Role of A-kinase anchoring protein 95 in the regulation of cytochrome P450 family 19 subfamily A member 1 (CYP19A1) in human ovarian granulosa cells
Yu Gu A B , Wenbin Xu A , Bole Zhuang A and Wei Fu AA Obstetrics and Gynecology Hospital of Fudan University, No. 128 Shenyang Road, Shanghai 200090, P.R. China.
B Corresponding author. Email: guyu@mierxuan.com
Reproduction, Fertility and Development 30(8) 1128-1136 https://doi.org/10.1071/RD17313
Submitted: 1 August 2017 Accepted: 2 January 2018 Published: 5 February 2018
Abstract
Irregular expression of cytochrome P450 family 19 subfamily A member 1 (CYP19A1) is involved in the development of polycystic ovary syndrome (PCOS). Activation of the cAMP/protein kinase A (PKA)/cAMP response element-binding protein (CREB) pathway plays a crucial role in FSH regulation of CYP19A1 in human ovarian granulosa cells. A-Kinase anchor protein 95 (AKAP95) is known to confine PKA to the nucleus. However, it is unclear whether anchoring PKA to the nucleus is essential for the induction of CYP19A1 by FSH in human ovarian granulosa cells. Using the human granulosa cell line KGN and primary cultured human luteinised granulosa cells (hLGCs), we found that knockdown of AKAP8, the gene encoding AKAP95, or inhibition of AKAP95 reduced the amount of PKA anchored in the nucleus and attenuated the phosphorylation of CREB by either FSH or activation of the cAMP/PKA pathway. Moreover, knockdown of AKAP8 or inhibition of AKAP95 also significantly attenuated FSH-induced CYP19A1 expression and oestrogen synthesis. Furthermore, significant decreases in AKAP95 and CYP19A1 were observed in hLGCs obtained from PCOS patients. The results of the present study demonstrate a crucial role for AKAP95 in CYP19A1 expression and oestrogen synthesis in hLGCs, which implies that AKAP95 may be involved in the pathogenesis of PCOS.
Additional keywords: aromatase; cAMP response element-binding protein, protein kinase A, polycystic ovary syndrome.
References
Bito, H., Deisseroth, K., and Tsien, R. W. (1996). CREB phosphorylation and dephosphorylation: a Ca(2+)- and stimulus duration-dependent switch for hippocampal gene expression. Cell 87, 1203–1214.| CREB phosphorylation and dephosphorylation: a Ca(2+)- and stimulus duration-dependent switch for hippocampal gene expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXit1KrtQ%3D%3D&md5=44d937cbfec6bb73cb86c47c91245be0CAS |
Carlone, D. L., and Richards, J. S. (1997). Functional interactions, phosphorylation, and levels of 3′,5′-cyclic adenosine monophosphate-regulatory element binding protein and steroidogenic factor-1 mediate hormone-regulated and constitutive expression of aromatase in gonadal cells. Mol. Endocrinol. 11, 292–304.
| 1:CAS:528:DyaK2sXhvVOns7w%3D&md5=5569ea37c1baa3839837d8f3c9d61b64CAS |
Chen, S. A., Besman, M. J., Sparkes, R. S., Zollman, S., Klisak, I., Mohandas, T., Hall, P. F., and Shively, J. E. (1988). Human aromatase: cDNA cloning, Southern blot analysis, and assignment of the gene to chromosome 15. DNA 7, 27–38.
| Human aromatase: cDNA cloning, Southern blot analysis, and assignment of the gene to chromosome 15.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXktlaqtLY%3D&md5=c9bae395280873788833c9be6677ac48CAS |
Coghlan, V. M., Langeberg, L. K., Fernandez, A., Lamb, N. J., and Scott, J. D. (1994). Cloning and characterization of AKAP 95, a nuclear protein that associates with the regulatory subunit of type II cAMP-dependent protein kinase. J. Biol. Chem. 269, 7658–7665.
| 1:CAS:528:DyaK2cXkt1yisbo%3D&md5=6842fec0d146a4328bb61c54c9d4d85fCAS |
Colledge, M., and Scott, J. D. (1999). AKAPs: from structure to function. Trends Cell Biol. 9, 216–221.
