Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

In vivo and in vitro strategies to support caprine preantral follicle development after ovarian tissue vitrification

N. J. Donfack A , K. A. Alves A , B. G. Alves A , R. M. P. Rocha A , J. B. Bruno A , L. F. Lima A , C. H. Lobo A , R. R. Santos B , S. F. S. Domingues B , M. Bertolini C D , J. Smitz E and A. P. R. Rodrigues A F
+ Author Affiliations
- Author Affiliations

A Faculty of Veterinary Medicine, Laboratory of Manipulation of Oocytes and Preantral Follicles (LAMOFOPA), State University of Ceará, Av. Paranjana, 1700, Campus do Itaperi. Fortaleza, CEP: 60740 903 – CE – Brasil.

B Laboratory of Biology and Medicine of Wild Animals of Amazon, Federal University of Pará-Belem, Av. Universitária, CEP: 68745001 – Castanhal, PA – Brasil.

C Federal University of Rio Grande do Sul, Veterinay Faculty, Avenida Bento Gonçalves, 9090, CEP: 91540000 – Porto Alegre, RS – Brasil.

D Laboratory of Molecular Biology and development, Fortaleza University, Edson Queiroz, 60811905 – Fortaleza, CE – Brasil

E Follicle Biology Laboratory, Center for Reproductive Medicine, UZ Brussel, Laarbeeklaan 101, B-1090 Brussels, Belgium.

F Corresponding author. Email: aprrodriguespapers@gmail.com

Reproduction, Fertility and Development 30(8) 1055-1065 https://doi.org/10.1071/RD17315
Submitted: 2 August 2017  Accepted: 1 December 2017   Published: 15 January 2018

Abstract

The aim of the present study was to compare fresh and vitrified goat ovarian tissue after autotransplantation and in vitro culture. Adult goats were completely ovariectomised and each ovarian pair was sliced and distributed among six different treatment groups: fresh control, fresh transplant, fresh culture, vitrified control, vitrified transplant and vitrified culture. Follicular morphology, development, growth, density, revascularisation and hormone production were evaluated in all groups. Three antral follicles (two in the fresh transplant and one in the vitrified transplant groups) were observed on the surface of the graft 90 days after transplantation. The percentage of morphologically normal follicles was similar in the fresh control, fresh transplant and vitrified transplant groups. The percentage of developing (transition, primary and secondary) follicles was higher after in vitro culture of fresh or vitrified tissue. Transplantation resulted in a lower follicle density. Serum oestradiol concentrations remained constant during the entire transplantation period. In contrast, progesterone production decreased significantly. Expression of CD31 mRNA was lower in fresh culture. In conclusion, restoration of goat ovarian function can be successfully achieved following transplantation of both fresh and vitrified goat ovarian tissue. However, transplantation induced higher follicle loss than in vitro culture.

Additional keywords: cryopreservation, folliculogenesis, goat, heterotopic transplantation.


References

Abdel-Ghani, M. A., El-sherry, T. M., and Abdelhafeez, H. H. (2016). Effect of growth differentiation factor-9 (GDF-9) on the progression of buffalo follicles in vitrified–warmed ovarian tissues. Reprod. Domest. Anim. 51, 795–803.
Effect of growth differentiation factor-9 (GDF-9) on the progression of buffalo follicles in vitrified–warmed ovarian tissues.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhsVylt7rL&md5=e282a508ecbb66f5e2d51db48950def7CAS |

Adhikari, D., and Liu, K. (2009). Molecular mechanisms underlying the activation of mammalian primordial follicles. Endocr. Rev. 30, 438–464.
Molecular mechanisms underlying the activation of mammalian primordial follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFaisbnO&md5=b7141052e76ce6a17bf8ba6772678a88CAS |

Almeida, A. P., Saraiva, M. V. A., Araújo, V. R., Magalhães, D. M., Duarte, A. B. G., Frota, I. M. A., Lopes, C. A. P., Campello, C. C., Silva, J. R. V., and Figueiredo, J. R. (2011). Expression of growth and differentiation factor 9 (GDF-9) and its effect on the in vitro culture of caprine preantral ovarian follicles. Small Rumin. Res. 100, 169–176.
Expression of growth and differentiation factor 9 (GDF-9) and its effect on the in vitro culture of caprine preantral ovarian follicles.Crossref | GoogleScholarGoogle Scholar |

