Metabolomic profiling of bovine oviductal fluid across the oestrous cycle using proton nuclear magnetic resonance spectroscopy
Julie Lamy A , Julie Gatien B , Florine Dubuisson A , Lydie Nadal-Desbarats C , Pascal Salvetti B , Pascal Mermillod A and Marie Saint-Dizier A C DA UMR85 PRC, INRA, CNRS, IFCE, Université de Tours, 37380 Nouzilly, France.
B ALLICE, 37380 Nouzilly, France.
C Université de Tours, 37000 Tours, France.
D Corresponding author. Email: marie.saint-dizier@univ-tours.fr
Reproduction, Fertility and Development 30(7) 1021-1028 https://doi.org/10.1071/RD17389
Submitted: 26 September 2017 Accepted: 19 November 2017 Published: 5 January 2018
Abstract
In the present study we tested whether regulation of the metabolome in bovine oviductal fluid depended on the stage of the oestrous cycle, the side relative to ovulation and local concentrations of steroid hormones. Luminal fluid samples from both oviducts were collected in the preovulatory, postovulatory, mid- and late luteal phases, from cyclic cows at a local abattoir (18–27 cows per stage and side). The metabolomes were assessed by proton nuclear magnetic resonance spectroscopy (H-NMR). In all, 39 metabolites were identified, among which the amino acid glycine and the energy substrates lactate and myoinositol were the most abundant at all stages. The concentrations of 14 metabolites varied according to the stage of the oestrous cycle in at least one side relative to ovulation, of which four (choline, glucose-1-phosphate, glycine and pyruvate) were correlated with intraoviductal progesterone or oestradiol concentrations. Glucose-1-phosphate was most affected by the stage of the cycle, with four- to sixfold higher levels in luteal than periovulatory stages. These results provide new knowledge on the regulation of secretory activity in the oviduct and may help optimise culture media for gamete maturation, IVF and embryo production.
Additional keywords: 1H-NMR, metabolome, steroid hormones, tubal fluid.
References
Almiñana, C., Corbin, E., Tsikis, G., Alcântara-Neto, A. S., Labas, V., Reynaud, K., Galio, L., Uzbekov, R., Garanina, A. S., Druart, X., and Mermillod, P. (2017). Oviduct extracellular vesicles protein content and their role during oviduct–embryo cross-talk. Reproduction 154, 153–168.| Oviduct extracellular vesicles protein content and their role during oviduct–embryo cross-talk.Crossref | GoogleScholarGoogle Scholar |
Baskind, N. E., McRae, C., Sharma, V., and Fisher, J. (2011). Understanding subfertility at a molecular level in the female through the application of nuclear magnetic resonance (NMR) spectroscopy. Hum. Reprod. Update 17, 228–241.
| Understanding subfertility at a molecular level in the female through the application of nuclear magnetic resonance (NMR) spectroscopy.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3M7psVeksw%3D%3D&md5=927cfa46f8e0a8507e39ccc77e3804a8CAS |
Boni, R., Gallo, A., and Cecchini, S. (2017). Kinetic activity, membrane mitochondrial potential, lipid peroxidation, intracellular pH and calcium of frozen/thawed bovine spermatozoa treated with metabolic enhancers. Andrology 5, 133–145.
| Kinetic activity, membrane mitochondrial potential, lipid peroxidation, intracellular pH and calcium of frozen/thawed bovine spermatozoa treated with metabolic enhancers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XitFens7nK&md5=5d97d50918c0b4e9d980ef91f1558cd2CAS |
Bowman, K., and Rose, J. (2017). Estradiol stimulates glycogen synthesis whereas progesterone promotes glycogen catabolism in the uterus of the American mink (Neovison vison). Anim. Sci. J. 88, 45–54.
| Estradiol stimulates glycogen synthesis whereas progesterone promotes glycogen catabolism in the uterus of the American mink (Neovison vison).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXjvFajtQ%3D%3D&md5=e0c21825c3f7a03e3820455d0468aeacCAS |
Braw-Tal, R., Pen, S., and Roth, Z. (2009). Ovarian cysts in high-yielding dairy cows. Theriogenology 72, 690–698.
| Ovarian cysts in high-yielding dairy cows.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1Mrls1Sgtw%3D%3D&md5=a2810568229700bc5c82e290111ac4beCAS |
Carlson, D., Black, D. L., and Howe, G. R. (1970). Oviduct secretion in the cow. J. Reprod. Fertil. 22, 549–552.
