Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

A genetic method for sex determination in Ovis spp. by interruption of the zinc finger protein, Y-linked (ZFY) gene on the Y chromosome

Yong Sheng Zhang A , Ying Chun Du B , Li Rong Sun C , Xu Hai Wang A , Shuai Bing Liu D , Ji Feng Xi A , Chao Cheng Li A , Rui Wen Ying A , Song Jiang A , Xiang Zu Wang A , Hong Shen A and Bin Jia A E
+ Author Affiliations
- Author Affiliations

A College of Animal Science and Technology, Shihezi University, The Xinjiang Uygur Autonomous Region, China.

B The Aquatic Wildlife Rescue and Conservation Center, Beijing, China.

C Tongliao City Quality and Safety Centre of Agricultural and Livestock, Tongliao, China.

D Nanhu District of Jiaxing City Animal Husbandry and Veterinary Bureau, Jiaxing, China.

E Corresponding author. Email: jiabin@shzu.edu.cn

Reproduction, Fertility and Development 30(9) 1161-1168 https://doi.org/10.1071/RD17339
Submitted: 26 May 2017  Accepted: 2 January 2018   Published: 6 March 2018

Abstract

The mammalian Y chromosome plays a critical role in spermatogenesis. However, the exact functions of each gene on the Y chromosome have not been completely elucidated, due, in part, to difficulties in gene targeting analysis of the Y chromosome. The zinc finger protein, Y-linked (ZFY) gene was first proposed to be a sex determination factor, although its function in spermatogenesis has recently been elucidated. Nevertheless, ZFY gene targeting analysis has not been performed to date. In the present study, RNA interference (RNAi) was used to generate ZFY-interrupted Hu sheep by injecting short hairpin RNA (shRNA) into round spermatids. The resulting spermatozoa exhibited abnormal sperm morphology, including spermatozoa without tails and others with head and tail abnormalities. Quantitative real-time polymerase chain reaction analysis showed that ZFY mRNA expression was decreased significantly in Hu sheep with interrupted ZFY compared with wild-type Hu sheep. The sex ratio of lambs also exhibited a bias towards females. Together, the experimental strategy and findings of the present study reveal that ZFY also functions in spermatogenesis in Hu sheep and facilitate the use of RNAi in the control of sex in Hu sheep.

Additional keywords: Hu sheep, RNA interference, sex control, spermatogenesis.


References

Adler, D. A., Bressler, S. L., Chapman, V. M., Page, D. C., and Disteche, C. M. (1991). Inactivation of the Zfx gene on the mouse X chromosome. Proc. Natl Acad. Sci. USA 88, 4592–4595.
Inactivation of the Zfx gene on the mouse X chromosome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXkt1emtLw%3D&md5=a2242630619b1743801d439f7ea0c610CAS |

Almiñana, C., Caballero, I., Heath, P. R., Maleki-Dizaji, S., Parrilla, I., Cuello, C., Gil, M. A., Vazquez, J. L., Vazquez, J. M., Roca, J., Martinez, E. A., Holt, W. V., and Fazeli, A. (2014). The battle of the sexes starts in the oviduct: modulation of oviductal transcriptome by X and Y-bearing spermatozoa. BMC Genomics 15, 293.
The battle of the sexes starts in the oviduct: modulation of oviductal transcriptome by X and Y-bearing spermatozoa.Crossref | GoogleScholarGoogle Scholar |

Balinsky, B. I. (1975). ‘An Introduction to Embryology.’ 4th edn. (Saunders: Ventura, CA.)

Beneden, M. E.V. (1870). Upon the mode of formation of the egg and the embryonic development of the Sacculinæ. Ann. Mag. Nat. Hist. 5, 140–144.
Upon the mode of formation of the egg and the embryonic development of the Sacculinæ.Crossref | GoogleScholarGoogle Scholar |

Chandrasekharan, S., Kumar, S., Valley, C. M., and Rai, A. (2009). Proprietary science, open science and the role of patent disclosure: the case of zinc-finger proteins. Nat. Biotechnol. 27, 140–144.
Proprietary science, open science and the role of patent disclosure: the case of zinc-finger proteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1Ckt7k%3D&md5=851a2d1af8092e658f7d1d8c327c6ce0CAS |