Alves, A. M., Chaves, R. N., Rocha, R. M., Lima, L. F., Andrade, P. M., Lopes, C. A., Souza, C. E., Moura, A. A., Campello, C. C., Báo, S. N., Smitz, J., and Figueiredo, J. R. (2013). Dynamic medium containing growth differentiation factor-9 and FSH maintains survival and promotes in vitro growth of caprine preantral follicles after long-term in vitro culture. Reprod. Fertil. Dev. 25, 955–965.
Dynamic medium containing growth differentiation factor-9 and FSH maintains survival and promotes in vitro growth of caprine preantral follicles after long-term in vitro culture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFSrtrzN&md5=cbd78934355f09e2bde116411e907191CAS |

Araújo, V. R., Silva, G. M., Duarte, A. B. G., Magalhães, D. M., Almeida, A. P., Gonçalves, R. F. B., Bruno, J. B., Silva, T. F. P., Campello, C. C., Rodrigues, A. P. R., and Figueiredo, J. R. (2011). Vascular endothelial growth factor-A165 (VEGF-A165) stimulates the in vitro development and oocyte competence of goat preantral follicles. Cell Tissue Res. 346, 273–281.
Vascular endothelial growth factor-A165 (VEGF-A165) stimulates the in vitro development and oocyte competence of goat preantral follicles.Crossref | GoogleScholarGoogle Scholar |

Aubard, Y., Piver, P., Cogni, Y., Fermeaux, V., Poulin, N., and Driancourt, M. A. (1999). Orthotopic and heterotopic autografts of frozen–thawed ovarian cortex in sheep. Hum. Reprod. 14, 2149–2154.
Orthotopic and heterotopic autografts of frozen–thawed ovarian cortex in sheep.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1MzmslGmsg%3D%3D&md5=82c45e2917e9b47d20c6817f54d07ea3CAS |

Aye, M., Di Giorgio, C., De Mo, M., Botta, A., Perrin, J., and Courbiere, B. (2010). Assessment of the genotoxicity of three cryoprotectants used for human oocyte vitrification: dimethyl sulfoxide, ethylene glycol and propylene glycol. Food Chem. Toxicol. 48, 1905–1912.
Assessment of the genotoxicity of three cryoprotectants used for human oocyte vitrification: dimethyl sulfoxide, ethylene glycol and propylene glycol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXntFSiuro%3D&md5=0f75fb00b54220f5dce1c68aaa262105CAS |

Bandeira, F. T., Carvalho, A. A., Castro, S. V., Lima, L. F., Viana, D. A., Evangelista, J. S. A. M., Pereira, M. J. S., Campello, C. C., Figueiredo, J. R., and Rodrigues, A. P. R. (2015). Two methods of vitrification followed by in vitro culture of the ovine ovary: evaluation of the follicular development and ovarian extracellular matrix. Reprod. Domest. Anim. 50, 177–185.
Two methods of vitrification followed by in vitro culture of the ovine ovary: evaluation of the follicular development and ovarian extracellular matrix.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXktVemtLw%3D&md5=02ad2489457e2a858b5c994b979cde36CAS |

Bernstein, S., and Wiesemann, C. (2014). Should postponing motherhood via ‘social freezing’ be legally banned? An ethical analysis. Laws 3, 282–300.
Should postponing motherhood via ‘social freezing’ be legally banned? An ethical analysis.Crossref | GoogleScholarGoogle Scholar |

Bordes, A., Lornage, J., Demirci, B., Franck, M., Courbiere, B., Guerin, J. F., and Salle, B. (2005). Normal gestations and live births after orthotopic autograft of vitrified–warmed hemi-ovaries into ewes. Hum. Reprod. 20, 2745–2748.
Normal gestations and live births after orthotopic autograft of vitrified–warmed hemi-ovaries into ewes.Crossref | GoogleScholarGoogle Scholar |

Carvalho, A. A., Faustino, L. R., Silva, C. M., Castro, S. V., Lopes, C. A., Santos, R. R., Báo, S. N., Figueiredo, J. R., and Rodrigues, A. P. (2013). Novel wide-capacity method for vitrification of caprine ovaries: ovarian tissue cryosystem (OTC). Anim. Reprod. Sci. 138, 220–227.
Novel wide-capacity method for vitrification of caprine ovaries: ovarian tissue cryosystem (OTC).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXksFCjtLg%3D&md5=c854175a90d483468d4de00c5a0039b4CAS |

