Recent and emerging reproductive biology research in Australia and New Zealand: highlights from the Society for Reproductive Biology Annual Meeting, 2017
M. J. Bertoldo A , P. H. Andraweera B , E. G. Bromfield C , F. L. Cousins D , L. A. Lindsay E , P. Paiva F , S. L. Regan G , R. D. Rose B H and L. K. Akison I J KA Fertility and Research Centre, School of Women’s and Children’s Health, The University of New South Wales, Wallace Wurth Building, Randwick, NSW 2052, Australia.
B Adelaide Medical School and Robinson Research Institute, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia.
C Priority Research Centre for Reproductive Science, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia.
D The Ritchie Centre, Hudson Institute of Medical Research, 27–31 Wright Street, Clayton, Vic. 3141, Australia.
E School of Medical Sciences (Anatomy and Histology), The University of Sydney, Anderson Stuart Building, F13, Sydney, NSW 2006, Australia.
F Gynaecology Research Centre, Department of Obstetrics and Gynaecology, Royal Women’s Hospital, The University of Melbourne, Parkville, Vic. 3010, Australia.
G Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia.
H Fertility SA, St. Andrews Hospital, South Terrace, Adelaide, SA 5000, Australia.
I School of Biomedical Sciences, Sir William MacGregor Building, The University of Queensland, St Lucia, Qld 4072, Australia.
J Child Health Research Centre, Centre for Children’s Health Research, The University of Queensland, South Brisbane, Qld 4101, Australia.
K Corresponding author. Email: l.akison@uq.edu.au
Reproduction, Fertility and Development 30(8) 1049-1054 https://doi.org/10.1071/RD17445
Submitted: 24 October 2017 Accepted: 9 December 2017 Published: 31 January 2018
Abstract
Research in reproductive science is essential to promote new developments in reproductive health and medicine, agriculture and conservation. The Society for Reproductive Biology (SRB) 2017 conference held in Perth (WA, Australia) provided a valuable update on current research programs in Australia and New Zealand. This conference review delivers a dedicated summary of significant questions, emerging concepts and innovative technologies presented in the symposia. This research demonstrates significant advances in the identification of precursors for a healthy pregnancy, birth and child, and discusses how these factors can influence disease risk. A key theme included preconception parental health and its effect on gametogenesis, embryo and fetal development and placental function. In addition, the perturbation of key developmental checkpoints was shown to contribute to a variety of pathological states that have the capacity to affect health and fertility. Importantly, the symposia discussed in this review emphasised the role of reproductive biology as a conduit for understanding the transmission of non-communicable diseases, such as metabolic disorders and cancers. The research presented at SRB 2017 has revealed key findings that have the prospect to change not only the fertility of the present generation, but also the health and reproductive capacity of future generations.
Additional keywords: assisted reproductive technology, fertility, fetal programming, gamete, gestation, implantation, placenta, preterm birth.
References
Bahari, H., Caruso, V., and Morris, M. J. (2013). Late-onset exercise in female rat offspring ameliorates the detrimental metabolic impact of maternal obesity. Endocrinology 154, 3610–3621.| Late-onset exercise in female rat offspring ameliorates the detrimental metabolic impact of maternal obesity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFKlt7bI&md5=a2274de2647d19055b576c980958b92aCAS |
Bappoo, N., Kelsey, L. J., Parker, L., Crough, T., Moran, C. M., Thomson, A., Holmes, M. C., Wyrwoll, C. S., and Doyle, B. J. (2017). Viscosity and haemodynamics in a late gestation rat feto-placental arterial network. Biomech. Model. Mechanobiol. 16, 1361–1372.
| Viscosity and haemodynamics in a late gestation rat feto-placental arterial network.Crossref | GoogleScholarGoogle Scholar |
Cheong, J. N., Wlodek, M. E., Moritz, K. M., and Cuffe, J. S. (2016). Programming of maternal and offspring disease: impact of growth restriction, fetal sex and transmission across generations. J. Physiol. 594, 4727–4740.
| Programming of maternal and offspring disease: impact of growth restriction, fetal sex and transmission across generations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XmsF2qt7g%3D&md5=8ee36e3c75ae4f403cbcb27a7e712507CAS |
Davies, M. J., Moore, V. M., Willson, K. J., Van Essen, P., Priest, K., Scott, H., Haan, E. A., and Chan, A. (2012). Reproductive technologies and the risk of birth defects. N. Engl. J. Med. 366, 1803–1813.
