Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Systemic adiponectin treatment reverses polycystic ovary syndrome-like features in an animal model

Anusha Singh A , Puran Bora B and Amitabh Krishna A C
+ Author Affiliations
- Author Affiliations

A Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.

B Jones Eye Institute, Pat and Willard Walker Eye Research Center, University of Arkansas for Medical Sciences, 4301 West Markham, Little Rock, AR 72205, USA.

C Corresponding author. Email: akrishna_ak@yahoo.co.in

Reproduction, Fertility and Development 30(4) 571-584 https://doi.org/10.1071/RD17255
Submitted: 2 February 2017  Accepted: 9 August 2017   Published: 15 September 2017

Abstract

The present study examined the efficacy of adiponectin for regulating the reproductive, metabolic and fertility status of mice with polycystic ovary syndrome (PCOS). PCOS was induced in prepubertal (21- to 22-day-old) mice using dehydroepiandrosterone (6 mg 100 g−1 day−1 for 25 days), after which mice were administered either a low or high dose of adiponectin (5 or 15 µg mL−1, s.c., respectively). PCOS mice exhibited typical features, including the presence of numerous cystic follicles, increased circulating androgens, increased body mass, altered steroidogenesis, decreased insulin receptor expression and increased serum triglycerides, serum glucose, Toll-like receptor (TLR)-4 (a marker of inflammation) and vascular endothelial growth factor (VEGF; a marker of angiogenesis). These parameters were significantly correlated with a reduction in adiponectin in PCOS mice compared with vehicle-treated control mice. Exogenous adiponectin treatment of PCOS mice restored body mass and circulating androgen, triglyceride and glucose levels. Adiponectin also restored ovarian expression of steroidogenic markers (LH receptors, steroidogenic acute regulatory protein and 3β-hydroxysteroid dehydrogenase), insulin receptor, TLR-4 and VEGF levels in control mice. Adiponectin restored ovulation in PCOS mice, as indicated by the presence of a corpus luteum and attainment of pregnancy. These findings suggest that adiponectin effectively facilitates fertility in anovulatory PCOS. We hypothesise that systemic adiponectin treatment may be a promising therapeutic strategy for the management of PCOS.

Additional keywords: androgen, fertility.


References

Abhilasha, , and Krishna, A. (1996). High androgen production by ovarian thecal interstitial cells: a mechanism for delayed ovulation in a tropical vespertilionid bat, Scotophilus heathi. J. Reprod. Fertil. 106, 207–211.
High androgen production by ovarian thecal interstitial cells: a mechanism for delayed ovulation in a tropical vespertilionid bat, Scotophilus heathi.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XitFKnsbY%3D&md5=6413c266912979f0bd2700c3d8c57b11CAS |

Agrawal, R., Jacobs, H., Payne, N., and Conway, G. (2002). Concentration of vascular endothelial growth factor released by cultured human luteinized granulosa cells is higher in women with polycystic ovaries than in women with normal ovaries. Fertil. Steril. 78, 1164–1169.
Concentration of vascular endothelial growth factor released by cultured human luteinized granulosa cells is higher in women with polycystic ovaries than in women with normal ovaries.Crossref | GoogleScholarGoogle Scholar |

Anjum, S., Krishna, A., and Tsutsui, K. (2014). Inhibitory roles of the mammalian GnIH ortholog RFRP3 in testicular activities in adult mice. J. Endocrinol. 223, 79–91.
Inhibitory roles of the mammalian GnIH ortholog RFRP3 in testicular activities in adult mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvFWht7%2FO&md5=fed52c08bdb99bf865b385d354d9ed3eCAS |

Badawy, A., and Elnashar, A. (2011). Treatment options for polycystic ovary syndrome. Int. J. Womens Health 3, 25–35.
Treatment options for polycystic ovary syndrome.Crossref | GoogleScholarGoogle Scholar |

