Innate immune genes in persistent mating-induced endometritis in horses
Christina D. Marth A B E , Simon M. Firestone A , Dave Hanlon C , Lisa Y. Glenton A B , Glenn F. Browning A , Neil D. Young D and Natali Krekeler A BA Asia–Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Corner Park Drive and Flemington Road, Parkville, Vic. 3010, Australia.
B Translational Research and Animal Clinical Trial Study Group, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Corner Park Drive and Flemington Road, Werribee, Vic. 3030, Australia.
C Matamata Veterinary Services, 26 Tainui Street, Matamata, New Zealand.
D Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Corner Park Drive and Flemington Road, Parkville, Vic. 3010, Australia.
E Corresponding author. Email: christina.marth@unimelb.edu.au
Reproduction, Fertility and Development 30(3) 533-545 https://doi.org/10.1071/RD17157
Submitted: 20 April 2017 Accepted: 29 July 2017 Published: 24 August 2017
Abstract
Persistent mating-induced endometritis (PMIE) severely decreases fertility in horses. The aim of the present study was to evaluate differences between horses susceptible to PMIE and a control group in terms of the expression of selected immune response and effector genes, and the effects of oestrous cycle stage on this expression. Endometrial biopsies from 18 uterine samples of mares in the control group (eight in dioestrus, 10 in oestrus) and 16 PMIE-susceptible mares (four in dioestrus, 12 in oestrus) were analysed by quantitative real-time reverse transcription–polymerase chain reaction. Genes for pathogen recognition receptors Toll-like receptor 2 (TLR2) and NLR family CARD domain containing 5 (NLRC5), as well as tissue-specific inhibitor of metalloproteinase 1 (TIMP1), C-X-C motif chemokine ligand (CXCL) 9, CXCL10 and CXCL11 and uteroferrin were expressed at similar levels in the control group and in susceptible mares. Genes for C-C motif chemokine ligand 2 (CCL2) and the antimicrobial peptides secreted phospholipase A2 (sPLA2), lipocalin 2 and lactoferrin were all expressed at higher levels in susceptible compared with control mares. The expression of genes for the antimicrobial peptides equine β-defensin 1 (EBD1), lysozyme (LYZ) and secretory leukoprotease inhibitor (SLPI) was also higher in susceptible than control mares. The diagnostic sensitivity of assays for EBD1, LYZ and SLP1 gene expression to detect susceptibility to PMIE was estimated to be 100%, 94% and 100% respectively, with specificities of 83%, 78% and 78% respectively. When all three tests were positive, the specificity increased to 94%, with an overall sensitivity of 94%. The present study has yielded insights into pathophysiological changes in mares susceptible to PMIE and identified robust diagnostic markers (EBD1, LYZ and SLPI) for susceptibility to this disease.
Additional keywords: antimicrobial peptides, chemokines, equine, pathogen recognition receptors, uterus.
References
Adams, G. P., Kastelic, J. P., Bergfelt, D. R., and Ginther, O. J. (1987). Effect of uterine inflammation and ultrasonically-detected uterine pathology on fertility in the mare. J. Reprod. Fertil. Suppl. 35, 445–454.| 1:STN:280:DyaL1c%2Fmt1Cktg%3D%3D&md5=47789c463419769a7304ea7b4d799125CAS |
Albihn, A., Båverud, V., and Magnusson, U. (2003). Uterine microbiology and antimicrobial susceptibility in isolated bacteria from mares with fertility problems. Acta Vet. Scand. 44, 121–129.
| Uterine microbiology and antimicrobial susceptibility in isolated bacteria from mares with fertility problems.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2c7nvF2jtg%3D%3D&md5=bea741d8a20dac9e3e6504a17b3da178CAS |
Appelmelk, B. J., An, Y.-Q., Geerts, M., Thijs, B. G., De Boer, H. A., MacLaren, D. M., de Graaff, J., and Nuijens, J. H. (1994). Lactoferrin is a lipid A-binding protein. Infect. Immun. 62, 2628–2632.
| 1:CAS:528:DyaK2MXhsFemtg%3D%3D&md5=66ff860ad69160e3398992ae07623f79CAS |
Badinga, L., Michel, F., Fields, M., Sharp, D., and Simmen, R. C. M. (1994). Pregnancy-associated endometrial expression of antileukoproteinase gene is correlated with epitheliochorial placentation. Mol. Reprod. Dev. 38, 357–363.