| AKAPs: from structure to function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjvFOrurk%3D&md5=4a2e5926dc989739078729f9e8ba91f5CAS |
Constantinescu, A., Diamond, I., and Gordon, A. S. (1999). Ethanol-induced translocation of cAMP-dependent protein kinase to the nucleus. Mechanism and functional consequences. J. Biol. Chem. 274, 26985–26991.
| Ethanol-induced translocation of cAMP-dependent protein kinase to the nucleus. Mechanism and functional consequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmt1aksbc%3D&md5=f4f5f512c545aada66e063d130eae2c1CAS |
Ehrmann, D. A. (2005). Polycystic ovary syndrome. N. Engl. J. Med. 352, 1223–1236.
| Polycystic ovary syndrome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXisFShtL8%3D&md5=7e41c860ce78272a7ab4593f770e36daCAS |
Eide, T., Coghlan, V., Orstavik, S., Holsve, C., Solberg, R., Skalhegg, B. S., Lamb, N. J., Langeberg, L., Fernandez, A., Scott, J. D., Jahnsen, T., and Tasken, K. (1998). Molecular cloning, chromosomal localization, and cell cycle-dependent subcellular distribution of the A-kinase anchoring protein, AKAP95. Exp. Cell Res. 238, 305–316.
| Molecular cloning, chromosomal localization, and cell cycle-dependent subcellular distribution of the A-kinase anchoring protein, AKAP95.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhtVGitrY%3D&md5=965d9c3923f867d649d106c7a127b291CAS |
Enslen, H., Tokumitsu, H., and Soderling, T. R. (1995). Phosphorylation of CREB by CaM-kinase IV activated by CaM-kinase IV kinase. Biochem. Biophys. Res. Commun. 207, 1038–1043.
| Phosphorylation of CREB by CaM-kinase IV activated by CaM-kinase IV kinase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjvVyqs7w%3D&md5=3c777065fad59f869a6124934cb0dd79CAS |
Erickson, G. F., Hsueh, A. J., Quigley, M. E., Rebar, R. W., and Yen, S. S. (1979). Functional studies of aromatase activity in human granulosa cells from normal and polycystic ovaries. J. Clin. Endocrinol. Metab. 49, 514–519.
| Functional studies of aromatase activity in human granulosa cells from normal and polycystic ovaries.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXktleh&md5=b2e498871266019e42b76def86737accCAS |
Escobar-Morreale, H. F., Luque-Ramirez, M., and San Millan, J. L. (2005). The molecular-genetic basis of functional hyperandrogenism and the polycystic ovary syndrome. Endocr. Rev. 26, 251–282.
| The molecular-genetic basis of functional hyperandrogenism and the polycystic ovary syndrome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjslGjtrw%3D&md5=91b6097fa99f80ab532e0a744d539abfCAS |
Esseltine, J. L., and Scott, J. D. (2013). AKAP signaling complexes: pointing towards the next generation of therapeutic targets? Trends Pharmacol. Sci. 34, 648–655.
| AKAP signaling complexes: pointing towards the next generation of therapeutic targets?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslKqu73L&md5=9de95aa2a6ef87c815218a4e789a650dCAS |
Feliciello, A., Gottesman, M. E., and Avvedimento, E. V. (2001). The biological functions of A-kinase anchor proteins. J. Mol. Biol. 308, 99–114.
| The biological functions of A-kinase anchor proteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjtVShsL4%3D&md5=112d2d771930a54626f3a1b5bd7af298CAS |
Fetalvero, K. M., Zhang, P., Shyu, M., Young, B. T., Hwa, J., Young, R. C., and Martin, K. A. (2008). Prostacyclin primes pregnant human myometrium for an enhanced contractile response in parturition. J. Clin. Invest. 118, 3966–3979.
| 1:CAS:528:DC%2BD1cXhsVKgu7rL&md5=c75399ecce51cc4dfebb66e0bc7d8615CAS |
Földesi, I., Breckwoldt, M., and Neulen, J. (1998). Oestradiol production by luteinized human granulosa cells: evidence of the stimulatory action of recombinant human follicle stimulating hormone. Hum. Reprod. 13, 1455–1460.