| Reproductive technologies and the risk of birth defects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xnt1Gjsrk%3D&md5=afcfa153971e9fc0f45c1121b47a07d4CAS |
De Bond, J. P., Tolson, K. P., Nasamran, C., Kauffman, A. S., and Smith, J. T. (2016). Unaltered hypothalamic metabolic gene expression in Kiss1r knockout mice despite obesity and reduced energy expenditure. J. Neuroendocrinol. 28, .
| Unaltered hypothalamic metabolic gene expression in Kiss1r knockout mice despite obesity and reduced energy expenditure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhsVKhtrvP&md5=a3283879063412e16f4ebf57a22de25bCAS |
Estill, M. S., Bolnick, J. M., Waterland, R. A., Bolnick, A. D., Diamond, M. P., and Krawetz, S. A. (2016). Assisted reproductive technology alters deoxyribonucleic acid methylation profiles in bloodspots of newborn infants. Fertil. Steril. 106, 629–639.e10.
| Assisted reproductive technology alters deoxyribonucleic acid methylation profiles in bloodspots of newborn infants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtFSqsb%2FI&md5=e823aeddfc764457162e1d4e6141eafaCAS |
Giles, L. C., Whitrow, M. J., Davies, M. J., Davies, C. E., Rumbold, A. R., and Moore, V. M. (2015). Growth trajectories in early childhood, their relationship with antenatal and postnatal factors, and development of obesity by age 9 years: results from an Australian birth cohort study. Int. J. Obes. (Lond.) 39, 1049–1056.
| Growth trajectories in early childhood, their relationship with antenatal and postnatal factors, and development of obesity by age 9 years: results from an Australian birth cohort study.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC2MfntVWksg%3D%3D&md5=dd2960e15e147250fcc6cfaa9e6fc950CAS |
Harrison, C. L., Skouteris, H., Boyle, J., and Teede, H. J. (2017). Preventing obesity across the preconception, pregnancy and postpartum cycle: implementing research into practice. Midwifery 52, 64–70.
| Preventing obesity across the preconception, pregnancy and postpartum cycle: implementing research into practice.Crossref | GoogleScholarGoogle Scholar |
Keelan, J. A., and Newnham, J. P. (2017). Recent advances in the prevention of preterm birth. F1000Res. 6, 1139.
| Recent advances in the prevention of preterm birth.Crossref | GoogleScholarGoogle Scholar |
Keelan, J. A., Payne, M. S., Kemp, M. W., Ireland, D. J., and Newnham, J. P. (2016). A new, potent, and placenta-permeable macrolide antibiotic, solithromycin, for the prevention and treatment of bacterial infections in pregnancy. Front. Immunol. 7, 111.
| A new, potent, and placenta-permeable macrolide antibiotic, solithromycin, for the prevention and treatment of bacterial infections in pregnancy.Crossref | GoogleScholarGoogle Scholar |
Kekäläinen, J., and Evans, J. P. (2017). Female-induced remote regulation of sperm physiology may provide opportunities for gamete-level mate choice. Evolution 71, 238–248.
| Female-induced remote regulation of sperm physiology may provide opportunities for gamete-level mate choice.Crossref | GoogleScholarGoogle Scholar |
Kim, D. W., Glendining, K. A., Grattan, D. R., and Jasoni, C. L. (2016). Maternal obesity in the mouse compromises the blood–brain barrier in the arcuate nucleus of offspring. Endocrinology 157, 2229–2242.
| Maternal obesity in the mouse compromises the blood–brain barrier in the arcuate nucleus of offspring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xhs1Oksb%2FF&md5=fbbc90673793f66057a1065aa8219a0aCAS |
Kühnen, P., Handke, D., Waterland, R. A., Hennig, B. J., Silver, M., Fulford, A. J., Dominguez-Salas, P., Moore, S. E., Prentice, A. M., Spranger, J., Hinney, A., Hebebrand, J., Heppner, F. L., Walzer, L., Grotzinger, C., Gromoll, J., Wiegand, S., Gruters, A., and Krude, H. (2016). Interindividual variation in DNA methylation at a putative POMC metastable epiallele is associated with obesity. Cell Metab. 24, 502–509.
