Mouse double minute homologue 2 (MDM2) downregulation by miR-661 impairs human endometrial epithelial cell adhesive capacity
Amy Winship A C , Amanda Ton A B , Michelle Van Sinderen A B , Ellen Menkhorst A B , Katarzyna Rainczuk A B , Meaghan Griffiths A , Carly Cuman A B and Evdokia Dimitriadis A B C DA Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Vic. 3168, Australia.
B Department of Molecular and Translational Sciences, Monash University, Clayton, Vic. 3800, Australia.
C Department of Anatomy and Developmental Biology, Monash University, Clayton, Vic. 3800, Australia.
D Corresponding author. Email: evdokia.dimitriadis@hudson.org.au
Reproduction, Fertility and Development 30(3) 477-486 https://doi.org/10.1071/RD17095
Submitted: 10 March 2017 Accepted: 16 July 2017 Published: 29 August 2017
Journal compilation © CSIRO 2018 Open Access CC BY-NC-ND
Abstract
Human blastocysts that fail to implant following IVF secrete elevated levels of miR-661, which is taken up by primary human endometrial epithelial cells (HEECs) and impairs their adhesive capability. MicroRNA miR-661 downregulates mouse double minute homologue 2 (MDM2) and MDM4 in other epithelial cell types to activate p53; however, this has not been examined in the endometrium. In this study MDM2 protein was detected in the luminal epithelium of the endometrium, the site of blastocyst attachment, during the mid secretory receptive phase of the menstrual cycle. The effects of miR-661 on gene expression in and adhesion of endometrial cells was also examined. MiR-661 overexpression consistently downregulated MDM2 but not MDM4 or p53 gene expression in the Ishikawa endometrial epithelial cell line and primary HEEC. Adhesion assays were performed on the real-time monitoring xCELLigence system and by co-culture using Ishikawa cells and HEECs with HTR8/SVneo trophoblast spheroids. Targeted siRNA-mediated knockdown of MDM2 in endometrial epithelial cells reduced Ishikawa cell adhesion (P < 0.001) and also reduced HTR8/SVneo trophoblast spheroid adhesion to Ishikawa cells (P < 0.05) and HEECs (P < 0.05). MDM2 overexpression using recombinant protein treatment resulted in enhanced HTR8/SVneo trophoblast spheroid adhesion to Ishikawa cells (P < 0.01) and HEECs (P < 0.05). This study highlights a potential new mechanism by which human blastocyst-secreted miR-661 reduces endometrial epithelial cell adhesion; via downregulation of MDM2. These findings suggest that MDM2 contributes to endometrial–blastocyst adhesion, implantation and infertility in women.
Additional keywords: endometrium, gene regulation, implantation, trophoblast.
References
Bartel, D. P. (2009). MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233.| MicroRNAs: target recognition and regulatory functions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1Kiuro%3D&md5=11639626b613d20937279a61486c48feCAS |
Behrens, J. (1994). Cadherins as determinants of tissue morphology and suppressors of invasion. Acta Anat. (Basel) 149, 165–169.
| Cadherins as determinants of tissue morphology and suppressors of invasion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmslOiur8%3D&md5=e913b48dcbdc0ba286e09c08367c7686CAS |
Chen, C., Zhao, Y., Yu, Y., Li, R., and Qiao, J. (2016). MiR-125b regulates endometrial receptivity by targeting MMP26 in women undergoing IVF-ET with elevated progesterone on HCG priming day. Sci. Rep. 6, 25302.
| MiR-125b regulates endometrial receptivity by targeting MMP26 in women undergoing IVF-ET with elevated progesterone on HCG priming day.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XnsVemsr4%3D&md5=67fa7eefef2690ba2221248b5e2c2a0fCAS |
Cullinan, E. B., Abbondanzo, S. J., Anderson, P. S., Pollard, J. W., Lessey, B. A., and Stewart, C. L. (1996). Leukemia inhibitory factor (LIF) and LIF receptor expression in human endometrium suggests a potential autocrine/paracrine function in regulating embryo implantation. Proc. Natl. Acad. Sci. USA 93, 3115–3120.
