. A., and Murphy, C. R. (2016). The adherens junction is lost during normal pregnancy but not during ovarian hyperstimulated pregnancy. Acta Histochem. 118, 137–143.
The adherens junction is lost during normal pregnancy but not during ovarian hyperstimulated pregnancy.Crossref | GoogleScholarGoogle Scholar |

Frietsch, J. J., Grunewald, T. P. G., Jasper, S., Kammerer, U., Herterich, S., Kapp, M., Honig, A., and Butt, E. (2010). Nuclear localisation of LASP-1 correlates with poor long-term survival in female breast cancer. Br. J. Cancer 102, 1645–1653.
Nuclear localisation of LASP-1 correlates with poor long-term survival in female breast cancer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmsVGrs7o%3D&md5=200bbe754058de2fa0509ceb11c817e3CAS |

Garrido-Gomez, T., Dominguez, F., Lopez, J. A., Camafeita, E., Quiñonero, A., Martinez-Conejero, J. A., Pellicer, A., Conesa, A., and Simón, C. (2011). Modeling human endometrial decidualization from the interaction between proteome and secretome. J. Clin. Endocrinol. Metab. 96, 706–716.
Modeling human endometrial decidualization from the interaction between proteome and secretome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvFahsbY%3D&md5=f9e2cf57f395caaaabc44d343830c190CAS |

Grunewald, T. G., Kammerer, U., Kapp, M., Eck, M., Dietl, J., Butt, E., and Honig, A. (2007). Nuclear localization and cytosolic overexpression of LASP-1 correlates with tumor size and nodal-positivity of human breast carcinoma. BMC Cancer 7, 198.
Nuclear localization and cytosolic overexpression of LASP-1 correlates with tumor size and nodal-positivity of human breast carcinoma.Crossref | GoogleScholarGoogle Scholar |

Gurung, R., Yadav, R., Brungardt, J. G., Orlova, A., Egelman, E. H., and Beck, M. R. (2016). Actin polymerization is stimulated by actin crosslinking protein palladin. Biochem. J. 473, 383–396.
Actin polymerization is stimulated by actin crosslinking protein palladin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xitleqs7s%3D&md5=ad7912bef95b5762d5a3b1617be77a65CAS |

Kaneko, Y., Lindsay, L. A., and Murphy, C. R. (2008). Focal adhesions disassemble during early pregnancy in rat uterine epithelial cells. Reprod. Fertil. Dev. 20, 892–899.
Focal adhesions disassemble during early pregnancy in rat uterine epithelial cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1Oks77E&md5=ae34aefb58c81786436c083a8556068aCAS |

Kaneko, Y., Lecce, L., Day, M. L., and Murphy, C. R. (2011). β1 and β3 integrins disassemble from basal focal adhesions and β3 integrin is later localised to the apical plasma membrane of rat uterine luminal epithelial cells at the time of implantation. Reprod. Fertil. Dev. 23, 481–495.
β1 and β3 integrins disassemble from basal focal adhesions and β3 integrin is later localised to the apical plasma membrane of rat uterine luminal epithelial cells at the time of implantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjt12ntrw%3D&md5=14f9fd173334fa404b1bc42d0e932d79CAS |

Lin, Y. H., Park, Z.-Y., Lin, D., Brahmbhatt, A. A., Rio, M.-C., Yates, J. R., and Klemke, R. L. (2004). Regulation of cell migration and survival by focal adhesion targeting of Lasp-1. J. Cell Biol. 165, 421–432.
Regulation of cell migration and survival by focal adhesion targeting of Lasp-1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjvFKjs7k%3D&md5=de25f7a75637c76df832ee2c04a74fc4CAS |

Moore, C. L., Cheng, D., Shami, G. J., and Murphy, C. R. (2016). Correlated light and electron microscopy observations of the uterine epithelial cell actin cytoskeleton using fluorescently labeled resin-embedded sections. Micron 84, 61–66.
Correlated light and electron microscopy observations of the uterine epithelial cell actin cytoskeleton using fluorescently labeled resin-embedded sections.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xjt12lu7k%3D&md5=a7043da7aff780042f7878bb3e67bc2eCAS |

Murphy, C. R. (1993). The plasma membrane of uterine epithelial cells: structure and histochemistry. Prog. Histochem. Cytochem. 27, 1–66.
The plasma membrane of uterine epithelial cells: structure and histochemistry.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2c%2FovF2iuw%3D%3D&md5=46ff80cc7501b770a883769a93e90085CAS |

Murphy, C. R. (1995). The cytoskeleton of uterine epithelial cells: a new player in uterine receptivity and the plasma membrane transformation. Hum. Reprod. Update 1, 567–580.
The cytoskeleton of uterine epithelial cells: a new player in uterine receptivity and the plasma membrane transformation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2s3jtlajug%3D%3D&md5=96d5f853f7acccf9c47e26b2b17d6c68CAS |

Murphy, C. R. (2000). Junctional barrier complexes undergo major alterations during the plasma membrane transformation of uterine epithelial cells. Hum. Reprod. 15, 182–188.
Junctional barrier complexes undergo major alterations during the plasma membrane transformation of uterine epithelial cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnsFWnsb4%3D&md5=e27f4a85b3cd0a06b5babf5f0bb91d23CAS |

Murphy, C. R. (2004). Uterine receptivity and the plasma membrane transformation. Cell Res. 14, 259–267.
Uterine receptivity and the plasma membrane transformation.Crossref | GoogleScholarGoogle Scholar |