Banerjee, A., Anjum, S., Verma, R., and Krishna, A. (2012). Alteration in expression of estradiol receptor alpha and beta, and aromatase in the testis and its relation with changes in nitric oxide during aging in mice. Steroids 77, 609–620.
Alteration in expression of estradiol receptor alpha and beta, and aromatase in the testis and its relation with changes in nitric oxide during aging in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjs1OqtL4%3D&md5=ddbf34b0bd04113d5acbdee4e08b850aCAS |

Barber, T. M., Mc Carthy, M. I., Wass, J. A. H., and Franks, S. (2006). Obesity and polycystic ovary syndrome. Clin. Endocrinol. (Oxf.) 65, 137–145.
Obesity and polycystic ovary syndrome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpvFOqtro%3D&md5=28837a8183c6458b987aa4e99b495fefCAS |

Bohler, H., Mokshagundam, S., and Winters, S. J. (2010). Adipose tissue and reproduction in women. Fertil. Steril. 94, 795–825.
Adipose tissue and reproduction in women.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpsVGhsbg%3D&md5=977c77358a2509d8c9c003d187efe633CAS |

Carmina, E., Orio, F., Palomba, S., Cascella, T., Longo, R. A., Colao, A. M., Lombardi, G., and Lobo, R. A. (2005). Evidence for altered adipocyte function in polycystic ovary syndrome. Eur. J. Endocrinol. 152, 389–394.
Evidence for altered adipocyte function in polycystic ovary syndrome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXivVClu7k%3D&md5=4df76f551c304c827b10aa854e143178CAS |

Chabrolle, C., Tosca, L., Crochet, S., Tesseraud, S., and Dupont, J. (2007a). Expression of adiponectin and its receptors (AdipoR1 and AdipoR2) in chicken ovary: potential role in ovarian steroidogenesis. Domest. Anim. Endocrinol. 33, 480–487.
Expression of adiponectin and its receptors (AdipoR1 and AdipoR2) in chicken ovary: potential role in ovarian steroidogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFenu7rJ&md5=ffc8e37615825b0bc16c6d8d00e06b52CAS |

Chabrolle, C., Tosca, L., and Dupont, J. (2007b). Regulation of adiponectin and its receptors in rat ovary by human chorionic gonadotrophin treatment and potential involvement of adiponectin in granulosa cell steroidogenesis. Reproduction 133, 719–731.
Regulation of adiponectin and its receptors in rat ovary by human chorionic gonadotrophin treatment and potential involvement of adiponectin in granulosa cell steroidogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmsFeku7o%3D&md5=8b6c90738fe20d3db250ca72695f5cacCAS |

Chabrolle, C., Tosca, L., Rame, C., Lecomte, P., Royere, D., and Dupont, J. (2009). Adiponectin increases insulin- like growth factor I- induced progesterone and estradiol secretion in human granulosa cells. Fertil. Steril. 92, 1988–1996.
Adiponectin increases insulin- like growth factor I- induced progesterone and estradiol secretion in human granulosa cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitFGisLs%3D&md5=ced54de67470d6f656795e55f6c7bb4aCAS |

Chaves, R. N., Alves, A. M. C. V., Faustino, L. R., Oliveira, K. P. L., Campello, C. C., Lopes, C. A. P., Báo, S. N., and Figueiredo, J. R. (2011). How the concentration of insulin affects the development of preantral follicles in goats. Cell Tissue Res. 346, 451–456.
How the concentration of insulin affects the development of preantral follicles in goats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1OqsL3P&md5=06b0911f5ec26a9512aa5a7c6f309903CAS |

Chen, X., Jia, X., Qiao, J., Guan, Y., and Kang, J. (2013). Adipokines in reproductive function: a link between obesity and polycystic ovary syndrome. J. Mol. Endocrinol. 50, R21–R37.
Adipokines in reproductive function: a link between obesity and polycystic ovary syndrome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmsFeju7g%3D&md5=3630bcf266a3922cf914b86606a70ef8CAS |