Cremades, N., Bernabeu, R., Barros, A., and Sousa, M. (1999). In-vitro maturation of round spermatids using co-culture on Vero cells. Hum. Reprod. 14, 1287–1293.
In-vitro maturation of round spermatids using co-culture on Vero cells.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1M3mt1OhsA%3D%3D&md5=9f389056887156ea4956d10092dac849CAS |

Decarpentrie, F., Vernet, N., Mahadevaiah, S. K., Longepied, G., Streichemberger, E., Aknin-Seifer, I., Ojarikre, O. A., Burgoyne, P. S., Metzler-Guillemain, C., and Mitchell, M. J. (2012). Human and mouse ZFY genes produce a conserved testis-specific transcript encoding a zinc finger protein with a short acidic domain and modified transactivation potential. Hum. Mol. Genet. 21, 2631–2645.
Human and mouse ZFY genes produce a conserved testis-specific transcript encoding a zinc finger protein with a short acidic domain and modified transactivation potential.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnsFGisro%3D&md5=5bb0f8f366f5d241b61ec3294ac4f6d2CAS |

Ellerman, D. A., Myles, D. G., and Primakoff, P. (2006). A role for sperm surface protein disulfide isomerase activity in gamete fusion: evidence for the participation of ERp57. Dev. Cell 10, 831–837.
A role for sperm surface protein disulfide isomerase activity in gamete fusion: evidence for the participation of ERp57.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmtVagsL8%3D&md5=3b955afcf3657c78f59480ffe8de8197CAS |

Erlandsson, R., Wilson, J. F., and Paabo, S. (2000). Sex chromosomal transposable element accumulation and male-driven substitutional evolution in humans. Mol. Biol. Evol. 17, 804–812.
Sex chromosomal transposable element accumulation and male-driven substitutional evolution in humans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjt1Gjtbo%3D&md5=c36a471c9911685b86a528d4df3b53daCAS |

Fedorov, Y., Anderson, E. M., Birmingham, A., Reynolds, A., Karpilow, J., Robinson, K., Leake, D., Marshall, W. S., and Khvorova, A. (2006). Off-target effects by siRNA can induce toxic phenotype. RNA 12, 1188–1196.
Off-target effects by siRNA can induce toxic phenotype.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xms1Cqur0%3D&md5=b1a7a5172d09c3ee4b8a7b0aaf663748CAS |

Foster, D. J., Barros, S., Duncan, R., Shaikh, S., Cantley, W., Dell, A., Bulgakova, E., O’Shea, J., Taneja, N., Kuchimanchi, S., Sherrill, C. B., Akinc, A., Hinkle, G., Seila White, A. C., Pang, B., Charisse, K., Meyers, R., Manoharan, M., and Elbashir, S. M. (2012). Comprehensive evaluation of canonical versus Dicer-substrate siRNA in vitro and in vivo. RNA 18, 557–568.
Comprehensive evaluation of canonical versus Dicer-substrate siRNA in vitro and in vivo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjt12gsLk%3D&md5=359eac8abe6b2222d76986ba940f45efCAS |

Galan-Caridad, J. M., Harel, S., Arenzana, T. L., Hou, Z. E., Doetsch, F. K., Mirny, L. A., and Reizis, B. (2007). Zfx controls the self-renewal of embryonic and hematopoietic stem cells. Cell 129, 345–357.
Zfx controls the self-renewal of embryonic and hematopoietic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlsVWls7g%3D&md5=18349d0b27d6cafedd359fdda6c917fdCAS |

Goetting-Minesky, M. P., and Makova, K. D. (2006). Mammalian male mutation bias: impacts of generation time and regional variation in substitution rates. J. Mol. Evol. 63, 537–544.
Mammalian male mutation bias: impacts of generation time and regional variation in substitution rates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFSnsLbK&md5=ec9df5fe46375ecaf3a357f52ab64aaeCAS |

Hafez, B., and Hafez, E. S. E. (2016). ‘Reproduction in Farm Animals.’ 7th edn. (Lippincott Williams & Wilkins: Philadelphia.)