| Pregnancy-associated endometrial expression of antileukoproteinase gene is correlated with epitheliochorial placentation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmsFagsLs%3D&md5=001e63809134e7cf5cb23d379ed43837CAS |
Callewaert, L., and Michiels, C. (2010). Lysozymes in the animal kingdom. J. Biosci. 35, 127–160.
| Lysozymes in the animal kingdom.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXps1WksLw%3D&md5=f600844cdd455988d912996aee538328CAS |
Carnevale, E. M., and Ginther, O. J. (1992). Relationships of age to uterine function and reproductive efficiency in mares. Theriogenology 37, 1101–1115.
| Relationships of age to uterine function and reproductive efficiency in mares.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD283pvFyksw%3D%3D&md5=b693ee73d59d491ae1f59077ebe7131fCAS |
Christoffersen, M., Woodward, E., Bojesen, A., Jacobsen, S., Petersen, M., Troedsson, M., and Lehn-Jensen, H. (2012). Inflammatory responses to induced infectious endometritis in mares resistant or susceptible to persistent endometritis. BMC Vet. Res. 8, 41.
| Inflammatory responses to induced infectious endometritis in mares resistant or susceptible to persistent endometritis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xpt1aisrg%3D&md5=7acfc1e07e8627dbf6e61d07e9a0f735CAS |
Cole, A. M., Ganz, T., Liese, A. M., Burdick, M. D., Liu, L., and Strieter, R. M. (2001). Cutting edge: IFN-inducible ELR–CXC chemokines display defensin-like antimicrobial activity. J. Immunol. 167, 623–627.
| Cutting edge: IFN-inducible ELR–CXC chemokines display defensin-like antimicrobial activity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXotFWksL4%3D&md5=973bbb5147198726b8427b0f17db331dCAS |
Couto, M. A., Harwig, S. S., and Lehrer, R. I. (1993). Selective inhibition of microbial serine proteases by eNAP-2, an antimicrobial peptide from equine neutrophils. Infect. Immun. 61, 2991–2994.
| 1:CAS:528:DyaK3sXlsFyitb4%3D&md5=0064632d00bf9aaefa5aebb3652a8299CAS |
Davis, E. G., Sang, Y., and Blecha, F. (2004). Equine β-defensin-1: full-length cDNA sequence and tissue expression. Vet. Immunol. Immunopathol. 99, 127–132.
| Equine β-defensin-1: full-length cDNA sequence and tissue expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjtl2ksbo%3D&md5=9b9918f590fa9e14314674426fe22a75CAS |
Farnaud, S., and Evans, R. (2003). Lactoferrin – a multifunctional protein with antimicrobial properties. Mol. Immunol. 40, 395–405.
| Lactoferrin – a multifunctional protein with antimicrobial properties.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnvF2qsL0%3D&md5=fc14d0684bf00310e65f15c3f5bac710CAS |
Fleming, A. (1922). On a remarkable bacteriolytic element found in tissues and secretions. Proc. R. Soc. Lond. B Biol. Sci. 93, 306–317.
| On a remarkable bacteriolytic element found in tissues and secretions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaB38XisV2gug%3D%3D&md5=d87a806ffb1909dd03bd47676431b368CAS |
Flo, T. H., Smith, K. D., Sato, S., Rodriguez, D. J., Holmes, M. A., Strong, R. K., Akira, S., and Aderem, A. (2004). Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature 432, 917–921.
| Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVOht7rE&md5=20e7161d1e35c47832c4583d38069617CAS |
Fumuso, E., Gigure, S., Wade, J., Rogan, D., Videla-Dorna, I., and Bowden, R. A. (2003). Endometrial IL-1 beta, IL-6 and TNF-alpha, mRNA expression in mares resistant or susceptible to post-breeding endometritis – effects of estrous cycle, artificial insemination and immunomodulation. Vet. Immunol. Immunopathol. 96, 31–41.