| Leukemia inhibitory factor (LIF) and LIF receptor expression in human endometrium suggests a potential autocrine/paracrine function in regulating embryo implantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XitVCiu7g%3D&md5=e06b4dbf37391bce57bf21eb1bedab5dCAS |
Cuman, C., Menkhorst, E., Rombauts, L., Holden, S., Webster, D., Bilandzic, M., Osianlis, T., and Dimitriadis, E. (2013). Preimplantation human blastocysts release factors that differentially alter human endometrial epithelial cell adhesion and gene expression relative to IVF success. Hum. Reprod. 28, 1161–1171.
| Preimplantation human blastocysts release factors that differentially alter human endometrial epithelial cell adhesion and gene expression relative to IVF success.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmtlags7o%3D&md5=8542e263b7d4542465393896826bc8faCAS |
Cuman, C., Van Sinderen, M., Gantier, M. P., Rainczuk, K., Sorby, K., Rombauts, L., Osianlis, T., and Dimitriadis, E. (2015). Human blastocyst secreted microRNA regulate endometrial epithelial cell adhesion. EBioMedicine 2, 1528–1535.
| Human blastocyst secreted microRNA regulate endometrial epithelial cell adhesion.Crossref | GoogleScholarGoogle Scholar |
Dimitriadis, E., Robb, L., and Salamonsen, L. (2002). Interleukin 11 advances progesterone-induced decidualization of human endometrial stromal cells. Mol. Hum. Reprod. 8, 636–643.
| Interleukin 11 advances progesterone-induced decidualization of human endometrial stromal cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlvFKlsb4%3D&md5=d8839ff3490f14cde9e06b60a017ceadCAS |
Dimitriadis, E., Sharkey, A., Tan, Y., Salamonsen, L. A., and Sherwin, J. (2007). Immunolocalisation of phosphorylated STAT3, interleukin 11 and leukaemia inhibitory factor in endometrium of women with unexplained infertility during the implantation window. Reprod. Biol. Endocrinol. 5, 44–51.
| Immunolocalisation of phosphorylated STAT3, interleukin 11 and leukaemia inhibitory factor in endometrium of women with unexplained infertility during the implantation window.Crossref | GoogleScholarGoogle Scholar |
Evers, J. L. (2002). Female subfertility. Lancet 360, 151–159.
| Female subfertility.Crossref | GoogleScholarGoogle Scholar |
Graham, C. H., Hawley, T. S., Hawley, R. G., MacDougall, J. R., Kerbel, R. S., Khoo, N., and Lala, P. K. (1993). Establishment and characterization of first trimester human trophoblast cells with extended lifespan. Exp. Cell Res. 206, 204–211.
| Establishment and characterization of first trimester human trophoblast cells with extended lifespan.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXks1OisL0%3D&md5=93ec5471eeae2767f9a878da8d1189c8CAS |
Hannan, N. J., Paiva, P., Dimitriadis, E., and Salamonsen, L. A. (2010). Models for study of human embryo implantation: choice of cell lines? Biol. Reprod. 82, 235–245.
| Models for study of human embryo implantation: choice of cell lines?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVSns7k%3D&md5=a11fb4e46638aebf4b615c9da83ba67fCAS |
Haupt, Y., Maya, R., Kazaz, A., and Oren, M. (1997). Mdm2 promotes the rapid degradation of p53. Nature 387, 296–299.
| Mdm2 promotes the rapid degradation of p53.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjtlSgtL8%3D&md5=06e44282e45b5d88f2071303598f204cCAS |
Hoffman, Y., Bublik, D. R., Pilpel, Y., and Oren, M. (2014a). miR-661 downregulates both Mdm2 and Mdm4 to activate p53. Cell Death Differ. 21, 302–309.
| miR-661 downregulates both Mdm2 and Mdm4 to activate p53.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1OltbrJ&md5=df2759c87950882bdd1087948b105282CAS |
Hoffman, Y., Pilpel, Y., and Oren, M. (2014b). microRNAs and Alu elements in the p53-Mdm2-Mdm4 regulatory network. J. Mol. Cell Biol. 6, 192–197.
| microRNAs and Alu elements in the p53-Mdm2-Mdm4 regulatory network.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXptVCgt7Y%3D&md5=208c7b9aa2d85f86f1cf1e536cea3cc2CAS |
Hu, W., Feng, Z., Teresky, A. K., and Levine, A. J. (2007). p53 regulates maternal reproduction through LIF. Nature 450, 721–724.