Han, S. H., Yang, B. C., Ko, M. S., Oh, H. S., and Lee, S. S. (2010). Length difference between equine ZFX and ZFY genes and its application for molecular sex determination. J. Assist. Reprod. Genet. 27, 725–728.
Length difference between equine ZFX and ZFY genes and its application for molecular sex determination.Crossref | GoogleScholarGoogle Scholar |

Hansen, M. A., Nielsen, J. E., Tanaka, M., Almstrup, K., Skakkebaek, N. E., and Leffers, H. (2006). Identification and expression profiling of 10 novel spermatid expressed cypt genes. Mol. Reprod. Dev. 73, 568–579.
Identification and expression profiling of 10 novel spermatid expressed cypt genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjt1KitL4%3D&md5=5e76d6330952a3e1c0ab6d1e94b00e5fCAS |

Koopman, P., Gubbay, J., Collignon, J., and Lovellbadge, R. (1989). Zfy gene expression patterns are not compatible with a primary role in mouse sex determination. Nature 342, 940–942.
Zfy gene expression patterns are not compatible with a primary role in mouse sex determination.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXpt12ksw%3D%3D&md5=a57ee4ab4708522791252fb48c719d1cCAS |

Lahn, B. T., and Page, D. C. (1997). Functional coherence of the human Y chromosome. Science 278, 675–680.
Functional coherence of the human Y chromosome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmvVygu70%3D&md5=fbd48f74a6406f959b3712b770d47ce4CAS |

Lloyd, S. L., Sargent, C. A., Chalmers, J., Lim, E., Habeebu, S. S., and Affara, N. A. (1991). An X-linked zinc finger gene mapping to xq21.1–q21.3 closely related to zfx and zfy: possible origins from a common ancestral gene. Nucleic Acids Res. 19, 4835–4841.
An X-linked zinc finger gene mapping to xq21.1–q21.3 closely related to zfx and zfy: possible origins from a common ancestral gene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XmtVKisLw%3D&md5=6e48b5f79ea43befc1df4e240c3ebb52CAS |

Mitchell, M., Simon, D., Affara, N., Fergusonsmith, M., Avner, P., and Bishop, C. (1989). Localization of murine X and autosomal sequences homologous to the human Y located testis-determining region. Genetics 121, 803–809.
| 1:STN:280:DyaL1M3lt1OktQ%3D%3D&md5=262ff75015be1a0ce31e979f4764e4c3CAS |

Morin, P. A., Nestler, A., Rubio-Cisneros, N. T., Robertson, K. M., and Mesnick, S. L. (2005). Interfamilial characterization of a region of the zfx and zfy genes facilitates sex determination in cetaceans and other mammals. Mol. Ecol. 14, 3275–3286.
Interfamilial characterization of a region of the zfx and zfy genes facilitates sex determination in cetaceans and other mammals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVGltb7O&md5=cd9accea14f7ebd01684402d96fc3fd9CAS |

Nakasuji, T., Ogonuki, N., Chiba, T., Kato, T., Shiozawa, K., Yamatoya, K., Tanaka, H., Kondo, T., Miyado, K., Miyasaka, N., Kubota, T., Ogura, A., and Asahara, H. (2017). Complementary critical functions of Zfy1 and Zfy2 in mouse spermatogenesis and reproduction. PLoS Genet. 13, e1006578.
Complementary critical functions of Zfy1 and Zfy2 in mouse spermatogenesis and reproduction.Crossref | GoogleScholarGoogle Scholar |

Oko, R., Hermo, L., Chan, P. T., Fazel, A., and Bergeron, J. J. (1993). The cytoplasmic droplet of rat epididymal spermatozoa contains saccular elements with Golgi characteristics. J. Cell Biol. 123, 809–821.
The cytoplasmic droplet of rat epididymal spermatozoa contains saccular elements with Golgi characteristics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXltlOl&md5=b6f25cd652d77d6e9f71d34132c1eb15CAS |

Page, D. C., Mosher, R., Simpson, E. M., Fisher, E. M. C., Mardon, G., Pollack, J., McGillivray, B., de la Chapelle, A., and Brown, L. G. (1987). The sex-determining region of the human Y chromosome encodes a finger protein. Cell 51, 1091–1104.
The sex-determining region of the human Y chromosome encodes a finger protein.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXntVSiuw%3D%3D&md5=0590e315b0b9d5dec9d2f7175e7e059bCAS |