Carvalho, A. A., Faustino, L. R., Silva, C. M. G., Castro, S. V., Lobo, C. H., Santos, F. W., Santos, R. R., Campello, C. C., Bordignon, V., Figueiredo, J. R., and Rodrigues, A. P. R. (2014). Catalase addition to vitrification solutions maintains goat ovarian preantral follicles stability. Res. Vet. Sci. 97, 140–147.
Catalase addition to vitrification solutions maintains goat ovarian preantral follicles stability.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlSqs7vJ&md5=69ff0ed0a13437e1d68719c1416d93b3CAS |

David, A., Dolmans, M. M., Langendonckt, A. V., Donnez, J., and Amorim, C. A. (2011). Immunohistochemical localization of growth factors after cryopreservation and 3 weeks’ xenotransplantation of human ovarian tissue. Fertil. Steril. 95, 1241–1246.
Immunohistochemical localization of growth factors after cryopreservation and 3 weeks’ xenotransplantation of human ovarian tissue.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjs1CksLk%3D&md5=542cdd8c4970c747294db8188d142611CAS |

Demirci, B., Salle, B., Frappart, L., Frank, M., Guerin, J. F., and Lornage, J. (2002). Morphological alterations and DNA fragmentation in oocytes from primordial and primary follicles after freezing–thawing of ovarian cortex in sheep. Fertil. Steril. 77, 595–600.
Morphological alterations and DNA fragmentation in oocytes from primordial and primary follicles after freezing–thawing of ovarian cortex in sheep.Crossref | GoogleScholarGoogle Scholar |

Donnez, J., Dolmans, M. M., Pellicer, A., Diaz-garcia, C., Serrano, M. S., Schmidt, K. T., Ernst, E., Luyckx, V., and Andersen, C. Y. (2013). Restoration of ovarian activity and pregnancy after transplantation of cryopreserved ovarian tissue: a review of 60 cases of reimplantation. Fertil. Steril. 99, 1503–1513.
Restoration of ovarian activity and pregnancy after transplantation of cryopreserved ovarian tissue: a review of 60 cases of reimplantation.Crossref | GoogleScholarGoogle Scholar |

Fadhillah, , Yoshioka, S., Nishimura, R., Yamamoto, Y., Kimura, K., and Okuda, K. (2017). Hypoxia-inducible factor 1 mediates hypoxia-enhanced synthesis of progesterone during luteinization of granulosa cells. J. Reprod. Dev. 63, 75–85.
Hypoxia-inducible factor 1 mediates hypoxia-enhanced synthesis of progesterone during luteinization of granulosa cells.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC2snlslWrug%3D%3D&md5=afdff8e19ded75c9cdb0a7114d45db36CAS |

Gavish, Z., Peer, G., Hadassa, R., Yoram, C., and Meirow, D. (2014). Follicles activation and burn-out contribute to post-transplantation follicles loss in ovarian tissue grafts: the effect of graft thickness. Hum. Reprod. 29, 989–996.
Follicles activation and burn-out contribute to post-transplantation follicles loss in ovarian tissue grafts: the effect of graft thickness.Crossref | GoogleScholarGoogle Scholar |

Ghetler, Y., Yavin, S., Shalgi, R., and Arav, A. (2005). The effect of chilling on membrane lipid phase transition in human oocytes and zygotes. Hum. Reprod. 20, 3385–3389.
The effect of chilling on membrane lipid phase transition in human oocytes and zygotes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Gltr3E&md5=f266abde745be24367a3031bd5ff73d3CAS |

Gosden, R. G. (2008). Ovary and uterus transplantation. Reproduction 136, 671–680.
Ovary and uterus transplantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXns1CksQ%3D%3D&md5=2ab4ba213c6edfc2f0336a6d67233a40CAS |

Gualtieri, R., Mollo, V., Barbato, V., Fiorentino, I., Iaccarino, M., and Talevi, R. (2011). Ultrastructure and intracellular calcium response during activation in vitrified and slow-frozen human oocytes. Hum. Reprod. 26, 2452–2460.
Ultrastructure and intracellular calcium response during activation in vitrified and slow-frozen human oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVynsrzE&md5=7821be53876076f4e9cfc4df14c25936CAS |

Jensen, A. K., Macklon, K. T., Fedder, J., Ernst, E., Humaidan, P., and Andersen, C. Y. (2017). 86 successful births and 9 ongoing pregnancies worldwide in women transplanted with frozen–thawed ovarian tissue: focus on birth and perinatal outcome in 40 of these children. J. Assist. Reprod. Genet. 34, 325–336.
86 successful births and 9 ongoing pregnancies worldwide in women transplanted with frozen–thawed ovarian tissue: focus on birth and perinatal outcome in 40 of these children.Crossref | GoogleScholarGoogle Scholar |