Comim, F. V., Hardy, K., and Franks, S. (2013). Adiponectin and its receptors in the ovary: further evidence for a link between obesity and hyperandrogenism in polycystic ovary syndrome. PLoS One 8, e80416.
Adiponectin and its receptors in the ovary: further evidence for a link between obesity and hyperandrogenism in polycystic ovary syndrome.Crossref | GoogleScholarGoogle Scholar |

Considine, R. V. (1997). Weight regulation, leptin and growth hormone. Horm. Res. 48, 116–121.
Weight regulation, leptin and growth hormone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnvFyns7w%3D&md5=d080277c89c92410df8ef875b449b15cCAS |

Diamanti-Kandarakis, E., and Papavassiliou, A. G. (2006). Molecular mechanism of insulin resistance in polycystic ovary syndrome. Trends Mol. Med. 12, 324–332.
Molecular mechanism of insulin resistance in polycystic ovary syndrome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XntlWit7s%3D&md5=5a3064f037be93f295679ed944c95241CAS |

Ducluzeau, P. H., Cousin, P., Malvoisin, E., Bornet, H., Vidal, H., Laville, M., and Pugeat, M. (2003). Glucose-to-insulin ratio rather than sex hormone-binding globulin and adiponectin levels is the best predictor of insulin resistance in nonobese women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 88, 3626–3631.
Glucose-to-insulin ratio rather than sex hormone-binding globulin and adiponectin levels is the best predictor of insulin resistance in nonobese women with polycystic ovary syndrome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmsFOktro%3D&md5=953799c6bc9f0c60114e3a238a0e1411CAS |

Escobar-Morreale, H. F., Villuendas, G., Botella-Carretero, J. I., Alvarez-Blasco, F., Sanchón, R., Luque-Ramírez, M., and San Millán, J. L. (2006). Adiponectin and resistin in PCOS: a clinical, biochemical and molecular genetic study. Hum. Reprod. 21, 2257–2265.
Adiponectin and resistin in PCOS: a clinical, biochemical and molecular genetic study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVWlt7rI&md5=3f5b5f579fdfe0d724f6f5e832de6184CAS |

Faraj, M., Havel, P. J., Phe’lis, S., Blank, D., Sniderman, A. D., and Cianflone, K. (2003). Plasma acylation-stimulating protein, adiponectin, leptin and ghrelin before and after weight loss induced by gastric bypass surgery in morbidly obese subjects. J. Clin. Endocrinol. Metab. 88, 1594–1602.
Plasma acylation-stimulating protein, adiponectin, leptin and ghrelin before and after weight loss induced by gastric bypass surgery in morbidly obese subjects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtFClsL0%3D&md5=1ff5d4d0b92e8099bfb2f49cc0ea9f04CAS |

Fedorcsák, P., Dale, P. O., Storeng, R., Åbyholm, T., and Tanbo, T. (2003). The effect of metformin on ovarian stimulation and in vitro fertilization in insulin-resistant women with polycystic ovary syndrome: an open-label randomized cross-over trial. Gynecol. Endocrinol. 17, 207–214.
The effect of metformin on ovarian stimulation and in vitro fertilization in insulin-resistant women with polycystic ovary syndrome: an open-label randomized cross-over trial.Crossref | GoogleScholarGoogle Scholar |

Franks, S. (1995). Polycystic ovary syndrome. N. Engl. J. Med. 333, 853–861.
Polycystic ovary syndrome.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2MznvF2jug%3D%3D&md5=7a50a74b14f95529ea6454e81896f142CAS |

Fruebis, J., Tsao, T. S., Javorschi, S., Ebbets-Reed, D., Erickson, M. R., Yen, F. T., Bihain, B. E., and Lodish, H. F. (2001). Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc. Natl Acad. Sci. USA 98, 2005–2010.
Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhsVWit78%3D&md5=f926cd7cf299dafacafda2105cd16175CAS |