| p53 regulates maternal reproduction through LIF.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlKmtbrJ&md5=9292c7fa101b9f2daff977dcf26ac33fCAS |
Iwakuma, T., and Lozano, G. (2003). MDM2, an introduction. Mol. Cancer Res. 1, 993–1000.
| 1:CAS:528:DC%2BD2cXns1Gm&md5=36a8312bfe10553d32e202599c396eeaCAS |
Kang, H. J., Feng, Z., Sun, Y., Atwal, G., Murphy, M. E., Rebbeck, T. R., Rosenwaks, Z., Levine, A. J., and Hu, W. (2009). Single-nucleotide polymorphisms in the p53 pathway regulate fertility in humans. Proc. Natl. Acad. Sci. USA 106, 9761–9766.
| Single-nucleotide polymorphisms in the p53 pathway regulate fertility in humans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotFGjsrY%3D&md5=938d192171f21f290c4dcb9dbd8ccd41CAS |
Krishnan, T., Winship, A., Sonderegger, S., Menkhorst, E., Horne, A. W., Brown, J., Zhang, J. G., Nicola, N. A., Tong, S., and Dimitriadis, E. (2013). The role of leukemia inhibitory factor in tubal ectopic pregnancy. Placenta 34, 1014–1019.
| The role of leukemia inhibitory factor in tubal ectopic pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFensbnJ&md5=abab1becbfd9485c21310ca142d80b74CAS |
Kupka, M. S., Ferraretti, A. P., de Mouzon, J., Erb, K., D’Hooghe, T., Castilla, J. A., Calhaz-Jorge, C., De Geyter, C., Goossens, V., European IVF-Monitoring Consortium, for the European Society of Human Reproduction and Embryology (2014). Assisted reproductive technology in Europe, 2010: results generated from European registers by ESHRE†. Hum. Reprod. 29, 2099–2113.
| Assisted reproductive technology in Europe, 2010: results generated from European registers by ESHRE†.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC2cbms1ektw%3D%3D&md5=375739d78ad2c52d28ee4c2c8be9c1eaCAS |
Laird, S. M., Tuckerman, E. M., Dalton, C. F., Dunphy, B. C., Li, T. C., and Zhang, X. (1997). The production of leukaemia inhibitory factor by human endometrium: presence in uterine flushings and production by cells in culture. Hum. Reprod. 12, 569–574.
| The production of leukaemia inhibitory factor by human endometrium: presence in uterine flushings and production by cells in culture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjtVKhsL4%3D&md5=2fdf7f327188e148b1bc990764441273CAS |
Liu, X., Gao, R., Chen, X., Zhang, H., Zheng, A., Yang, D., Ding, Y., Wang, Y., and He, J. (2013). Possible roles of mmu-miR-141 in the endometrium of mice in early pregnancy following embryo implantation. PLoS One 8, e67382.
| Possible roles of mmu-miR-141 in the endometrium of mice in early pregnancy following embryo implantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFWis7vO&md5=914df68b5be1731c9d93e4e57d386914CAS |
Liu, X. J., Bai, X. G., Teng, Y. L., Song, L., Lu, N., and Yang, R. Q. (2016). miRNA-15a-5p regulates VEGFA in endometrial mesenchymal stem cells and contributes to the pathogenesis of endometriosis. Eur. Rev. Med. Pharmacol. Sci. 20, 3319–3326.
Maia, H., Maltez, A., Studart, E., Athayde, C., and Coutinho, E. M. (2004). Ki-67, Bcl-2 and p53 expression in endometrial polyps and in the normal endometrium during the menstrual cycle. BJOG 111, 1242–1247.
| Ki-67, Bcl-2 and p53 expression in endometrial polyps and in the normal endometrium during the menstrual cycle.Crossref | GoogleScholarGoogle Scholar |
Menkhorst, E., Zhang, J. G., Morgan, P. O., Poulton, I. J., Metcalf, D., Salamonsen, L. A., Sims, N. A., Nicola, N. A., and Dimitriadis, E. (2010). Development of a vaginally applied, non-hormonal contraceptive: the contraceptive efficacy and impact on bone turnover of PEGLA, a long-acting LIF antagonist. J. Reprod. Immunol. 86, 33–34.