Jeruss, J. S., and Woodruff, T. K. (2009). Preservation of fertility in patients with cancer. N. Engl. J. Med. 360, 902–911.
Preservation of fertility in patients with cancer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXis1Cntr4%3D&md5=b7cae20d39079480a898280129885738CAS |

Kagawa, N., Silber, S., and Kuwayama, M. (2009). Successful vitrification of bovine and human ovarian tissue. Reprod. Biomed. Online 18, 568–577.
Successful vitrification of bovine and human ovarian tissue.Crossref | GoogleScholarGoogle Scholar |

Kawamura, K., Cheng, Y., Suzuki, N., Deguchi, M., Sato, Y., Takae, S., Ho, C. H., Kawamura, N., Tamura, M., Hashimoto, S., Sugishita, Y., Morimoto, Y., Hosoi, Y., Yoshioka, N., Ishizuka, B., and Hsueh, A. J. (2013). Hippo signaling disruption and Akt stimulation of ovarian follicles for infertility treatment. Proc. Natl Acad. Sci. USA 110, 17474–17479.
Hippo signaling disruption and Akt stimulation of ovarian follicles for infertility treatment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslejsLbN&md5=1d3bad2fdadc47f02a0b7ab7067db5f6CAS |

Kim, J. Y. (2012). Control of ovarian primordial follicle activation. Clin. Exp. Reprod. Med. 39, 10–14.
Control of ovarian primordial follicle activation.Crossref | GoogleScholarGoogle Scholar |

Kobayashi, N., Orisaka, M., Cao, M., Kotsuji, F., Leader, A., Sakuragi, N., and Tsang, B. K. (2009). Growth differentiation factor-9 mediates follicle-stimulating hormone-thyroid hormone interaction in the regulation of rat preantral follicular development. Endocrinology 150, 5566–5574.
Growth differentiation factor-9 mediates follicle-stimulating hormone-thyroid hormone interaction in the regulation of rat preantral follicular development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFGqtbrL&md5=4fa55bfb17e5e6e7fb50cce8f070adebCAS |

Livak, K. J., and Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(–Delta Delta C(T)) method. Methods 25, 402–408.
Analysis of relative gene expression data using real-time quantitative PCR and the 2(–Delta Delta C(T)) method.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtFelt7s%3D&md5=a80b5e0841c49e736a3564bfe77a7aa6CAS |

Lotz, L., Liebenthron, J., Nichols-Burns, S., Montag, M., Hoffmann, I., Beckmann, M. W., Van der Ven, H., Töpfer, D., and Dittrich, R. (2014). Spontaneous antral follicle formation and metaphase II oocyte from a non-stimulated prepubertal ovarian tissue xenotransplant. Reprod. Biol. Endocrinol. 12, 41.
Spontaneous antral follicle formation and metaphase II oocyte from a non-stimulated prepubertal ovarian tissue xenotransplant.Crossref | GoogleScholarGoogle Scholar |

Lunardi, F. O., Araújo, V. R., Faustino, L. R., Carvalho, A. A., Gonçalves, R. F. B., Bass, C. S., Báo, S. N., Name, K. P. O., Campello, C. C., Figueiredo, J. R., and Rodrigues, A. P. R. (2012). Morphologic, viability and ultrastructural analysis of vitrified sheep preantral follicles enclosed in ovarian tissue. Small Rumin. Res. 107, 121–130.
Morphologic, viability and ultrastructural analysis of vitrified sheep preantral follicles enclosed in ovarian tissue.Crossref | GoogleScholarGoogle Scholar |

Luyckx, V., Scalercio, S., Jadoul, P., Amorim, C. A., Soares, M., Donnez, J., and Dolmans, M. M. (2013). Evaluation of cryopreserved ovarian tissue from prepubertal patients after long-term xenografting and exogenous stimulation. Fertil. Steril. 100, 1350–1357.e3.
Evaluation of cryopreserved ovarian tissue from prepubertal patients after long-term xenografting and exogenous stimulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1ylsL%2FM&md5=5ca0d364b4ee3af4735367175321b8ccCAS |

Maffei, S., Hanenberg, M., Pennarossa, G., Silva, J. R., Brevini, T. A., Arav, A., and Gandolfi, F. (2013). Direct comparative analysis of conventional and directional freezing for the cryopreservation of whole ovaries. Fertil. Steril. 100, 1122–1131.
Direct comparative analysis of conventional and directional freezing for the cryopreservation of whole ovaries.Crossref | GoogleScholarGoogle Scholar |