| Oviduct secretion in the cow.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE3c3ns1ektw%3D%3D&md5=34e04fca868fcfd264ed702ebd2573ddCAS |
Cerny, K. L., Garrett, E., Walton, A. J., Anderson, L. H., and Bridges, P. J. (2015). A transcriptomal analysis of bovine oviductal epithelial cells collected during the follicular phase versus the luteal phase of the estrous cycle. Reprod. Biol. Endocrinol. 13, 84.
| A transcriptomal analysis of bovine oviductal epithelial cells collected during the follicular phase versus the luteal phase of the estrous cycle.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC28%2FpvFyktg%3D%3D&md5=1d42cf2feacf1bdad57c60932c2dcd81CAS |
Condorelli, R. A., La Vignera, S., Bellanca, S., Vicari, E., and Calogero, A. E. (2012). Myoinositol: does it improve sperm mitochondrial function and sperm motility? Urology 79, 1290–1295.
| Myoinositol: does it improve sperm mitochondrial function and sperm motility?Crossref | GoogleScholarGoogle Scholar |
Coy, P., Garcia-Vazquez, F. A., Visconti, P. E., and Aviles, M. (2012). Roles of the oviduct in mammalian fertilization. Reproduction 144, 649–660.
| Roles of the oviduct in mammalian fertilization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVOitb%2FP&md5=16cff3cc8f3be47fea5d8780a3966744CAS |
Demers, L. M., Jacobs, R. D., and Greep, R. O. (1973). Comparative effects of ovarian steroids on glycogen metabolism of rat, rabbit and guinea pig uterine tissue. Proc. Soc. Exp. Biol. Med. 143, 1158–1163.
| Comparative effects of ovarian steroids on glycogen metabolism of rat, rabbit and guinea pig uterine tissue.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXltVSrtLc%3D&md5=89b5200f1c300e12b9b30f6272685381CAS |
Elhassan, Y. M., Wu, G., Leanez, A. C., Tasca, R. J., Watson, A. J., and Westhusin, M. E. (2001). Amino acid concentrations in fluids from the bovine oviduct and uterus and in KSOM-based culture media. Theriogenology 55, 1907–1918.
| Amino acid concentrations in fluids from the bovine oviduct and uterus and in KSOM-based culture media.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkvFarsbY%3D&md5=00834c55ac0dce93c492a60a7b0709adCAS |
Ferramosca, A., and Zara, V. (2014). Bioenergetics of mammalian sperm capacitation. BioMed Res. Int. 2014, 902953.
| Bioenergetics of mammalian sperm capacitation.Crossref | GoogleScholarGoogle Scholar |
Gomes, H., Dias, A. J. B., Moraes, J., Sobrinho Paes de Carvalho, C., and Logullo, C. (2010). Glucose-6-phosphate metabolic preferential destinations in bovine oviduct cells. Acta Sci. Vet. 38, 377–383.
Holt, W. V., and Fazeli, A. (2010). The oviduct as a complex mediator of mammalian sperm function and selection. Mol. Reprod. Dev. 77, 934–943.
| The oviduct as a complex mediator of mammalian sperm function and selection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVCktrnL&md5=7912a130891340508e668f8c62490d6aCAS |
Hugentobler, S. A., Diskin, M. G., Leese, H. J., Humpherson, P. G., Watson, T., Sreenan, J. M., and Morris, D. G. (2007). Amino acids in oviduct and uterine fluid and blood plasma during the estrous cycle in the bovine. Mol. Reprod. Dev. 74, 445–454.
| Amino acids in oviduct and uterine fluid and blood plasma during the estrous cycle in the bovine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhvFCqtLg%3D&md5=387e53a1b23979120d385eba965d7649CAS |
Hugentobler, S. A., Humpherson, P. G., Leese, H. J., Sreenan, J. M., and Morris, D. G. (2008). Energy substrates in bovine oviduct and uterine fluid and blood plasma during the oestrous cycle. Mol. Reprod. Dev. 75, 496–503.
| Energy substrates in bovine oviduct and uterine fluid and blood plasma during the oestrous cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhs1Crsrw%3D&md5=8d55f0411a33e41cc4728df9a6afddedCAS |
Hugentobler, S. A., Sreenan, J. M., Humpherson, P. G., Leese, H. J., Diskin, M. G., and Morris, D. G. (2010). Effects of changes in the concentration of systemic progesterone on ions, amino acids and energy substrates in cattle oviduct and uterine fluid and blood. Reprod. Fertil. Dev. 22, 684–694.
