Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Glutamine protects rabbit spermatozoa against oxidative stress via glutathione synthesis during cryopreservation

Zhendong Zhu A , Xiaoteng Fan A , Yinghua Lv A , Yan Lin B , De Wu B and Wenxian Zeng A C
+ Author Affiliations
- Author Affiliations

A College of Animal Science and Technology, Northwest A&F University, 22 Xi-nong Road, Yangling, Shaanxi, 712100, China.

B Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, 211 Hui-min Road, Wenjiang, Chengdu, Sichuan, 611100, China.

C Corresponding author. Email: zengwenxian2013@126.com

Reproduction, Fertility and Development 29(11) 2183-2194 https://doi.org/10.1071/RD17020
Submitted: 25 October 2016  Accepted: 7 February 2017   Published: 27 March 2017

Abstract

Mammalian spermatozoa are extremely susceptible to high doses of reactive oxygen species (ROS). The aim of the present study was to investigate the potential role of glutamine in protecting rabbit spermatozoa against ROS stress during cryopreservation and post-thaw incubation. Freshly ejaculated semen was diluted with Tris–citrate–glucose extender supplemented with glutamine. The addition of 20 mM glutamine significantly improved sperm motility, acrosome integrity, membrane integrity and mitochondrial activity. Meanwhile, 20 mM glutamine addition decreased lipid peroxidation and DNA damage in frozen–thawed spermatozoa. Interestingly, supplementation with 20 mM glutamine led to increases in glutathione content and γ-glutamyl cysteine synthetase and glutathione peroxidase activity, with concomitant decreases in ROS levels during cryopreservation and post-thaw incubation. In conclusion, the addition of glutamine to extender solutions protects rabbit spermatozoa from ROS attack by enhancing glutathione synthesis.

Additional keywords: reactive oxygen species, semen.


References

Aitken, R. J. (1999). The Amoroso Lecture. The human spermatozoon – a cell in crisis? J. Reprod. Fertil. 115, 1–7.
The Amoroso Lecture. The human spermatozoon – a cell in crisis?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhs12isro%3D&md5=c93802c11177b4e4ad0c2d51f8cdf61aCAS |

Al Ahmad, M. Z., Chatagnon, G., Amirat-Briand, L., Moussa, M., Tainturier, D., Anton, M., and Fieni, F. (2008). Use of glutamine and low density lipoproteins isolated from egg yolk to improve buck semen freezing. Reprod. Domest. Anim. 43, 429–436.
Use of glutamine and low density lipoproteins isolated from egg yolk to improve buck semen freezing.Crossref | GoogleScholarGoogle Scholar |

Alvarez, J. G., and Storey, B. T. (1984). Assessment of cell damage caused by spontaneous lipid peroxidation in rabbit spermatozoa. Biol. Reprod. 30, 323–331.
Assessment of cell damage caused by spontaneous lipid peroxidation in rabbit spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXhsFCms7c%3D&md5=0a480a730c12782c849a46511600a924CAS |

Amorim, A. B., Berto, D. A., Saleh, M. A., Telles, F. G., Denadai, J. C., Sartori, M. M., Luiggi, F. G., Santos, L. S., and Ducatti, C. (2016). Effect of glutamine, glutamic acid and nucleotides on the turnover of carbon (δ13C) in organs of weaned piglets. Asian-Australas. J. Anim. Sci. 29, 1152–1158.
Effect of glutamine, glutamic acid and nucleotides on the turnover of carbon (δ13C) in organs of weaned piglets.Crossref | GoogleScholarGoogle Scholar |

Atessahin, A., Bucak, M. N., Tuncer, P. B., and Kizil, M. (2008). Effects of anti-oxidant additives on microscopic and oxidative parameters of Angora goat semen following the freeze–thawing process. Small Rumin. Res. 77, 38–44.
Effects of anti-oxidant additives on microscopic and oxidative parameters of Angora goat semen following the freeze–thawing process.Crossref | GoogleScholarGoogle Scholar |

Bannai, S., and Ishii, T. (1988). A novel function of glutamine in cell culture: utilization of glutamine for the uptake of cystine in human fibroblasts. J. Cell. Physiol. 137, 360–366.
A novel function of glutamine in cell culture: utilization of glutamine for the uptake of cystine in human fibroblasts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXltFyn&md5=0315a98645249c3b454dfcc02e93f42eCAS |

Baumber, J., Ball, B. A., Linfor, J. J., and Meyers, S. A. (2003). Reactive oxygen species and cryopreservation promote DNA fragmentation in equine spermatozoa. J. Androl. 24, 621–628.
Reactive oxygen species and cryopreservation promote DNA fragmentation in equine spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjtl2itb0%3D&md5=d73beac7d1da016372b461af6213281fCAS |