| Interindividual variation in DNA methylation at a putative POMC metastable epiallele is associated with obesity.Crossref | GoogleScholarGoogle Scholar |
Lee, Y. S., Thouas, G. A., and Gardner, D. K. (2015). Developmental kinetics of cleavage stage mouse embryos are related to their subsequent carbohydrate and amino acid utilization at the blastocyst stage. Hum. Reprod. 30, 543–552.
| Developmental kinetics of cleavage stage mouse embryos are related to their subsequent carbohydrate and amino acid utilization at the blastocyst stage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXhslaiurnI&md5=2f17e5716f9b8bbc13595c41ad0c2ac5CAS |
Li, Y., Seah, M. K., and O’Neill, C. (2016). Mapping global changes in nuclear cytosine base modifications in the early mouse embryo. Reproduction 151, 83–95.
| Mapping global changes in nuclear cytosine base modifications in the early mouse embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XivVarsr0%3D&md5=486ea4bd050af721494f44a2376e1a0aCAS |
Mayne, B. T., Leemaqz, S. Y., Smith, A. K., Breen, J., Roberts, C. T., and Bianco-Miotto, T. (2017). Accelerated placental aging in early onset preeclampsia pregnancies identified by DNA methylation. Epigenomics 9, 279–289.
| Accelerated placental aging in early onset preeclampsia pregnancies identified by DNA methylation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXjsVOnu7o%3D&md5=d04cce7bdcbee5b1311e49f619c3776aCAS |
Messager, S., Chatzidaki, E. E., Ma, D., Hendrick, A. G., Zahn, D., Dixon, J., Thresher, R. R., Malinge, I., Lomet, D., Carlton, M. B. L., Colledge, W. H., Caraty, A., and Aparicio, S. A. J. R. (2005). Kisspeptin directly stimulates gonadotropin-releasing hormone release via G protein-coupled receptor 54. Proc. Natl. Acad. Sci. USA 102, 1761–1766.
| Kisspeptin directly stimulates gonadotropin-releasing hormone release via G protein-coupled receptor 54.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhs1Klu7Y%3D&md5=3c2b95960c67f0fde897a6c49cd0266bCAS |
Moore, A. M., and Campbell, R. E. (2016). The neuroendocrine genesis of polycystic ovary syndrome: a role for arcuate nucleus GABA neurons. J. Steroid Biochem. Mol. Biol. 160, 106–117.
| The neuroendocrine genesis of polycystic ovary syndrome: a role for arcuate nucleus GABA neurons.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhs1OrtLzF&md5=64aa883f3f2d6f075bf5e44b4add69d8CAS |
Morgan, H. D., Sutherland, H. G., Martin, D. I., and Whitelaw, E. (1999). Epigenetic inheritance at the agouti locus in the mouse. Nat. Genet. 23, 314–318.
| Epigenetic inheritance at the agouti locus in the mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnt1Gns7w%3D&md5=01c4ec3f5addea17b7a2b3e3fc80041dCAS |
Morton, G. J., Cummings, D. E., Baskin, D. G., Barsh, G. S., and Schwartz, M. W. (2006). Central nervous system control of food intake and body weight. Nature 443, 289–295.
| Central nervous system control of food intake and body weight.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xpslalu7c%3D&md5=adf6635e8d2de1c825c3a8f8f13829d5CAS |
Newnham, J. P., White, S. W., Meharry, S., Lee, H. S., Pedretti, M. K., Arrese, C. A., Keelan, J. A., Kemp, M. W., Dickinson, J. E., and Doherty, D. A. (2017). Reducing preterm birth by a statewide multifaceted program: an implementation study. Am. J. Obstet. Gynecol. 216, 434–442.
| Reducing preterm birth by a statewide multifaceted program: an implementation study.Crossref | GoogleScholarGoogle Scholar |
Oliver, M., and Evans, J. P. (2014). Chemically moderated gamete preferences predict offspring fitness in a broadcast spawning invertebrate. Proc. Biol. Sci. 281, 20140148.
| Chemically moderated gamete preferences predict offspring fitness in a broadcast spawning invertebrate.Crossref | GoogleScholarGoogle Scholar |
Paul, J. W., Hua, S., Ilicic, M., Tolosa, J. M., Butler, T., Robertson, S., and Smith, R. (2017). Drug delivery to the human and mouse uterus using immunoliposomes targeted to the oxytocin receptor. Am. J. Obstet. Gynecol. 216, 283.e1–283.e14.