Goodarzi, M. O., Dumesic, D. A., Chazenbalk, G., and Azziz, R. (2011). Polycystic ovary syndrome: etiology, pathogenesis and diagnosis. Nat. Rev. Endocrinol. 7, 219–231.
Polycystic ovary syndrome: etiology, pathogenesis and diagnosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjs1Cgt7s%3D&md5=5b640c7ce32953e7ed48333b97b000e6CAS |

Harborne, L., Fleming, R., Lyall, H., Sattar, N., and Norman, J. (2003). Metformine or antiandrogen in the treatment of hirsutism in polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 88, 4116–4123.
Metformine or antiandrogen in the treatment of hirsutism in polycystic ovary syndrome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntlahurs%3D&md5=690a24b4f01b61f1b1b7d3d47f7e2c62CAS |

Jenke, A., Wilk, S., Poller, W., Eriksson, U., Valaperti, A., Rauch, B. H., Stroux, A., Liu, P., Schultheiss, H.-P., Scheibenbogen, C., and Skurk, C. (2013). Adiponectin protects against Toll-like receptor 4-mediated cardiac inflammation and injury. Cardiovasc. Res. 99, 422–431.
Adiponectin protects against Toll-like receptor 4-mediated cardiac inflammation and injury.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFCksLrL&md5=e70d65451dec0f8215a9019b6263741cCAS |

Jonard, S., and Dewailly, D. (2004). The follicular excess in polycystic ovaries, due to intra-ovarian hyperandrogenism, may be the main culprit for the follicular arrest. Hum. Reprod. Update 10, 107–117.
The follicular excess in polycystic ovaries, due to intra-ovarian hyperandrogenism, may be the main culprit for the follicular arrest.Crossref | GoogleScholarGoogle Scholar |

Kousta, E., White, D. M., Cela, E., McCarthy, M. I., and Franks, S. (1999). The prevalence of polycystic ovaries in women with infertility. Hum. Reprod. 14, 2720–2723.
The prevalence of polycystic ovaries in women with infertility.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c%2FhvVajsg%3D%3D&md5=50ddc4397f5576875c1c53ea91a2adddCAS |

Kubota, N., Terauchi, Y., Yamauchi, T., Kubota, T., Moroi, M., Matsui, J., Eto, K., Yamashita, T., Kamon, J., Satoh, H., Yano, W., Froguel, P., Nagai, R., Kimura, S., Kadowaki, T., and Noda, T. (2002). Disruption of adiponectin causes insulin resistance and neointimal formation. J. Biol. Chem. 277, 25863–25866.
Disruption of adiponectin causes insulin resistance and neointimal formation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlsFKrs7o%3D&md5=e74ce6b608495a6cbf634352182eb858CAS |

Lagaly, D. V., Aad, P. Y., Grado-Ahuir, J. A., Hulsey, L. B., and Spicer, L. J. (2008). Role of adiponectin in regulating ovarian theca and granulosa cell function. Mol. Cell. Endocrinol. 284, 38–45.
Role of adiponectin in regulating ovarian theca and granulosa cell function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXislSlt7Y%3D&md5=80b5cd168cbe23f1d359432f168d452fCAS |

Ledoux, S., Campos, D. B., Lopes, F. L., Dobias-Goff, M., Palin, M. F., and Murphy, B. D. (2006). Adiponectin induces periovulatory changes in ovarian follicular cells. Endocrinology 147, 5178–5186.
Adiponectin induces periovulatory changes in ovarian follicular cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFCgsL3E&md5=eab81ff482168ccdb09f0c06df4972e5CAS |

Legro, R. S. (2003). Diagnostic criteria in polycystic ovary syndrome. Semin. Reprod. Med. 21, 267–276.
Diagnostic criteria in polycystic ovary syndrome.Crossref | GoogleScholarGoogle Scholar |