Murray, M. J., and Lessey, B. A. (1999). Embryo implantation and tumor metastasis: common pathways of invasion and angiogenesis. Semin. Reprod. Endocrinol. 17, 275–290.
| 1:STN:280:DC%2BD3c3lvVarsw%3D%3D&md5=c4f009aa2966a61ca74b7c6dd3c8297fCAS |

Najm, P., and El-Sibai, M. (2014). Palladin regulation of the actin structures needed for cancer invasion. Cell Adh. Migr. 8, 29–35.
Palladin regulation of the actin structures needed for cancer invasion.Crossref | GoogleScholarGoogle Scholar |

Parast, M. M., and Otey, C. A. (2000). Characterization of palladin, a novel protein localized to stress fibers and cell adhesions. J. Cell Biol. 150, 643–656.
Characterization of palladin, a novel protein localized to stress fibers and cell adhesions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlsFygtr0%3D&md5=268f740eacd1fff8899ca6fff6469a52CAS |

Paule, S. G., Airey, L. M., Li, Y., Stephens, A. N., and Nie, G. (2010). Proteomic approach identifies alterations in cytoskeletal remodelling proteins during decidualization of human endometrial stromal cells. J. Proteome Res. 9, 5739–5747.
Proteomic approach identifies alterations in cytoskeletal remodelling proteins during decidualization of human endometrial stromal cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1eku7bI&md5=0ec8cfac3374da03d81886113fd376d5CAS |

Pogue-Geile, K. L., Chen, R., Bronner, M. P., Crnogorac-Jurcevic, T., Moyes, K. W., Dowen, S., Otey, C. A., Crispin, D. A., George, R. D., and Whitcomb, D. C. (2006). Palladin mutation causes familial pancreatic cancer and suggests a new cancer mechanism. PLoS Med. 3, e516.
Palladin mutation causes familial pancreatic cancer and suggests a new cancer mechanism.Crossref | GoogleScholarGoogle Scholar |

Rachlin, A. S., and Otey, C. A. (2006). Identification of palladin isoforms and characterization of an isoform-specific interaction between Lasp-1 and palladin. J. Cell Sci. 119, 995–1004.
Identification of palladin isoforms and characterization of an isoform-specific interaction between Lasp-1 and palladin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjs1yrsbg%3D&md5=c35aa9aa3e609dc2b0f561fb4a6e7b15CAS |

Schreiber, V., Moog-Lutz, C., Régnier, C. H, Chenard, M. P., Boeuf, H., Vonesch, J. L., Tomasetto, C., and Rio, M. C. (1998). Lasp-1, a novel type of actin-binding protein accumulating in cell membrane extensions. Mol. Med. 4, 675.
| 1:CAS:528:DyaK1cXnsFGrsb8%3D&md5=3973c3e4a14eb8875ce927974a9e5161CAS |

Soundararajan, R., and Rao, A. J. (2004). Trophoblast ‘pseudo-tumorigenesis’: significance and contributory factors. Reprod. Biol. Endocrinol. 2, 15.
Trophoblast ‘pseudo-tumorigenesis’: significance and contributory factors.Crossref | GoogleScholarGoogle Scholar |

Tay, P. N., Tan, P., Lan, Y., Leung, C. H.-W., Laban, M., Tan, T. C., Ni, H., Manikandan, J., Rashid, S. B. A., and Yan, B. (2010). Palladin, an actin-associated protein, is required for adherens junction formation and intercellular adhesion in HCT116 colorectal cancer cells. Int. J. Oncol. 37, 909–926.
| 1:CAS:528:DC%2BC3cXht1Omu7zI&md5=9b53123b54f7c768a76fb522aa2342bbCAS |

Taylor, R. C., Cullen, S. P., and Martin, S. J. (2008). Apoptosis: controlled demolition at the cellular level. Nat. Rev. Mol. Cell Biol. 9, 231–241.
Apoptosis: controlled demolition at the cellular level.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitlGnurs%3D&md5=c2aa27a17fba04e346cb095b3736fa4aCAS |

Tomasetto, C., Moog-Lutz, C., Régnier, C. H., Schreiber, V., Basset, P., and Rio, M.-C. (1995). Lasp‐1 (MLN 50) defines a new LIM protein subfamily characterized by the association of LIM and SH3 domains. FEBS Lett. 373, 245–249.
Lasp‐1 (MLN 50) defines a new LIM protein subfamily characterized by the association of LIM and SH3 domains.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXovVygurk%3D&md5=2b19967fe31f5ed0e17e125053a42838CAS |

von Nandelstadh, P., Gucciardo, E., Lohi, J., Li, R., Sugiyama, N., Carpen, O., and Lehti, K. (2014). Actin-associated protein palladin promotes tumor cell invasion by linking extracellular matrix degradation to cell cytoskeleton. Mol. Biol. Cell 25, 2556–2570.
Actin-associated protein palladin promotes tumor cell invasion by linking extracellular matrix degradation to cell cytoskeleton.Crossref | GoogleScholarGoogle Scholar |

Wang, H.-V., and Moser, M. (2008). Comparative expression analysis of the murine palladin isoforms. Dev. Dyn. 237, 3342–3351.
Comparative expression analysis of the murine palladin isoforms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVOqs7zN&md5=f4327bcaa61b609e5e051dbe6caf5f35CAS |

Yadav, R., Vattepu, R., and Beck, M. R. (2016). Phosphoinositide binding inhibits actin crosslinking and polymerization by palladin. J. Mol. Biol. 428, 4031–4047.
Phosphoinositide binding inhibits actin crosslinking and polymerization by palladin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtlSgs7rK&md5=1f92f4d72840c7a94e139f8b7f0a92bfCAS |