Peng, Q., Li, R. Y., Jia, B., and Li, H. T. (2011). Sex control by zfy siRNA in the mouse. Theriogenology 76, 507–511.
Sex control by zfy siRNA in the mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXosFWhtb8%3D&md5=35bf0535dd7b9b043c5a4929f7e8c757CAS |

Pfender, S., Kuznetsov, V., Pasternak, M., Tischer, T., Santhanam, B., and Schuh, M. (2015). Live imaging RNAi screen reveals genes essential for meiosis in mammalian oocytes. Nature 524, 239–242.
Live imaging RNAi screen reveals genes essential for meiosis in mammalian oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtFyltLrL&md5=bf7d18b8d5e7103e958655eb58072e27CAS |

Pollevick, G. D., Giambiagi, S., Mancardi, S., De, L. L., Burrone, O., Frasch, A. C., and Ugalde, R. A. (1992). Sex determination of bovine embryos by restriction fragment polymorphisms of PCR amplified zfx/zfy loci. Biotechnology 10, 805–807.
| 1:CAS:528:DyaK38Xmt1Ohsr4%3D&md5=e92876473e7cf137ed230a4710de00d8CAS |

Saravanan, T., Nainar, A. M., Kumanan, K., and Kumaresan, A. (2003). Sexing of sheep embryos produced in vitro by polymerase chain reaction and sex-specific polymorphism. Asian. Austral. J. Anim. 16, 650–654.
Sexing of sheep embryos produced in vitro by polymerase chain reaction and sex-specific polymorphism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktF2htLY%3D&md5=2183905f14e4aa894f6ecc822f846f9bCAS |

Schramek, D., Sendoel, A., Segal, J. P., Beronja, S., Heller, E., Oristian, D., Reva, B., and Fuchs, E. (2014). Direct in vivo RNAi screen unveils myosin IIa as a tumor suppressor of squamous cell carcinomas. Science 343, 309–313.
Direct in vivo RNAi screen unveils myosin IIa as a tumor suppressor of squamous cell carcinomas.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmtV2ktw%3D%3D&md5=6627779b71ce671527594484d337fb66CAS |

Sharma, S., and Rao, A. (2009). RNAi screening: tips and techniques. Nat. Immunol. 10, 799–804.
RNAi screening: tips and techniques.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXoslymurw%3D&md5=cfcb283d8376622c6f736c2f7b8734aaCAS |

Singer-Sam, J., Robinson, M. O., Bellvé, A. R., Simon, M. L., and Riggs, A. D. (1990). Measurement by quantitative PCR of changes in HPRT, PGK-1, PGK-2, APRT, MTase, and Zfy gene transcripts during mouse spermatogenesis. Nucleic Acids Res. 18, 1255–1259.
Measurement by quantitative PCR of changes in HPRT, PGK-1, PGK-2, APRT, MTase, and Zfy gene transcripts during mouse spermatogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXitFCgu7s%3D&md5=9f1684961d9bfee9bf895d2ec4347c26CAS |

Skaletsky, H., Kuroda-Kawaguchi, T., Minx, P. J., Cordum, H. S., Hillier, L. D., Brown, L. G., Repping, S., Pyntikova, T., Ali, J., Bieri, T., et al. (2003). The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature 423, 825–837.
The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXks1Kmtbk%3D&md5=9d818376151972fe9bb0e1ffc3117ccbCAS |

Vernet, N., Mahadevaiah, S. K., Ojarikre, O. A., Longepied, G., Prosser, H. M., Bradley, A., Mitchell, M. J., and Burgoyne, P. S. (2011). The Y-encoded gene zfy2 acts to remove cells with unpaired chromosomes at the first meiotic metaphase in male mice. Curr. Biol. 21, 787–793.
The Y-encoded gene zfy2 acts to remove cells with unpaired chromosomes at the first meiotic metaphase in male mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlvVOntrs%3D&md5=b8c05ddbbae3e79f5a318a3a66cf176bCAS |