Martins, F. S., Celestino, J. J. H., Saraiva, M. V. A., Matos, M. H. T., Bruno, J. B., Rocha-Junior, C. M. C., Lima-Verde, I. B., Lucci, C. M., Báo, S. N., and Figueiredo, J. R. (2008). Growth and differentiation factor-9 stimulates activation of goat primordial follicles in vitro and their progression to secondary follicles. Reprod. Fertil. Dev. 20, 916–924.
Growth and differentiation factor-9 stimulates activation of goat primordial follicles in vitro and their progression to secondary follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1Oks77L&md5=1b098147691030e833daf2393b9050f4CAS |

Men, H., Monson, R. L., Parrish, J. J., and Rutledge, J. J. (2003). Degeneration of cryopreserved bovine oocytes via apoptosis during subsequent culture. Cryobiology 47, 73–81.
Degeneration of cryopreserved bovine oocytes via apoptosis during subsequent culture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntVGmur4%3D&md5=559308762f1ee2c3c1573219b4b9634aCAS |

Migishima, F., Migishima, R. S., Quintero, R. B., Yokoyama, M., and Behr, B. R. (2006). Successful pregnancies after transplantation of frozen–thawed mouse ovaries into chimeric mice that received lethal-dose radiation. Fertil. Steril. 86, 1080–1087.
Successful pregnancies after transplantation of frozen–thawed mouse ovaries into chimeric mice that received lethal-dose radiation.Crossref | GoogleScholarGoogle Scholar |

Newton, H., Aubard, Y., Rutherford, A., Sharma, V., and Gosden, R. (1996). Low temperature storage and grafting of human ovarian tissue. Hum. Reprod. 11, 1487–1491.
Low temperature storage and grafting of human ovarian tissue.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK28zisVKqsA%3D%3D&md5=bd90031205d161b5ba627cf97bdac5f0CAS |

Nichols-Burns, S. M., Lotz, L., Schneider, H., Adamek, E., Daniel, C., Stief, A., Grigo, C., Klump, D., Hoffmann, I., Beckmann, M. W., and Dittrich, R. (2014). Preliminary observations on whole-ovary xenotransplantation as an experimental model for fertility preservation. Reprod. Biomed. Online 29, 621–626.
Preliminary observations on whole-ovary xenotransplantation as an experimental model for fertility preservation.Crossref | GoogleScholarGoogle Scholar |

Santos, R. R., Tharasanit, T., Figueiredo, J. R., van Haeften, T., and van den Hurk, R. (2006). Preservation of caprine preantral follicles viability after cryopreservation in sucrose and ethylene glycol. Cell Tissue Res. 325, 523–531.
Preservation of caprine preantral follicles viability after cryopreservation in sucrose and ethylene glycol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xnt1agt78%3D&md5=5489b99ac4d8f1dd257d22891d6df23dCAS |

Santos, R. R., Knijn, H. M., Vos, P. L., Oei, C. G., Van Loon, T., Colenbrander, B., Gadella, B. M., Van Den Hurk, R., and Roelen, B. A. (2009). Complete follicular development and recovery of ovarian function of frozen–thawed, autotransplanted caprine ovarian cortex. Fertil. Steril. 91, 1455–1458.
Complete follicular development and recovery of ovarian function of frozen–thawed, autotransplanted caprine ovarian cortex.Crossref | GoogleScholarGoogle Scholar |

Saraiva, M. V. A., Rossetto, R., Brito, I. R., Celestino, J. J. H., Silva, C. M. G., Faustino, L. R., Almeida, A., Bruno, J. B., Magalhães, D. M., Matos, M. H. T., Campello, C. C., and Figueiredo, J. R. (2010). Dynamic medium produces caprine embryo from preantral follicles grown in vitro. Reprod. Sci. 17, 1135–1143.
Dynamic medium produces caprine embryo from preantral follicles grown in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1akt77F&md5=413b896ecadbb3654d50901d3fe81464CAS |

Schmidt, K. T., Rosendahl, M., Ernst, E., Loft, A., Andersen, A. N., Dueholm, M., Ottosen, C., and Andersen, C. Y. (2011). Autotransplantation of cryopreserved ovarian tissue in 12 women with chemotherapy-induced premature ovarian failure: the Danish experience. Fertil. Steril. 95, 695–701.
Autotransplantation of cryopreserved ovarian tissue in 12 women with chemotherapy-induced premature ovarian failure: the Danish experience.Crossref | GoogleScholarGoogle Scholar |