Brennan, L., Corless, M., Hewage, C., Malthouse, J. P., McClenaghan, N. H., Flatt, P. R., and Newsholme, P. (2003). 13C NMR analysis reveals a link between l-glutamine metabolism, d-glucose metabolism and gamma-glutamyl cycle activity in a clonal pancreatic beta-cell line. Diabetologia 46, 1512–1521.
13C NMR analysis reveals a link between l-glutamine metabolism, d-glucose metabolism and gamma-glutamyl cycle activity in a clonal pancreatic beta-cell line.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXptVyqs78%3D&md5=d2c693e429a3525298cf698580da45bbCAS |

Chamorro, S., de Blas, C., Grant, G., Badiola, I., Menoyo, D., and Carabano, R. (2010). Effect of dietary supplementation with glutamine and a combination of glutamine-arginine on intestinal health in twenty-five-day-old weaned rabbits. J. Anim. Sci. 88, 170–180.
Effect of dietary supplementation with glutamine and a combination of glutamine-arginine on intestinal health in twenty-five-day-old weaned rabbits.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXls1yrsQ%3D%3D&md5=c099e6c0eb020acf8f0305b1dd8dbf3fCAS |

Chatterjee, S., and Gagnon, C. (2001). Production of reactive oxygen species by spermatozoa undergoing cooling, freezing, and thawing. Mol. Reprod. Dev. 59, 451–458.
Production of reactive oxygen species by spermatozoa undergoing cooling, freezing, and thawing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXltVWmsb4%3D&md5=99c8558c0b7d280948c868493cd3f062CAS |

Day, R. M., Suzuki, Y. J., Lum, J. M., White, A. C., and Fanburg, B. L. (2002). Bleomycin upregulates expression of gamma-glutamylcysteine synthetase in pulmonary artery endothelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 282, L1349–L1357.
Bleomycin upregulates expression of gamma-glutamylcysteine synthetase in pulmonary artery endothelial cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xks12it7w%3D&md5=9e289f364d45533904aa58116b6ca28aCAS |

de Mercado, E., Hernandez, M., Sanz, E., Rodriguez, A., Gomez, E., Vazquez, J. M., Martinez, E. A., and Roca, J. (2009). Evaluation of l-glutamine for cryopreservation of boar spermatozoa. Anim. Reprod. Sci. 115, 149–157.
Evaluation of l-glutamine for cryopreservation of boar spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptl2iurs%3D&md5=d85c911aecb96773e31fe798be7d0e78CAS |

Flora, S. J. (2009). Structural, chemical and biological aspects of antioxidants for strategies against metal and metalloid exposure. Oxid. Med. Cell. Longev. 2, 191–206.
Structural, chemical and biological aspects of antioxidants for strategies against metal and metalloid exposure.Crossref | GoogleScholarGoogle Scholar |

Gadea, J., Selles, E., Marco, M. A., Coy, P., Matas, C., Romar, R., and Ruiz, S. (2004). Decrease in glutathione content in boar sperm after cryopreservation. Effect of the addition of reduced glutathione to the freezing and thawing extenders. Theriogenology 62, 690–701.
Decrease in glutathione content in boar sperm after cryopreservation. Effect of the addition of reduced glutathione to the freezing and thawing extenders.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltF2rs78%3D&md5=7756054f85b71be2f8aff5635c08ffa1CAS |

Gürler, H., Malama, E., Heppelmann, M., Calisici, O., Leiding, C., Kastelic, J. P., and Bollwein, H. (2016). Effects of cryopreservation on sperm viability, synthesis of reactive oxygen species, and DNA damage of bovine sperm. Theriogenology 86, 562–571.
Effects of cryopreservation on sperm viability, synthesis of reactive oxygen species, and DNA damage of bovine sperm.Crossref | GoogleScholarGoogle Scholar |

Hamilton, T. R., de Castro, L. S., Delgado Jde, C., de Assis, P. M., Siqueira, A. F., Mendes, C. M., Goissis, M. D., Muino-Blanco, T., Cebrian-Perez, J. A., Nichi, M., Visintin, J. A., and D’Avila Assumpcao, M. E. (2016). Induced lipid peroxidation in ram sperm: semen profile, DNA fragmentation and antioxidant status. Reproduction 151, 379–390.
Induced lipid peroxidation in ram sperm: semen profile, DNA fragmentation and antioxidant status.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtV2mt7zO&md5=cbda946f50f6d1a68f9c119f6fd2f0a0CAS |