| Endometrial IL-1 beta, IL-6 and TNF-alpha, mRNA expression in mares resistant or susceptible to post-breeding endometritis – effects of estrous cycle, artificial insemination and immunomodulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXns1KqtLk%3D&md5=10fd9be91aca41af76e396eafbdded9cCAS |
Güvenc, K., Reilas, T., and Katila, T. (2004). Effect of frozen semen on the uterus of mares with pathological uterine changes. Reprod. Nutr. Dev. 44, 243–250.
| Effect of frozen semen on the uterus of mares with pathological uterine changes.Crossref | GoogleScholarGoogle Scholar |
Hiemstra, P. S., Maassen, R. J., Stolk, J., Heinzel Wieland, R., Steffens, G. J., and Dijkman, J. H. (1996). Antibacterial activity of antileukoprotease. Infect. Immun. 64, 4520–4524.
| 1:CAS:528:DyaK28XmsVWntro%3D&md5=6befc5169dfb90da19b5395340ca85d4CAS |
Jin, F.-y., Nathan, C., Radzioch, D., and Ding, A. (1997). Secretory leukocyte protease inhibitor: a macrophage product induced by and antagonistic to bacterial lipopolysaccharide. Cell 88, 417–426.
| Secretory leukocyte protease inhibitor: a macrophage product induced by and antagonistic to bacterial lipopolysaccharide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhtFagurY%3D&md5=5fdb4a3eb6bd3001c8728f692a378339CAS |
Kawasaki, T., and Kawai, T. (2014). Toll-like receptor signaling pathways. Front. Immunol. 5, 461.
| Toll-like receptor signaling pathways.Crossref | GoogleScholarGoogle Scholar |
Kenney, R., and Doig, P. (1986). Equine endometrial biopsy. In ‘Current Therapy in Theriogenology: Diagnosis, Treatment, and Prevention of Reproductive Diseases in Small and Large Animals’. Vol. 2. (Ed. D. Marrow.) pp. 723–729. (W. B. Saunders: Philadelphia.)
Kolm, G., Klein, D., Knapp, E., Watanabe, K., and Walter, I. (2006). Lactoferrin expression in the horse endometrium: relevance in persisting mating-induced endometritis. Vet. Immunol. Immunopathol. 114, 159–167.
| Lactoferrin expression in the horse endometrium: relevance in persisting mating-induced endometritis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpvV2mtrg%3D&md5=330bf1c58335becc3f420e1c710fb8f5CAS |
LeBlanc, M. M., Neuwirth, L., Jones, L., Cage, C., and Mauragis, D. (1998). Differences in uterine position of reproductively normal mares and those with delayed uterine clearance detected by scintigraphy. Theriogenology 50, 49–54.
| Differences in uterine position of reproductively normal mares and those with delayed uterine clearance detected by scintigraphy.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c7pvVKnug%3D%3D&md5=3f3d9050720581a8cd7122ca6085c9bdCAS |
Linde, A., Ross, C., Davis, E., Dib, L., Blecha, F., and Melgarejo, T. (2008). Innate immunity and host defense peptides in veterinary medicine. J. Vet. Intern. Med. 22, 247–265.
| Innate immunity and host defense peptides in veterinary medicine.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1c3htVOltQ%3D%3D&md5=96fb34b6cd4191d3a1d1f0a844f0bf4fCAS |
Marth, C. D., Young, N. D., Glenton, L. Y., Noden, D. M., Browning, G. F., and Krekeler, N. (2015). Deep sequencing of the uterine immune response to bacteria during the equine oestrous cycle. BMC Genomics 16, 934.
| Deep sequencing of the uterine immune response to bacteria during the equine oestrous cycle.Crossref | GoogleScholarGoogle Scholar |
Marth, C. D., Young, N. D., Glenton, L. Y., Noden, D. M., Browning, G. F., and Krekeler, N. (2016a). Effect of ovarian hormones on the healthy equine uterus: a global gene expression analysis. Reprod. Fertil. Dev. 28, 1810–1824.
| Effect of ovarian hormones on the healthy equine uterus: a global gene expression analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhsFSlsbzI&md5=9e30174aed7db1880f9fd90f8413f688CAS |
Marth, C. D., Firestone, S. M., Glenton, L. Y., Browning, G. F., Young, N. D., and Krekeler, N. (2016b). Oestrous cycle-dependent equine uterine immune response to induced infectious endometritis. Vet. Res. 47, 110.