| Drug delivery to the human and mouse uterus using immunoliposomes targeted to the oxytocin receptor.Crossref | GoogleScholarGoogle Scholar |
Pini, T., Leahy, T., Soleilhavoup, C., Tsikis, G., Labas, V., Combes-Soia, L., Harichaux, G., Rickard, J. P., Druart, X., and de Graaf, S. P. (2016). Proteomic investigation of ram spermatozoa and the proteins conferred by seminal plasma. J. Proteome Res. 15, 3700–3711.
| Proteomic investigation of ram spermatozoa and the proteins conferred by seminal plasma.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhsFWmtbrE&md5=f5579e76646c9ba88d4e2b8f32f617dbCAS |
Pini, T., Leahy, T., and De Graaf, S. P. (2017). Seminal plasma and cryopreservation alter ram sperm surface carbohydrates and interactions with neutrophils. Reprod. Fertil. Dev. , .
| Seminal plasma and cryopreservation alter ram sperm surface carbohydrates and interactions with neutrophils.Crossref | GoogleScholarGoogle Scholar |
Raipuria, M., Bahari, H., and Morris, M. J. (2015). Effects of maternal diet and exercise during pregnancy on glucose metabolism in skeletal muscle and fat of weanling rats. PLoS One 10, e0120980.
| Effects of maternal diet and exercise during pregnancy on glucose metabolism in skeletal muscle and fat of weanling rats.Crossref | GoogleScholarGoogle Scholar |
Renfree, M. B., Chew, K. Y., and Shaw, G. (2014). Hormone-independent pathways of sexual differentiation. Sex Dev. 8, 327–336.
| Hormone-independent pathways of sexual differentiation.Crossref | GoogleScholarGoogle Scholar |
Rickard, J. P., Pini, T., Soleilhavoup, C., Cognie, J., Bathgate, R., Lynch, G. W., Evans, G., Maxwell, W. M., Druart, X., and de Graaf, S. P. (2014). Seminal plasma aids the survival and cervical transit of epididymal ram spermatozoa. Reproduction 148, 469–478.
| Seminal plasma aids the survival and cervical transit of epididymal ram spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvFyhtr%2FJ&md5=98617056788446ef750e246219fb3ad8CAS |
Ritter, L. J., Sugimura, S., and Gilchrist, R. B. (2015). Oocyte induction of EGF responsiveness in somatic cells is associated with the acquisition of porcine oocyte developmental competence. Endocrinology 156, 2299–2312.
| Oocyte induction of EGF responsiveness in somatic cells is associated with the acquisition of porcine oocyte developmental competence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtVCkurnJ&md5=493d4a50e6716bd35c83c27dd0a413b9CAS |
Santos, T. A., El Shourbagy, S., and St John, J. C. (2006). Mitochondrial content reflects oocyte variability and fertilization outcome. Fertil. Steril. 85, 584–591.
| Mitochondrial content reflects oocyte variability and fertilization outcome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjsVChsr0%3D&md5=ba6afec37e593aabd3c63408ef3eb8f7CAS |
Sim, S. Y., Chin, S. L., Tan, J. L., Brown, S. J., Cussons, A. J., and Stuckey, B. G. (2016). Polycystic ovary syndrome in type 2 diabetes: does it predict a more severe phenotype? Fertil. Steril. 106, 1258–1263.
| Polycystic ovary syndrome in type 2 diabetes: does it predict a more severe phenotype?Crossref | GoogleScholarGoogle Scholar |
Sinclair, A. W., Cao, M., Pask, A., Baskin, L., and Cunha, G. R. (2017). Flutamide-induced hypospadias in rats: a critical assessment. Differentiation 94, 37–57.
| Flutamide-induced hypospadias in rats: a critical assessment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XitFGnsrfN&md5=16541be0e901c0706e418c5f27794b3bCAS |
Smith, J. T., Li, Q., Pereira, A., and Clarke, I. J. (2009). Kisspeptin neurons in the ovine arcuate nucleus and preoptic area are involved in the preovulatory luteinizing hormone surge. Endocrinology 150, 5530–5538.