Shea, L. D., Woodruff, T. K., and Shikanov, A. (2014). Bioengineering the ovarian follicle microenvironment. Annu. Rev. Biomed. Eng. 16, 29–52.
Bioengineering the ovarian follicle microenvironment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsVKgt77I&md5=c05f5659b7d6641c8dcd8b6e6725f09bCAS |

Silva, J. R. V., Van den Hurk, R., Van Tol, H. T. A., Roelen, B. A. J., and Figueiredo, J. R. (2005). Expression of growth differentiation factor 9 (GDF9), bone morphogenetic protein 15 (BMP15) and BMP receptors in the ovaries of goats. Mol. Reprod. Dev. 70, 11–19.
Expression of growth differentiation factor 9 (GDF9), bone morphogenetic protein 15 (BMP15) and BMP receptors in the ovaries of goats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVOitrzO&md5=9762f4ef08518692763cad071ed8490eCAS |

Soleimani, R., Heytens, E., and Oktay, K. (2011). Enhancement of neoangiogenesis and follicle survival by sphingosine-1-phosphate in human ovarian tissue xenotransplants PLoS One 6, e19475.
Enhancement of neoangiogenesis and follicle survival by sphingosine-1-phosphate in human ovarian tissue xenotransplantsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlsl2gtLs%3D&md5=b856833ac47fdc8a77f1fab4d5789dacCAS |

Suzuki, N., Yoshioka, N., Takae, S., Sugishita, Y., Tamura, M., Hashimoto, S., Morimoto, Y., and Kawamura, K. (2015). Successful fertility preservation following ovarian tissue vitrification in patients with primary ovarian insufficiency. Hum. Reprod. 30, 608–615.
Successful fertility preservation following ovarian tissue vitrification in patients with primary ovarian insufficiency.Crossref | GoogleScholarGoogle Scholar |

Ting, A. Y., Yeoman, R. R., Campos, J. R., Lawson, M. S., Mullen, S. F., Fahy, G. M., and Zelinski, M. B. (2013). Morphological and functional preservation of pre-antral follicles after vitrification of macaque ovarian tissue in a closed system. Hum. Reprod. 28, 1267–1279.
Morphological and functional preservation of pre-antral follicles after vitrification of macaque ovarian tissue in a closed system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmtlagsLw%3D&md5=b8273fc0e0b1137fd13f28bbe64db868CAS |

Vajta, G., Holm, P., Kuwayama, M., Booth, P. J., Jacobsen, H., Greve, T., and Callesen, H. (1998). Open pulled straw (OPS) vitrification: a new way to reduce cryoinjuries of bovine ova and embryos. Mol. Reprod. Dev. 51, 53–58.
Open pulled straw (OPS) vitrification: a new way to reduce cryoinjuries of bovine ova and embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXltVGrs7g%3D&md5=cbadfbd9f46ac94db584d07cbfed6db0CAS |

Wang, J., and Roy, S. K. (2004). Growth differentiation factor-9 and stem cell factor promote primordial follicle formation in the hamster: modulation by follicle-stimulating hormone. Biol. Reprod. 70, 577–585.
Growth differentiation factor-9 and stem cell factor promote primordial follicle formation in the hamster: modulation by follicle-stimulating hormone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhs1Chsrc%3D&md5=4ed9b84571d22628d2a194ae8b7599afCAS |

Wang, S., Yang, S., Lai, Z., Ding, T., Shen, W., Shi, L., Jiang, J., Ma, L., Tian, Y., Du, X., Luo, A., and Wang, S. (2013). Effects of culture and transplantation on follicle activation and early follicular growth in neonatal mouse ovaries. Cell Tissue Res. 354, 609–621.
Effects of culture and transplantation on follicle activation and early follicular growth in neonatal mouse ovaries.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslWmtrfE&md5=8da5053788507ce16551d205efa2cd38CAS |

Woodruff, T. K. (2007). The emergence of a new interdiscipline: oncofertility. Cancer Treat. Res. 138, 3–11.
The emergence of a new interdiscipline: oncofertility.Crossref | GoogleScholarGoogle Scholar |

Woodruff, T. K. (2010). The Oncofertility Consortium – addressing fertility in young people with cancer. Nat. Rev. Clin. Oncol. 7, 466–475.
The Oncofertility Consortium – addressing fertility in young people with cancer.Crossref | GoogleScholarGoogle Scholar |