| Oestradiol production by luteinized human granulosa cells: evidence of the stimulatory action of recombinant human follicle stimulating hormone.Crossref | GoogleScholarGoogle Scholar |
Franks, S., Stark, J., and Hardy, K. (2008). Follicle dynamics and anovulation in polycystic ovary syndrome. Hum. Reprod. Update 14, 367–378.
| Follicle dynamics and anovulation in polycystic ovary syndrome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnt1SksLo%3D&md5=01296af1c1eeab1c2c253af499495536CAS |
Herberg, F. W., Maleszka, A., Eide, T., Vossebein, L., and Tasken, K. (2000). Analysis of A-kinase anchoring protein (AKAP) interaction with protein kinase A (PKA) regulatory subunits: PKA isoform specificity in AKAP binding. J. Mol. Biol. 298, 329–339.
| Analysis of A-kinase anchoring protein (AKAP) interaction with protein kinase A (PKA) regulatory subunits: PKA isoform specificity in AKAP binding.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXitl2ru7g%3D&md5=adadd2defd6459c31a1ac79877476aeeCAS |
Hsueh, A. J., Adashi, E. Y., Jones, P. B., and Welsh, T. H. (1984). Hormonal regulation of the differentiation of cultured ovarian granulosa cells. Endocr. Rev. 5, 76–127.
| Hormonal regulation of the differentiation of cultured ovarian granulosa cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXhvVGrtrc%3D&md5=a01f46e5281be798b45a83769a37cd4eCAS |
Jakimiuk, A. J., Weitsman, S. R., Brzechffa, P. R., and Magoffin, D. A. (1998). Aromatase mRNA expression in individual follicles from polycystic ovaries. Mol. Hum. Reprod. 4, 1–8.
| Aromatase mRNA expression in individual follicles from polycystic ovaries.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhvV2qt7g%3D&md5=3d4ccd29c82778ba365545f0f548997bCAS |
Kim, C., Xuong, N. H., and Taylor, S. S. (2005). Crystal structure of a complex between the catalytic and regulatory (RIalpha) subunits of PKA. Science 307, 690–696.
| Crystal structure of a complex between the catalytic and regulatory (RIalpha) subunits of PKA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpt1ajsw%3D%3D&md5=ce3132af697b169579d14e98ec225779CAS |
Landsverk, H. B., Carlson, C. R., Steen, R. L., Vossebein, L., Herberg, F. W., Tasken, K., and Collas, P. (2001). Regulation of anchoring of the RIIalpha regulatory subunit of PKA to AKAP95 by threonine phosphorylation of RIIalpha: implications for chromosome dynamics at mitosis. J. Cell Sci. 114, 3255–3264.
| 1:CAS:528:DC%2BD3MXns1Gns70%3D&md5=6565ebd45d58139a380840d85dde5a6dCAS |
Michael, M. D., Michael, L. F., and Simpson, E. R. (1997). A CRE-like sequence that binds CREB and contributes to cAMP-dependent regulation of the proximal promoter of the human aromatase P450 (CYP19) gene. Mol. Cell. Endocrinol. 134, 147–156.
| A CRE-like sequence that binds CREB and contributes to cAMP-dependent regulation of the proximal promoter of the human aromatase P450 (CYP19) gene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnsF2hsLc%3D&md5=27727d59ed294f27538b461865f5d64cCAS |
Misajon, A., Hutchinson, P., Lolatgis, N., Trounson, A. O., and Almahbobi, G. (1999). The mechanism of action of epidermal growth factor and transforming growth factor alpha on aromatase activity in granulosa cells from polycystic ovaries. Mol. Hum. Reprod. 5, 96–103.
| The mechanism of action of epidermal growth factor and transforming growth factor alpha on aromatase activity in granulosa cells from polycystic ovaries.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhs1Cnur8%3D&md5=57afcf89785f4a30bf50f222709cffe3CAS |
Norman, R. J., Dewailly, D., Legro, R. S., and Hickey, T. E. (2007). Polycystic ovary syndrome. Lancet 370, 685–697.