Liu, Y. H., Tsai, E. M., Wu, L. C., Chen, S. Y., Chang, Y. H., Jong, S. B., and Chan, T. F. (2005). Higher basal adiponectin levels are associated with better ovarian response to gonadotropin stimulation during in vitro fertilization. Gynecol. Obstet. Invest. 60, 167–170.
Higher basal adiponectin levels are associated with better ovarian response to gonadotropin stimulation during in vitro fertilization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVyks7bO&md5=3bad24f01fd7762d487bb7da20f4c20aCAS |

Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951). Protein measurement with the folin phenol reagent. J. Biol. Chem. 193, 265–275.
| 1:CAS:528:DyaG38XhsVyrsw%3D%3D&md5=543feb0ae4d03a840b0d5387fc0cd0f1CAS |

Meenakumari, K. J., Agarwal, S., Krishna, A., and Pandey, L. K. (2004). Effect of metformine treatment on luteal phase progesterone concentration in polycystic ovary syndrome. Braz. J. Med. Biol. Res. 37, 1637–1644.
Effect of metformine treatment on luteal phase progesterone concentration in polycystic ovary syndrome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFShs77P&md5=6a9f461ee85f4cd5caf948dd255b8f52CAS |

Michalakis, K. G., and Segars, J. H. (2010). The role of adiponectin in reproduction: from polycystic ovary syndrome to assisted reproduction. Fertil. Steril. 94, 1949–1957.
The role of adiponectin in reproduction: from polycystic ovary syndrome to assisted reproduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlent73O&md5=ad7655dd0cabfee213e412dc20803e9cCAS |

Moghetti, P., Castello, R., Negri, C., Tosi, F., Perrone, F., Caputo, M., Zanolin, E., and Muggeo, M. (2000). Metformine effects on clinical features, endocrine and metabolic profiles, and insulin sensitivity in polycystic ovary syndrome: a randomized, double-blind, placebo-controlled 6- month trial, followed by open, long-term clinical evaluation. J. Clin. Endocrinol. Metab. 85, 139–146.
| 1:CAS:528:DC%2BD3cXjtl2huw%3D%3D&md5=a57827c310b244f89298cf7169cb1095CAS |

Motta, A. B. (2010). Dehydroepiandrosterone to induce murine models for the study of polycystic ovary syndrome. J. Steroid Biochem. Mol. Biol. 119, 105–111.
Dehydroepiandrosterone to induce murine models for the study of polycystic ovary syndrome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjvFKgurY%3D&md5=cdab7256194475ee6a5a6e7b9bbcb7eaCAS |

Nestler, J. E. (1997). Insulin regulation of human ovarian androgens. Hum. Reprod. 12, 53–62.
Insulin regulation of human ovarian androgens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnsFKnt74%3D&md5=71fcdb6a88a586c410366508d1d4049cCAS |

Orio, F. (2003). Adiponectin levels in women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 88, 2619–2623.
Adiponectin levels in women with polycystic ovary syndrome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkslCrsr0%3D&md5=b7d04bd9d60e6693b0767f2c436ff5d3CAS |

Pandey, V., Singh, A., Singh, A., Krishna, A., Pandey, U., and Tripathi, Y. B. (2016). Role of oxidative stress and low-grade inflammation in letrozole-induced polycystic ovary syndrome in the rat. Reprod. Biol. 16, 70–77.
Role of oxidative stress and low-grade inflammation in letrozole-induced polycystic ovary syndrome in the rat.Crossref | GoogleScholarGoogle Scholar |

Panidis, D., Kourtis, A., Farmakiotis, D., Mouslech, T., Rousso, D., and Koliakos, G. (2003). Serum adiponectin levels in women with polycystic ovary syndrome. Hum. Reprod. 18, 1790–1796.
Serum adiponectin levels in women with polycystic ovary syndrome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXot1Witrs%3D&md5=8a41c36dfa07455cae8c43b3ae05ff5aCAS |