| Development of a vaginally applied, non-hormonal contraceptive: the contraceptive efficacy and impact on bone turnover of PEGLA, a long-acting LIF antagonist.Crossref | GoogleScholarGoogle Scholar |
Menkhorst, E., Zhang, J., Sims, N., Morgan, P., Soo, P., Poulton, I., Metcalf, D., Alexandrou, E., Gresle, M., Salamonsen, L., Butzkueven, H., Nicola, N. A., and Dimitriadis, E. (2011). Vaginally administered PEGylated LIF antagonist blocked embryo implantation and eliminated non-target effects on bone in mice. PLoS One 6, e19665.
| Vaginally administered PEGylated LIF antagonist blocked embryo implantation and eliminated non-target effects on bone in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXms1Kgu70%3D&md5=2042f0fff191dbee98f5bc2d410e30ebCAS |
Norwitz, E. R., Schust, D. J., and Fisher, S. J. (2001). Implantation and the survival of early pregnancy. N. Engl. J. Med. 345, 1400–1408.
| Implantation and the survival of early pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXot1aqu74%3D&md5=d9f8789215a0f65777af8721215d616fCAS |
Panda, H., Chuang, T. D., Luo, X., and Chegini, N. (2012). Endometrial miR-181a and miR-98 expression is altered during transition from normal into cancerous state and target PGR, PGRMC1, CYP19A1, DDX3X, and TIMP3. J. Clin. Endocrinol. Metab. 97, E1316–E1326.
| Endometrial miR-181a and miR-98 expression is altered during transition from normal into cancerous state and target PGR, PGRMC1, CYP19A1, DDX3X, and TIMP3.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFGqsr7J&md5=e01711dc8d08f29d174ad373c799c12eCAS |
Pohnke, Y., Schneider-Merck, T., Fahnenstich, J., Kempf, R., Christian, M., Milde-Langosch, K., Brosens, J. J., and Gellersen, B. (2004). Wild-type p53 protein is up-regulated upon cyclic adenosine monophosphate-induced differentiation of human endometrial stromal cells. J. Clin. Endocrinol. Metab. 89, 5233–5244.
| Wild-type p53 protein is up-regulated upon cyclic adenosine monophosphate-induced differentiation of human endometrial stromal cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXovVemtrs%3D&md5=6de1c3695c36d1973a1aebbc54712ae2CAS |
Robb, L., Li, R., Hartley, L., Nandrukar, H., Koentgen, F., and Begley, C. (1998). Infertility in female mice lacking the receptor for interleukin 11 is due to a defective uterine response to implantation. Nat. Med. 4, 303–308.
| Infertility in female mice lacking the receptor for interleukin 11 is due to a defective uterine response to implantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhs1Kjtbo%3D&md5=9ecbb8beb8feb01b7de8e9a263d5bd81CAS |
Shukla, G. C., Singh, J., and Barik, S. (2011). MicroRNAs: processing, maturation, target recognition and regulatory functions. Mol. Cell. Pharmacol. 3, 83–92.
| 1:CAS:528:DC%2BC38XhsVGjtLs%3D&md5=3a814218f713ef41cbde72ea7eeb7d73CAS |
Stad, R., Little, N. A., Xirodimas, D. P., Frenk, R., van der Eb, A. J., Lane, D. P., Saville, M. K., and Jochemsen, A. G. (2001). Mdmx stabilizes p53 and Mdm2 via two distinct mechanisms. EMBO Rep. 2, 1029–1034.
| Mdmx stabilizes p53 and Mdm2 via two distinct mechanisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXovFOnsb8%3D&md5=e1d93b4ea7eecce596ffd3b96f497116CAS |
Stewart, C. L., Kaspar, P., Brunet, L. J., Bhatt, H., Gadi, I., Köntgen, F., and Abbondanzo, S. J. (1992). Blastocyst implantation depends on maternal expression of leukaemia inhibitory factor. Nature 359, 76–79.
| Blastocyst implantation depends on maternal expression of leukaemia inhibitory factor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XlvVGmtLc%3D&md5=803a2f5229eb4cb9a9a3610c7dadbf82CAS |
Timeva, T., Shterev, A., and Kyurkchiev, S. (2014). Recurrent implantation failure: the role of the endometrium. J. Reprod. Infertil. 15, 173–183.