| Effects of changes in the concentration of systemic progesterone on ions, amino acids and energy substrates in cattle oviduct and uterine fluid and blood.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjvF2isLY%3D&md5=46698b1ec7f54ed72630007bd2eef545CAS |
Hunter, R. H. (2012). Components of oviduct physiology in eutherian mammals. Biol. Rev. Camb. Philos. Soc. 87, 244–255.
| Components of oviduct physiology in eutherian mammals.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC387htFKitw%3D%3D&md5=663d13290c896a242754f95e014538f9CAS |
Hynes, A. C., Sreenan, J. M., and Kane, M. T. (2000). Uptake and incorporation of myo-inositol by bovine preimplantation embryos from two-cell to early blastocyst stages. Mol. Reprod. Dev. 55, 265–269.
| Uptake and incorporation of myo-inositol by bovine preimplantation embryos from two-cell to early blastocyst stages.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhtFelsbc%3D&md5=94bd245449f69e2e2fddd816b06ad9ecCAS |
Ireland, J. J., Murphee, R. L., and Coulson, P. B. (1980). Accuracy of predicting stages of bovine estrous cycle by gross appearance of the corpus luteum. J. Dairy Sci. 63, 155–160.
| Accuracy of predicting stages of bovine estrous cycle by gross appearance of the corpus luteum.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL3c7ot1yjsg%3D%3D&md5=d04697836a7e134000d78a95fe5d120dCAS |
Kenny, D. A., Humpherson, P. G., Leese, H. J., Morris, D. G., Tomos, A. D., Diskin, M. G., and Sreenan, J. M. (2002). Effect of elevated systemic concentrations of ammonia and urea on the metabolite and ionic composition of oviductal fluid in cattle. Biol. Reprod. 66, 1797–1804.
| Effect of elevated systemic concentrations of ammonia and urea on the metabolite and ionic composition of oviductal fluid in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjvFegu7Y%3D&md5=073374dafc7e6b534d54380038340573CAS |
Kim, J. H., Funahashi, H., Niwa, K., and Okuda, K. (1993). Glucose requirement at different developmental stages of in vitro fertilized bovine embryos cultured in semi-defined medium. Theriogenology 39, 875–886.
| Glucose requirement at different developmental stages of in vitro fertilized bovine embryos cultured in semi-defined medium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXktVGlsbw%3D&md5=8c1d3e85895cd910c4d1f3e294cb0bccCAS |
Lamy, J., Labas, V., Harichaux, G., Tsikis, G., Mermillod, P., and Saint-Dizier, M. (2016a). Regulation of the bovine oviductal fluid proteome. Reproduction 152, 629–644.
| Regulation of the bovine oviductal fluid proteome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXktlajt70%3D&md5=98a98ac687b1da825704a73c9d5b1f1bCAS |
Lamy, J., Liere, P., Pianos, A., Aprahamian, F., Mermillod, P., and Saint-Dizier, M. (2016b). Steroid hormones in bovine oviductal fluid during the estrous cycle. Theriogenology 86, 1409–1420.
| Steroid hormones in bovine oviductal fluid during the estrous cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xos1Wnu7w%3D&md5=3ddb9e3243669ef61deb16cf6d41d2a1CAS |
Leese, H. J. (1988). The formation and function of oviduct fluid. J. Reprod. Fertil. 82, 843–856.
| The formation and function of oviduct fluid.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1c3gtVWitA%3D%3D&md5=f7bc2ff019e143f110d3f522a095c6a3CAS |
Leese, H. J., Tay, J. I., Reischl, J., and Downing, S. J. (2001). Formation of Fallopian tubal fluid: role of a neglected epithelium. Reproduction 121, 339–346.
| Formation of Fallopian tubal fluid: role of a neglected epithelium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXisFSquro%3D&md5=0de3eb37a3ac29cabd329b3aa874f41bCAS |
Leese, H. J., Hugentobler, S. A., Gray, S. M., Morris, D. G., Sturmey, R. G., Whitear, S. L., and Sreenan, J. M. (2008). Female reproductive tract fluids: composition, mechanism of formation and potential role in the developmental origins of health and disease. Reprod. Fertil. Dev. 20, 1–8.