Poretsky, L., Cataldo, N. A., Rosenwaks, Z., and Giudice, L. C. (1999). The insulin-related ovarian regulatory system in health and disease. Endocr. Rev. 20, 535–582.
The insulin-related ovarian regulatory system in health and disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlvVOnsb0%3D&md5=e018cde0598a79e2ee3ed05b6b4c44e4CAS |

Rezvanfar, M. A., Saadi, H. A. S., Gooshe, M., Abdolghaffari, A. H., Baeeri, M., and Abdollahi, M. (2014). Ovarian aging-like phenotype in the hyperandrogenism-induced murine model of polycystic ovary. Oxid. Med. Cell. Longev. 2014, 948951.
Ovarian aging-like phenotype in the hyperandrogenism-induced murine model of polycystic ovary.Crossref | GoogleScholarGoogle Scholar |

Rodriguez-Pacheco, F., Martinez-Fuentes, A. J., Tovar, S., Pinilla, L., Tena-Sempere, M., Dieguez, C., Castano, J. P., and Malagon, M. M. (2007). Regulation of pituitary cell function by adiponectin. Endocrinology 148, 401–410.
Regulation of pituitary cell function by adiponectin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjsFShsg%3D%3D&md5=50e23c788aa5286e77a17ec684d61948CAS |

Rojas, J., Chávez, M., Olivar, L., Rojas, M., Morillo, J., Mejías, J., Calvo, M., and Bermúdez, V. (2014). Polycystic ovary syndrome, insulin resistance and obesity: navigating the pathophysiologic labyrinth. Int. J. Reprod. Med. 2014, 719050.
Polycystic ovary syndrome, insulin resistance and obesity: navigating the pathophysiologic labyrinth.Crossref | GoogleScholarGoogle Scholar |

Scherer, P. E., Williams, S., Fogliano, M., Baldini, G., and Lodish, H. F. (1995). A novel serum protein similar to C1q, produced exclusively in adipocytes. J. Biol. Chem. 270, 26746–26749.
A novel serum protein similar to C1q, produced exclusively in adipocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXpsVGmurY%3D&md5=3314f6489e585c5a2fd445ebc84b588aCAS |

Shin, H. Y., Lee, D. C., and Lee, J. W. (2011). Adiponectin in women with polycystic ovary syndrome. Korean J. Fam. Med. 32, 243–248.
Adiponectin in women with polycystic ovary syndrome.Crossref | GoogleScholarGoogle Scholar |

Singh, P., and Krishna, A. (2010). Effect of GnRH agonist treatment on steroidogenesis and folliculogenesis in the ovary of cyclic mice. J. Ovarian Res. 3, 26.
Effect of GnRH agonist treatment on steroidogenesis and folliculogenesis in the ovary of cyclic mice.Crossref | GoogleScholarGoogle Scholar |

Singh, A., and Krishna, A. (2012a). Localization of adiponectin and its receptor and its possible roles in the ovary of a vespertilionid bat, Scotophilus heathi. Gen. Comp. Endocrinol. 176, 240–251.
Localization of adiponectin and its receptor and its possible roles in the ovary of a vespertilionid bat, Scotophilus heathi.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjtVyjtL4%3D&md5=81a6d768e45de7256888915315d81e63CAS |

Singh, A., and Krishna, A. (2012b). Effects of adiponectin on ovarian folliculogenesis and steroidogenesis in the vespertilionid bat, Scotophilus heathi. Gen. Comp. Endocrinol. 178, 502–510.
Effects of adiponectin on ovarian folliculogenesis and steroidogenesis in the vespertilionid bat, Scotophilus heathi.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1GktrvJ&md5=7515b5293c85f4078818238fa9588911CAS |