| Polycystic ovary syndrome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpsFWrtrk%3D&md5=77eac6b36b59734e17d1b20c3eb19d81CAS |
Perino, A., Ghigo, A., Scott, J. D., and Hirsch, E. (2012). Anchoring proteins as regulators of signaling pathways. Circ. Res. 111, 482–492.
| Anchoring proteins as regulators of signaling pathways.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFaksrbM&md5=f0cbbe7c9b7b23d6c083e045ffaa5c9fCAS |
Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group (2004). Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil. Steril. 81, 19–25.
| Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome.Crossref | GoogleScholarGoogle Scholar |
Seki, N., Ueki, N., Yano, K., Saito, T., Masuho, Y., and Muramatsu, M. (2000). cDNA cloning of a novel human gene NAKAP95, neighbor of A-kinase anchoring protein 95 (AKAP95) on chromosome 19p13.11–p13.12 region. J. Hum. Genet. 45, 31–37.
| cDNA cloning of a novel human gene NAKAP95, neighbor of A-kinase anchoring protein 95 (AKAP95) on chromosome 19p13.11–p13.12 region.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXkslSruw%3D%3D&md5=dbc17dcf6e1dc206dc15d41b86fceb17CAS |
Skalhegg, B. S., and Tasken, K. (2000). Specificity in the cAMP/PKA signaling pathway. Differential expression,regulation, and subcellular localization of subunits of PKA. Front. Biosci. 5, D678–D693.
| 1:CAS:528:DC%2BD3cXlslOqu70%3D&md5=62b923ac2c99ce386518b2a5e6edfc25CAS |
Skroblin, P., Grossmann, S., Schafer, G., Rosenthal, W., and Klussmann, E. (2010). Mechanisms of protein kinase A anchoring. Int. Rev. Cell Mol. Biol. 283, 235–330.
| Mechanisms of protein kinase A anchoring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFKnsr%2FP&md5=b351310d3208f0be9c529abe6f0d8c55CAS |
Sprengel, R., Braun, T., Nikolics, K., Segaloff, D. L., and Seeburg, P. H. (1990). The testicular receptor for follicle stimulating hormone: structure and functional expression of cloned cDNA. Mol. Endocrinol. 4, 525–530.
| The testicular receptor for follicle stimulating hormone: structure and functional expression of cloned cDNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXmtVGkurg%3D&md5=1baa1644a427a34246286950e8dd968eCAS |
Steinkampf, M. P., Mendelson, C. R., and Simpson, E. R. (1987). Regulation by follicle-stimulating hormone of the synthesis of aromatase cytochrome P-450 in human granulosa cells. Mol. Endocrinol. 1, 465–471.
| Regulation by follicle-stimulating hormone of the synthesis of aromatase cytochrome P-450 in human granulosa cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXmt12msL4%3D&md5=8a8b6c4eec86a5bdac5257f57313dbc1CAS |
Taggart, M. J., Europe-Finner, G. N., and Mitchell, B. F. (2008). Possible dual roles for prostacyclin in human pregnancy and labor. J. Clin. Invest. 118, 3829–3832.
| 1:CAS:528:DC%2BD1cXhsVKgu73N&md5=55c9b5e2fd01fa28d344c63b9c2f48f7CAS |
Taylor, S. S., Ilouz, R., Zhang, P., and Kornev, A. P. (2012). Assembly of allosteric macromolecular switches: lessons from PKA. Nat. Rev. Mol. Cell Biol. 13, 646–658.
| Assembly of allosteric macromolecular switches: lessons from PKA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlKrsb7P&md5=53284d127c1897ad4364184d5790a2bbCAS |
Wong, W., and Scott, J. D. (2004). AKAP signalling complexes: focal points in space and time. Nat. Rev. Mol. Cell Biol. 5, 959–970.
| AKAP signalling complexes: focal points in space and time.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVarsbzJ&md5=77ddd5bbb10e906f58000b412ccc3a1dCAS |