| Kisspeptin neurons in the ovine arcuate nucleus and preoptic area are involved in the preovulatory luteinizing hormone surge.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFGqtbrP&md5=a99d4deda8415ac5393a6f92507d6a91CAS |
Sutton-McDowall, M. L., Gosnell, M., Anwer, A. G., White, M., Purdey, M., Abell, A. D., Goldys, E. M., and Thompson, J. G. (2017). Hyperspectral microscopy can detect metabolic heterogeneity within bovine post-compaction embryos incubated under two oxygen concentrations (7% versus 20%). Hum. Reprod. 32, 2016–2025.
| Hyperspectral microscopy can detect metabolic heterogeneity within bovine post-compaction embryos incubated under two oxygen concentrations (7% versus 20%).Crossref | GoogleScholarGoogle Scholar |
Tan, T. C., Ritter, L. J., Whitty, A., Fernandez, R. C., Moran, L. J., Robertson, S. A., Thompson, J. G., and Brown, H. M. (2016). Gray level co-occurrence matrices (GLCM) to assess microstructural and textural changes in pre-implantation embryos. Mol. Reprod. Dev. 83, 701–713.
| Gray level co-occurrence matrices (GLCM) to assess microstructural and textural changes in pre-implantation embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhsVSlsLnN&md5=12d8288ec82a1928bb3d4d5fbad8e562CAS |
Turner, N., and Robker, R. L. (2015). Developmental programming of obesity and insulin resistance: does mitochondrial dysfunction in oocytes play a role? Mol. Hum. Reprod. 21, 23–30.
| Developmental programming of obesity and insulin resistance: does mitochondrial dysfunction in oocytes play a role?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXnvFSjsb4%3D&md5=67aa9b15cc1bb6acbe3cff8c1ff87b49CAS |
Uddin, G. M., Youngson, N. A., Sinclair, D. A., and Morris, M. J. (2016). Head to head comparison of short-term treatment with the NAD(+) precursor nicotinamide mononucleotide (NMN) and 6 weeks of exercise in obese female mice. Front. Pharmacol. 7, 258.
| Head to head comparison of short-term treatment with the NAD(+) precursor nicotinamide mononucleotide (NMN) and 6 weeks of exercise in obese female mice.Crossref | GoogleScholarGoogle Scholar |
Wu, L. L., Russell, D. L., Wong, S. L., Chen, M., Tsai, T. S., St John, J. C., Norman, R. J., Febbraio, M. A., Carroll, J., and Robker, R. L. (2015). Mitochondrial dysfunction in oocytes of obese mothers: transmission to offspring and reversal by pharmacological endoplasmic reticulum stress inhibitors. Development 142, 681–691.
| Mitochondrial dysfunction in oocytes of obese mothers: transmission to offspring and reversal by pharmacological endoplasmic reticulum stress inhibitors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXmtlSjtrg%3D&md5=c4e295c7eae60d7e7c9c26430891393eCAS |
Wyrwoll, C. S., Noble, J., Thomson, A., Tesic, D., Miller, M. R., Rog-Zielinska, E. A., Moran, C. M., Seckl, J. R., Chapman, K. E., and Holmes, M. C. (2016). Pravastatin ameliorates placental vascular defects, fetal growth, and cardiac function in a model of glucocorticoid excess. Proc. Natl Acad. Sci. USA 113, 6265–6270.
| Pravastatin ameliorates placental vascular defects, fetal growth, and cardiac function in a model of glucocorticoid excess.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XnvFeisLo%3D&md5=1186d5b3bc403de01067b1c1b84c0124CAS |
Zhao, F., Franco, H. L., Rodriguez, K. F., Brown, P. R., Tsai, M. J., Tsai, S. Y., and Yao, H. H. (2017). Elimination of the male reproductive tract in the female embryo is promoted by COUP-TFII in mice. Science 357, 717–720.
| Elimination of the male reproductive tract in the female embryo is promoted by COUP-TFII in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXhtlehtL7M&md5=17f5d38fe3a2204c689c4aca4ed3fd5cCAS |
Zhou, D., Pan, Q., Shen, F., Cao, H. X., Ding, W. J., Chen, Y. W., and Fan, J. G. (2017). Total fecal microbiota transplantation alleviates high-fat diet-induced steatohepatitis in mice via beneficial regulation of gut microbiota. Sci. Rep. 7, 1529.
| Total fecal microbiota transplantation alleviates high-fat diet-induced steatohepatitis in mice via beneficial regulation of gut microbiota.Crossref | GoogleScholarGoogle Scholar |