Singh, A., Bora, P., and Krishna, A. (2017). Direct action of adiponectin ameliorates increased androgen synthesis and reduces insulin receptor expression in the polycystic ovary. Biochem. Biophys. Res. Commun. 488, 509–515.
Direct action of adiponectin ameliorates increased androgen synthesis and reduces insulin receptor expression in the polycystic ovary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXotFynsLg%3D&md5=0d316ac022129460414d903134716eb1CAS |

Solano, M. E., Elia, E., Luchetti, C. G., Sander, V., Girolamo, G. D., Gonzalez, C., and Motta, A. B. (2006). Metformine prevents embryonic resorption induced by hyperandrogenisation with dehydroepiandrosterone in mice. Reprod. Fertil. Dev. 18, 533–544.
Metformine prevents embryonic resorption induced by hyperandrogenisation with dehydroepiandrosterone in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XltVWnt78%3D&md5=a5a6994c747eac4ff49a396e54956550CAS |

Tal, R., Seifer, D. B., Grazi, R. V., and Malter, H. E. (2014). Follicular fluid placental growth factor is increased in polycystic ovarian syndrome: correlation with ovarian stimulation. Reprod. Biol. Endocrinol. 12, 82.
Follicular fluid placental growth factor is increased in polycystic ovarian syndrome: correlation with ovarian stimulation.Crossref | GoogleScholarGoogle Scholar |

Tessaro, I., Modina, S. C., Franciosi, F., Sivelli, G., Terzaghi, L., Lodde, V., and Luciano, A. M. (2015). Effect of oral administration of low-dose follicle stimulating hormone on hyperandrogenized mice as a model of polycystic ovary syndrome. J. Ovarian Res. 8, 64.
Effect of oral administration of low-dose follicle stimulating hormone on hyperandrogenized mice as a model of polycystic ovary syndrome.Crossref | GoogleScholarGoogle Scholar |

Tschritter, O., Fritsche, A., Thamer, C., Haap, M., Shirkavand, F., Rahe, S., Straiger, H., Maerker, E., Häring, H., and Stumvoll, M. (2003). Plasma adiponectin concentrations predict insulin sensitivity of both glucose and lipid metabolism. Diabetes 52, 239–243.
Plasma adiponectin concentrations predict insulin sensitivity of both glucose and lipid metabolism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtFagu70%3D&md5=525e11a914ba01d64c51cbe50f0da771CAS |

Verma, R., and Krishna, A. (2017a). Effect of letrozole, a selective aromatase inhibitor, on testicular activities in adult mice: both in vivo and in vitro study. Gen. Comp. Endocrinol. 241, 57–68.
Effect of letrozole, a selective aromatase inhibitor, on testicular activities in adult mice: both in vivo and in vitro study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XksVKrsLc%3D&md5=810385786cb039cd2ab68ed89947c934CAS |

Verma, R., and Krishna, A. (2017b). Effect of tamoxifen on spermatogenesis and testicular steroidogenesis. Biochem. Biophys. Res. Commun. 486, 36–42.
Effect of tamoxifen on spermatogenesis and testicular steroidogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXjvF2msrw%3D&md5=9731bcdb443d2e3ff7e19164e450f80eCAS |

Wang, E. T., Calderon-Margalit, R., Cedars, M. I., Daviglus, M. L., Merkin, S. S., Schreiner, P. J., Sternfeld, B., Wellons, M., Schwartz, S. M., Lewis, C. E., Williams, O. D., Siscovick, D. S., and Bibbins-Domingo, K. (2011). Polycystic ovary syndrome and risk for long-term diabetes and dislipidemia. Obstet. Gynecol. 117, 6–13.
Polycystic ovary syndrome and risk for long-term diabetes and dislipidemia.Crossref | GoogleScholarGoogle Scholar |

Weyer, C., Funahashi, T., Tanaka, S., Hotta, K., Matzuzawa, Y., and Pratley, R. E. (2001). Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J. Clin. Endocrinol. Metab. 86, 1930–1935.
Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjs1OmsL0%3D&md5=771027b41f8ad6609a4800405d11437cCAS |