| Female reproductive tract fluids: composition, mechanism of formation and potential role in the developmental origins of health and disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXisFCis7g%3D&md5=67dcaf15222b38f04128498edfc0e021CAS |
Lewin, L. M., Yannai, Y., Melmed, S., and Weiss, M. (1982). Myo-inositol in the reproductive tract of the female rat. Int. J. Biochem. 14, 147–150.
| Myo-inositol in the reproductive tract of the female rat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XitFCrs7c%3D&md5=4d71bec63279273ee419ebe6299d34abCAS |
Li, S., and Winuthayanon, W. (2017). Oviduct: roles in fertilization and early embryo development. J. Endocrinol. 232, R1–R26.
| Oviduct: roles in fertilization and early embryo development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXktl2mtL0%3D&md5=121c1c2ff30401185a607400bfbf1371CAS |
Lim, K. T., Jang, G., Ko, K. H., Lee, W. W., Park, H. J., Kim, J. J., Lee, S. H., Hwang, W. S., Lee, B. C., and Kang, S. K. (2007). Improved in vitro bovine embryo development and increased efficiency in producing viable calves using defined media. Theriogenology 67, 293–302.
| Improved in vitro bovine embryo development and increased efficiency in producing viable calves using defined media.Crossref | GoogleScholarGoogle Scholar |
McDaniel, J. W., Scalzi, H., and Black, D. L. (1968). Influence of ovarian hormones on histology and histochemistry of the bovine oviduct. J. Dairy Sci. 51, 754–761.
| Influence of ovarian hormones on histology and histochemistry of the bovine oviduct.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1cXktVSntbk%3D&md5=aa4fd00ddff060c0c99cdf8f0b22fc23CAS |
Ménézo, Y., Guérin, P., and Elder, K. (2015). The oviduct: a neglected organ due for re-assessment in IVF. Reprod. Biomed. Online 30, 233–240.
| The oviduct: a neglected organ due for re-assessment in IVF.Crossref | GoogleScholarGoogle Scholar |
Monniaux, D., Clemente, N., Touze, J. L., Belville, C., Rico, C., Bontoux, M., Picard, J. Y., and Fabre, S. (2008). Intrafollicular steroids and anti-Mullerian hormone during normal and cystic ovarian follicular development in the cow. Biol. Reprod. 79, 387–396.
| Intrafollicular steroids and anti-Mullerian hormone during normal and cystic ovarian follicular development in the cow.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXovFWmsb0%3D&md5=d83b7623b62576f679e186be24f4d376CAS |
Moore, K., and Bondioli, K. R. (1993). Glycine and alanine supplementation of culture medium enhances development of in vitro matured and fertilized cattle embryos. Biol. Reprod. 48, 833–840.
| Glycine and alanine supplementation of culture medium enhances development of in vitro matured and fertilized cattle embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXks1Oisb8%3D&md5=919dbfc088ccdfbfd8fb4b48ad16a43fCAS |
Murdoch, W. J. (1990). Localization and hormonal regulation of ovarian production of histamine in the sheep. Life Sci. 46, 1961–1965.
| Localization and hormonal regulation of ovarian production of histamine in the sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXktlGhu7o%3D&md5=4adb8a33d768c8071b0c1a6bc7f2d67eCAS |
Nishimoto, H., Hamano, S., Hill, G. A., Miyamoto, A., and Tetsuka, M. (2009). Classification of bovine follicles based on the concentrations of steroids, glucose and lactate in follicular fluid and the status of accompanying follicles. J. Reprod. Dev. 55, 219–224.
| Classification of bovine follicles based on the concentrations of steroids, glucose and lactate in follicular fluid and the status of accompanying follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtVOlsLw%3D&md5=b240de12ba5bd757f8e63543fa2cec5bCAS |
Orsi, N. M., Gopichandran, N., Leese, H. J., Picton, H. M., and Harris, S. E. (2005). Fluctuations in bovine ovarian follicular fluid composition throughout the oestrous cycle. Reproduction 129, 219–228.
| Fluctuations in bovine ovarian follicular fluid composition throughout the oestrous cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXis1yrsro%3D&md5=2384d8e100e6a6d4ea71248dc35fd774CAS |
Palomo, L., Casal, E., Royo, F., Cabrera, D., van-Liempd, S., and Falcon-Perez, J. M. (2014). Considerations for applying metabolomics to the analysis of extracellular vesicles. Front. Immunol. 5, 651.