| Oestrous cycle-dependent equine uterine immune response to induced infectious endometritis.Crossref | GoogleScholarGoogle Scholar |
McQuibban, G. A., Gong, J.-H., Wong, J. P., Wallace, J. L., Clark-Lewis, I., and Overall, C. M. (2002). Matrix metalloproteinase processing of monocyte chemoattractant proteins generates CC chemokine receptor antagonists with anti-inflammatory properties in vivo. Blood 100, 1160–1167.
| 1:CAS:528:DC%2BD38Xmt12it74%3D&md5=b83a16cf6bb29c4dbda35bd62a5b3990CAS |
Oguri, N., and Tsutsumi, Y. (1972). Non-surgical recovery of equine eggs, and an attempt at non-surgical egg transfer in horses. J. Reprod. Fertil. 31, 187–195.
| Non-surgical recovery of equine eggs, and an attempt at non-surgical egg transfer in horses.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE3s%2FltFKntw%3D%3D&md5=5a5514ce3ae79bb508b9f83033469354CAS |
Pycock, J. F., and Allen, W. E. (1990). Inflammatory components in uterine fluid from mares with experimentally induced bacterial endometritis. Equine Vet. J. 22, 422–425.
| Inflammatory components in uterine fluid from mares with experimentally induced bacterial endometritis.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3M%2FpvFaqtg%3D%3D&md5=126fd89d3253e0ea755dc2209a46b949CAS |
R Development Core Team (2015). ‘R: A Language and Environment for Statistical Computing.’ (R Foundation for Statistical Computing: Vienna.)
Reilas, T., Katila, T., Mäkelä, O., Huhtinen, M., and Koskinen, E. (1997). Intrauterine fluid accumulation in oestrous mares. Acta Vet. Scand. 38, 69–78.
| 1:STN:280:DyaK2s3nsFCksw%3D%3D&md5=a3f167a9644710d597cfd7700ace882fCAS |
Reilas, T., Ristiniemi, M., and Katila, T. (1998). Influence of hormone replacement therapy and bacterial inoculation on proteins and enzymes in uterine lavage fluid of ovariectomized mares. Reprod. Domest. Anim. 33, 11–19.
| Influence of hormone replacement therapy and bacterial inoculation on proteins and enzymes in uterine lavage fluid of ovariectomized mares.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhtVeiur8%3D&md5=92c9644bce6fa9f819e70d4f518bffd5CAS |
Riddle, W. T., LeBlanc, M. M., and Stromberg, A. J. (2007). Relationships between uterine culture, cytology and pregnancy rates in a Thoroughbred practice. Theriogenology 68, 395–402.
| Relationships between uterine culture, cytology and pregnancy rates in a Thoroughbred practice.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2szpvVyqsw%3D%3D&md5=36729c5584d22467c8870f67c0bbd8d4CAS |
Stevenson, M., Nunes, T., Heuer, C., Marshall, J., Sanchez, J., Thornton, R., Reiczigel, J., Robison-Cox, J., Sebastiani, P., Solymos, P., Yoshida, K., Jones, G., Pirikahu, S., and Firestone, S. (2015). ‘epiR: Tools for the Analysis of Epidemiological Data.’
Tomee, J. F., Koeter, G. H., Hiemstra, P. S., and Kauffman, H. F. (1998). Secretory leukoprotease inhibitor: a native antimicrobial protein presenting a new therapeutic option? Thorax 53, 114–116.
| Secretory leukoprotease inhibitor: a native antimicrobial protein presenting a new therapeutic option?Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1c3oslekuw%3D%3D&md5=aea5311201539cac1d8466cf1a4690c3CAS |
Troedsson, M. H. T. (1999). Uterine clearance and resistance to persistent endometritis in the mare. Theriogenology 52, 461–471.
| Uterine clearance and resistance to persistent endometritis in the mare.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c7pvVGmtw%3D%3D&md5=c813934a3ad0b8bd3f76b83d3c03d74bCAS |
Troedsson, M. H. T., and Liu, I. K. (1991). Uterine clearance of non-antigenic markers (51Cr) in response to a bacterial challenge in mares potentially susceptible and resistant to chronic uterine infections. J. Reprod. Fertil. Suppl. 44, 283–288.