Xu, A., Chan, K., Hoo, R., Wang, Y., Tan, K., and Zhang, J. (2005). Testosterone selectively reduces the high molecular weight form of adiponectin by inhibiting its secretion from adipocytes. J. Biol. Chem. 280, 18073–18080.
Testosterone selectively reduces the high molecular weight form of adiponectin by inhibiting its secretion from adipocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjsl2hsLg%3D&md5=06c94c5772a8a56bcc57ecf668b7e87cCAS |

Yaba, A., and Demir, N. (2012). The mechanism of mTOR (mammalian target of rapamycin) in a mouse model of polycystic ovary syndrome (PCOS). J. Ovarian Res. 5, 38.
The mechanism of mTOR (mammalian target of rapamycin) in a mouse model of polycystic ovary syndrome (PCOS).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXitlSmsb0%3D&md5=e2fbf4f05fe9d88a02c29b45b484175eCAS |

Yamauchi, T., Kamon, J., Waki, H., Terauchi, Y., Kubota, N., Hara, K., Mori, Y., Ide, T., Murakami, K., Tsuboyama-Kasaoka, N., Ezaki, O., Akanuma, Y., Gavrilova, O., Vinson, C., Reitman, M. L., Kagechika, H., Shudo, K., Yoda, M., Nakano, Y., Tobe, K., Nagai, R., Kimura, S., Tomita, M., Froguel, P., and Kadowaki, T. (2001). The fat derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat. Med. 7, 941–946.
The fat derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlvVOkt7o%3D&md5=f2479828f99380d74a9cd43240c573a0CAS |

Yamauchi, T., Kamon, J., Ito, Y., Tsuchida, A., Yokomizo, T., Kita, S., Sugiyama, T., Miyagishi, M., Hara, K., Tsunoda, M., Murakami, K., Ohteki, T., Uchida, S., Takekawa, S., Waki, H., Tsuno, N. H., Shibata, Y., Terauchi, Y., Froguel, P., Tobe, K., Koyasu, S., Taira, K., Kitamura, T., Shimizu, T., Nagai, R., and Kadowaki, T. (2003). Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 423, 762–769.
Cloning of adiponectin receptors that mediate antidiabetic metabolic effects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXksV2itL8%3D&md5=355ae597bb8420d3056f4535a1e2bc8aCAS |

Yu, N., and Roy, S. K. (1999). Development of primordial and prenatal follicles from undifferentiated somatic cells and oocytes in the hamster prenatal ovary in vitro: effect of insulin. Biol. Reprod. 61, 1558–1567.
Development of primordial and prenatal follicles from undifferentiated somatic cells and oocytes in the hamster prenatal ovary in vitro: effect of insulin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXns1yntrs%3D&md5=d556a3bca8ba86a3318f5812c97f2a76CAS |

Yuan, X., Hu, T., Zhao, H., Huang, Y., Ye, R., Lin, J., Zhang, C., Zhang, H., Wei, G., Zhou, H., Dong, M., Zhao, J., Wang, H., Liu, Q., Lee, H. J., Jin, W., and Chen, Z.-J. (2016). Brown adipose tissue transplantation ameliorates polycystic ovary syndrome. Proc. Natl Acad. Sci. USA 113, 2708–2713.
Brown adipose tissue transplantation ameliorates polycystic ovary syndrome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XivVKjsb8%3D&md5=195e2da3f8040e00c31e449f62555f10CAS |

Zawadzki, J. K., and Dunaif, A. (1992). Diagnostic criteria for polycystic ovary syndrome: towards a rational approach. In ‘Polycystic Ovary Syndrome’. (Eds A. Dunaif, J. R. Givens, F. P. Haseltine, and G. R. Merriam.) pp. 377–384. (Blackwell Scientific Publications: Boston.)