| Considerations for applying metabolomics to the analysis of extracellular vesicles.Crossref | GoogleScholarGoogle Scholar |
Paventi, G., Lessard, C., Bailey, J. L., and Passarella, S. (2015). In boar sperm capacitation L-lactate and succinate, but not pyruvate and citrate, contribute to the mitochondrial membrane potential increase as monitored via safranine O fluorescence. Biochem. Biophys. Res. Commun. 462, 257–262.
| In boar sperm capacitation L-lactate and succinate, but not pyruvate and citrate, contribute to the mitochondrial membrane potential increase as monitored via safranine O fluorescence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXotlGju7o%3D&md5=389fae167ab494d27e4a8e865000f5c3CAS |
Rodriguez-Martinez, H. (2007). Role of the oviduct in sperm capacitation. Theriogenology 68, S138–S146.
| Role of the oviduct in sperm capacitation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotlaitLY%3D&md5=3c730a9db0bc6fadb24ea7fcfa847ab8CAS |
Saint-Dizier, M., Sandra, O., Ployart, S., Chebrout, M., and Constant, F. (2012). Expression of nuclear progesterone receptor and progesterone receptor membrane components 1 and 2 in the oviduct of cyclic and pregnant cows during the post-ovulation period. Reprod. Biol. Endocrinol. 10, 76.
| Expression of nuclear progesterone receptor and progesterone receptor membrane components 1 and 2 in the oviduct of cyclic and pregnant cows during the post-ovulation period.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVequ7%2FN&md5=9d57077cbf945f0a86104af2dfb3abbbCAS |
Simons, M., and Raposo, G. (2009). Exosomes–vesicular carriers for intercellular communication. Curr. Opin. Cell Biol. 21, 575–581.
| Exosomes–vesicular carriers for intercellular communication.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXps1Cltbc%3D&md5=110c89421db33783b5957ea608c8db69CAS |
Sinclair, K. D., Lunn, L. A., Kwong, W. Y., Wonnacott, K., Linforth, R. S., and Craigon, J. (2008). Amino acid and fatty acid composition of follicular fluid as predictors of in-vitro embryo development. Reprod. Biomed. Online 16, 859–868.
| Amino acid and fatty acid composition of follicular fluid as predictors of in-vitro embryo development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotFars70%3D&md5=38abdd69a0baeeb0b5e937d2b4000a8aCAS |
Stanke, D. F., Sikes, J. D., DeYoung, D. W., and Tumbleson, M. E. (1974). Proteins and amino acids in bovine oviducal fluid. J. Reprod. Fertil. 38, 493–496.
| Proteins and amino acids in bovine oviducal fluid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2cXltFOmu7g%3D&md5=8f7c272e68329dec826e13d3cd41af60CAS |
Thompson, J. G., Partridge, R. J., Houghton, F. D., Cox, C. I., and Leese, H. J. (1996). Oxygen uptake and carbohydrate metabolism by in vitro derived bovine embryos. J. Reprod. Fertil. 106, 299–306.
| Oxygen uptake and carbohydrate metabolism by in vitro derived bovine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XitFKntrc%3D&md5=9035f52d82055c617fd096b648cf24afCAS |
Ulbrich, S. E., Kettler, A., and Einspanier, R. (2003). Expression and localization of estrogen receptor alpha, estrogen receptor beta and progesterone receptor in the bovine oviduct in vivo and in vitro. J. Steroid Biochem. Mol. Biol. 84, 279–289.
| Expression and localization of estrogen receptor alpha, estrogen receptor beta and progesterone receptor in the bovine oviduct in vivo and in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtFWgs7o%3D&md5=8177770b3e9011064b7ff5251b8ef862CAS |
van der Horst, C. J., and Brand, A. (1969). Occurrence of hypotaurine and inositol in the reproductive tract of the ewe and its regulation by pregnenolone and progesterone. Nature 223, 67–68.
| Occurrence of hypotaurine and inositol in the reproductive tract of the ewe and its regulation by pregnenolone and progesterone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1MXksVKgt70%3D&md5=e4d619994c93c01e7ee63843c06daa0bCAS |
Wijayagunawardane, M. P. B., Miyamoto, A., Cerbito, W. A., Acosta, T. J., Takagi, M., and Sato, K. (1998). Local distributions of oviductal estradiol, progesterone, prostaglandins, oxytocin and endothelin-1 in the cyclic cow. Theriogenology 49, 607–618.
| Local distributions of oviductal estradiol, progesterone, prostaglandins, oxytocin and endothelin-1 in the cyclic cow.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhtFShu7s%3D&md5=c82582105e1654efe95e102b3abd2630CAS |