Vernet, N., Szot, M., Mahadevaiah, S. K., Ellis, P. J. I., Decarpentrie, F., Ojarikre, O. A., Rattigan, Á., Taketo, T., and Burgoyne, P. S. (2014a). The expression of Y-linked Zfy2 in XY mouse oocytes leads to frequent meiosis 2 defects, a high incidence of subsequent early cleavage stage arrest and infertility. Development 141, 855–866.
The expression of Y-linked Zfy2 in XY mouse oocytes leads to frequent meiosis 2 defects, a high incidence of subsequent early cleavage stage arrest and infertility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXkvV2nt7w%3D&md5=b83744ea3b8524805848046b1785b8b8CAS |

Vernet, N., Mahadevaiah, S. K., Yamauchi, Y., Decarpentrie, F., Mitchell, M. J., Ward, M. A., and Burgoyne, P. S. (2014b). Mouse Y-linked Zfy1 and Zfy2 are expressed during the male-specific interphase between meiosis I and meiosis II and promote the 2nd meiotic division. PLoS Genet. 10, e1004444.
Mouse Y-linked Zfy1 and Zfy2 are expressed during the male-specific interphase between meiosis I and meiosis II and promote the 2nd meiotic division.Crossref | GoogleScholarGoogle Scholar |

Vernet, N., Mahadevaiah, S. K., Decarpentrie, F., de Longepied, G., Rooij, D. G., Burgoyne, P. S., and Mitchell, M. J. (2016a). Mouse Y-encoded transcription factor Zfy2 is essential for sperm head remodelling and sperm tail development. PLoS One 11, e0145398.
Mouse Y-encoded transcription factor Zfy2 is essential for sperm head remodelling and sperm tail development.Crossref | GoogleScholarGoogle Scholar |

Vernet, N., Mahadevaiah, S. K., de Rooij, D. G., Burgoyne, P. S., and Ellis, P. J. I. (2016b). Zfy genes are required for efficient meiotic sex chromosome inactivation (MSCI) in spermatocytes. Hum. Mol. Genet. 25, 5300–5310.
| 1:CAS:528:DC%2BC2sXhtV2gur7J&md5=d28ae1a4c3a02261912d2c85bd175250CAS |

Vorachek, W. R., Hugejiletu, , Bobe, G., and Hall, J. A. (2013). Reference gene selection for quantitative PCR studies in sheep neutrophils. Int. J. Mol. Sci. 14, 11484–11495.
Reference gene selection for quantitative PCR studies in sheep neutrophils.Crossref | GoogleScholarGoogle Scholar |

Wang, W., Wei, S., Li, L., Su, X., Du, C., Li, F., Geng, B., Liu, P., and Xu, G. (2015). Proteomic analysis of murine testes lipid droplets. Sci. Rep. 5, 12070.
Proteomic analysis of murine testes lipid droplets.Crossref | GoogleScholarGoogle Scholar |

World Health Organization (WHO) (2010). WHO laboratory manual for the examination and processing of human semen (nonserial publications). J. Androl. 30, 9–9.

Yamauchi, Y., Vernet, N., Riel, J. M., Burgoyne, P. S., and Ward, M. A. (2014). Only three Y chromosome genes are enough for obtaining sperm functional in assisted fertilization and yielding live offspring in the mouse. Fertil. Steril. 102, e3–e4.
Only three Y chromosome genes are enough for obtaining sperm functional in assisted fertilization and yielding live offspring in the mouse.Crossref | GoogleScholarGoogle Scholar |

Zhang, Y. S., Xi, J. F., Jia, B., Wang, X. Z., Wang, X. H., Li, C. C., Li, Y. Q., Zeng, X. C., Ying, R. W., Li, X., Jiang, S., and Yuan, F. Y. (2017). RNAi as a tool to control the sex ratio of mouse offspring by interrupting Zfx/Zfy genes in the testis. Mamm. Genome 28, 100–105.
RNAi as a tool to control the sex ratio of mouse offspring by interrupting Zfx/Zfy genes in the testis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXjs1SitbY%3D&md5=9432e20eebfe285b1e43e4db3b883701CAS |