| 1:STN:280:DyaK387nslagsA%3D%3D&md5=0ec10cb0a438d317899df99903476635CAS |
Troedsson, M. H. T., Liu, I. K. M., Ing, M., Pascoe, J., and Thurmond, M. (1993). Multiple site electromyography recordings of uterine activity following an intrauterine bacterial challenge in mares susceptible and resistant to chronic uterine infection. J. Reprod. Fertil. 99, 307–313.
| Multiple site electromyography recordings of uterine activity following an intrauterine bacterial challenge in mares susceptible and resistant to chronic uterine infection.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2c7kvFKisA%3D%3D&md5=4d032945fc5f0e84d9c57edc35afbcc1CAS |
Troedsson, M. H. T., Loset, K., Alghamdi, A. M., Dahms, B., and Crabo, B. G. (2001). Interaction between equine semen and the endometrium: the inflammatory response to semen. Anim. Reprod. Sci. 68, 273–278.
| Interaction between equine semen and the endometrium: the inflammatory response to semen.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXptVahs74%3D&md5=578f2a4377ffb81a2086b8b96ea25bceCAS |
Van den Steen, P. E., Proost, P., Wuyts, A., Van Damme, J., and Opdenakker, G. (2000). Neutrophil gelatinase B potentiates interleukin-8 tenfold by aminoterminal processing, whereas it degrades CTAP-III, PF-4, and GRO-alpha and leaves RANTES and MCP-2 intact. Blood 96, 2673–2681.
| 1:CAS:528:DC%2BD3cXnt12gsLg%3D&md5=6292e632b86b9a41df35a6900b04cb75CAS |
Vanderwall, D. K. (2011) Progesterone. In ‘Equine Reproduction’. Vol. 2. 2nd edn. (Eds; A. O. McKinnon, E. L. Squires, W. E. Vaala, and V. D. Dickson.) pp. 1637–1641. (Wiley-Blackwell: Oxford.)
Watson, E. D. (2000). Post-breeding endometritis in the mare. Anim. Reprod. Sci. 60–61, 221–232.
| Post-breeding endometritis in the mare.Crossref | GoogleScholarGoogle Scholar |
Woodward, E. M., Christoffersen, M., Campos, J., Squires, E. L., and Troedsson, M. H. (2012). Susceptibility to persistent breeding-induced endometritis in the mare: relationship to endometrial biopsy score and age, and variations between seasons. Theriogenology 78, 495–501.
| Susceptibility to persistent breeding-induced endometritis in the mare: relationship to endometrial biopsy score and age, and variations between seasons.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC38rkt1Wiuw%3D%3D&md5=08d679e58a2e750f451db9bc2c36a634CAS |
Woodward, E. M., Christoffersen, M., Campos, J., Betancourt, A., and Horohov, D. (2013). Endometrial inflammatory markers of the early immune response in mares susceptible or resistant to persistent breeding-induced endometritis. Reproduction 145, 289–296.
| Endometrial inflammatory markers of the early immune response in mares susceptible or resistant to persistent breeding-induced endometritis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmsFegurc%3D&md5=5f40d993598c151f0bf2ace7fc8090f1CAS |
Yang, D., Chen, Q., Hoover, D. M., Staley, P., Tucker, K. D., Lubkowski, J., and Oppenheim, J. J. (2003). Many chemokines including CCL20/MIP-3α display antimicrobial activity. J. Leukoc. Biol. 74, 448–455.
| Many chemokines including CCL20/MIP-3α display antimicrobial activity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnsFKlsLY%3D&md5=9d448938a3da6630084e7c2df209f835CAS |
Zallen, G., Moore, E. E., Johnson, J. L., Tamura, D. Y., Barkin, M., Stockinger, H., and Silliman, C. C. (1998). New mechanisms by which secretory phospholipase A2 stimulates neutrophils to provoke the release of cytotoxic agents. Arch. Surg. 133, 1229–1233.
| New mechanisms by which secretory phospholipase A2 stimulates neutrophils to provoke the release of cytotoxic agents.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnsVyksbw%3D&md5=aedd4202ad104610a399fe4983bbd5a7CAS |
Zlotnik, A., and Yoshie, O. (2012). The chemokine superfamily revisited. Immunity 36, 705–716.
| The chemokine superfamily revisited.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnsFyjtLc%3D&md5=7d2efd170ed8f186708aba8ff34e211cCAS |