Vogiagis, D., Marsh, M., Fry, R., and Salamonsen, L. (1996). Leukaemia inhibitory factor in human endometrium throughout the menstrual cycle. J. Endocrinol. 148, 95–102.
| Leukaemia inhibitory factor in human endometrium throughout the menstrual cycle.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK287msFSktA%3D%3D&md5=3122f9ed16c6e41c924f1b969316eb2eCAS |
Wade, M., Li, Y. C., and Wahl, G. M. (2013). MDM2, MDMX and p53 in oncogenesis and cancer therapy. Nat. Rev. Cancer 13, 83–96.
| MDM2, MDMX and p53 in oncogenesis and cancer therapy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXkvFKmtA%3D%3D&md5=a4f917f6c42cfa2a37c8a643d8870192CAS |
White, C. A., Zhang, J.-G., Salamonsen, L. A., Baca, M., Fairlie, W. D., Metcalf, D., Nicola, N. A., Robb, L., and Dimitriadis, E. (2007). Blocking LIF action in the uterus by using a PEGylated antagonist prevents implantation: a nonhormonal contraceptive strategy. Proc. Natl. Acad. Sci. USA 104, 19357–19362.
| Blocking LIF action in the uterus by using a PEGylated antagonist prevents implantation: a nonhormonal contraceptive strategy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXisVOjuw%3D%3D&md5=90d5da27268ba11af849275dbd6d881cCAS |
Winship, A. L., Koga, K., Menkhorst, E., Van Sinderen, M., Rainczuk, K., Nagai, M., Cuman, C., Yap, J., Zhang, J. G., Simmons, D., Young, M. J., and Dimitriadis, E. (2015). Interleukin-11 alters placentation and causes preeclampsia features in mice. Proc. Natl. Acad. Sci. USA 112, 15928–15933.
| Interleukin-11 alters placentation and causes preeclampsia features in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvF2kt7zO&md5=0ecb8cd27d5c2b4d9aef1ac98eb291beCAS |
Winship, A., Van Sinderen, M., Rainczuk, K., and Dimitriadis, E. (2017). Therapeutically blocking interleukin-11 receptor-alpha enhances doxorubicin cytotoxicity in high grade type I endometrioid tumours. Oncotarget 8, 22716–22729.
| Therapeutically blocking interleukin-11 receptor-alpha enhances doxorubicin cytotoxicity in high grade type I endometrioid tumours.Crossref | GoogleScholarGoogle Scholar |
Yang, J. Y., Zong, C. S., Xia, W., Wei, Y., Ali-Seyed, M., Li, Z., Broglio, K., Berry, D. A., and Hung, M. C. (2006). MDM2 promotes cell motility and invasiveness by regulating E-cadherin degradation. Mol. Cell. Biol. 26, 7269–7282.
| MDM2 promotes cell motility and invasiveness by regulating E-cadherin degradation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVCltbfJ&md5=c2dfb88cdd3677db14f0034d3269ff87CAS |
Yu, H., Yue, X., Zhao, Y., Li, X., Wu, L., Zhang, C., Liu, Z., Lin, K., Xu-Monette, Z. Y., Young, K. H., Liu, J., Shen, Z., Feng, Z., and Hu, W. (2014). LIF negatively regulates tumour-suppressor p53 through Stat3/ID1/MDM2 in colorectal cancers. Nat. Commun. 5, 5218.
| LIF negatively regulates tumour-suppressor p53 through Stat3/ID1/MDM2 in colorectal cancers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXksVekt7g%3D&md5=03e01669a884dadab620a1c7b036229bCAS |
Zhang, C., Liu, J., Wang, X., and Feng, Z. (2015). The regulation of the p53/MDM2 feedback loop by microRNAs. RNA Dis. 2, e502.
Zhou, J., Liu, F., Zhang, D., Chen, B., Li, Q., Zhou, L., Lu, L. M., and Tao, L. (2014). Significance of MDM2–309 polymorphisms and induced corresponding plasma MDM2 levels in susceptibility to laryngeal squamous cell carcinoma. DNA Cell Biol. 33, 88–94.
| Significance of MDM2–309 polymorphisms and induced corresponding plasma MDM2 levels in susceptibility to laryngeal squamous cell carcinoma.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitVygt7s%3D&md5=3b470d8bc642ab7911269c5d40a49a3dCAS |