He, Y., Wang, K., Zhao, X., Zhang, Y., Ma, Y., and Hu, J. (2016). Differential proteome association study of freeze–thaw damage in ram sperm. Cryobiology 72, 60–68.
Differential proteome association study of freeze–thaw damage in ram sperm.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvFCltrzE&md5=fedf426e8a1e6cb19ebab67baf28710eCAS |

Hinton, B. T. (1990). The testicular and epididymal luminal amino acid microenvironment in the rat. J. Androl. 11, 498–505.
| 1:CAS:528:DyaK3MXhtF2js70%3D&md5=3d1b8efbd39bec72866a57571e12907bCAS |

Jones, R., and Mann, T. (1977). Damage to ram spermatozoa by peroxidation of endogenous phospholipids. J. Reprod. Fertil. 50, 261–268.
Damage to ram spermatozoa by peroxidation of endogenous phospholipids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXls1GitLY%3D&md5=526d3e0fe91e4402c43ae3e627cdb693CAS |

Kaur, P., Kalia, S., and Bansal, M. P. (2006). Effect of diethyl maleate induced oxidative stress on male reproductive activity in mice: redox active enzymes and transcription factors expression. Mol. Cell. Biochem. 291, 55–61.
Effect of diethyl maleate induced oxidative stress on male reproductive activity in mice: redox active enzymes and transcription factors expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVKrtb%2FO&md5=356a80f029c053a5f5fbb26e7f2b59b2CAS |

Lee, J. A., Spidlen, J., Boyce, K., Cai, J., Crosbie, N., Dalphin, M., Furlong, J., Gasparetto, M., Goldberg, M., Goralczyk, E. M., et al. (2008). MIFlowCyt: the minimum information about a flow cytometry experiment. Cytometry A 73A, 926–930.
MIFlowCyt: the minimum information about a flow cytometry experiment.Crossref | GoogleScholarGoogle Scholar |

Lewis, S. E., and Aitken, R. J. (2005). DNA damage to spermatozoa has impacts on fertilization and pregnancy. Cell Tissue Res. 322, 33–41.
DNA damage to spermatozoa has impacts on fertilization and pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2Mnksl2ruw%3D%3D&md5=c3f91e265a82c0329972ed365eb365e8CAS |

Medina, M. A., Quesada, A. R., and Nunez de Castro, I. (1991). l-Glutamine transport in native vesicles isolated from Ehrlich ascites tumor cell membranes. J. Bioenerg. Biomembr. 23, 689–697.
l-Glutamine transport in native vesicles isolated from Ehrlich ascites tumor cell membranes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXltFWrsrg%3D&md5=3f3e18aebfc2c92e83be4f0525dd47d6CAS |

Miyahara, Y., Ikeda, S., Muroya, T., Yasuoka, C., Urata, Y., Horiuchi, S., Kohno, S., and Kondo, T. (2002). Nϵ-(Carboxymethyl)lysine induces gamma-glutamylcysteine synthetase in RAW264.7 cells. Biochem. Biophys. Res. Commun. 296, 32–40.
Nϵ-(Carboxymethyl)lysine induces gamma-glutamylcysteine synthetase in RAW264.7 cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlvVSis7k%3D&md5=326ef32c7ec90ba188dd66657511f35fCAS |

Molina, M., Segura, J. A., Aledo, J. C., Medina, M. A., Nunez de Castro, I., and Marquez, J. (1995). Glutamine transport by vesicles isolated from tumour-cell mitochondrial inner membrane. Biochem. J. 308, 629–633.
Glutamine transport by vesicles isolated from tumour-cell mitochondrial inner membrane.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXmtFersLk%3D&md5=bb634aea312cc5ef3d1cda8eefaadcf5CAS |

Nordgren, A., Karlsson, T., and Wiklund, L. (2002). Glutamine concentration and tissue exchange with intravenously administered alpha-ketoglutaric acid and ammonium: a dose–response study in the pig. Nutrition 18, 496–504.
Glutamine concentration and tissue exchange with intravenously administered alpha-ketoglutaric acid and ammonium: a dose–response study in the pig.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XktFyht7c%3D&md5=bb49453c10f8da21ce51df78570f07b6CAS |

Prieto-Martínez, N., Bussalleu, E., Garcia-Bonavila, E., Bonet, S., and Yeste, M. (2014). Effects of Enterobacter cloacae on boar sperm quality during liquid storage at 17°C. Anim. Reprod. Sci. 148, 72–82.
Effects of Enterobacter cloacae on boar sperm quality during liquid storage at 17°C.Crossref | GoogleScholarGoogle Scholar |

Renard, P., Grizard, G., Griveau, J. F., Sion, B., Boucher, D., and LeLannou, D. (1996). Improvement of motility and fertilization potential of post-thaw human sperm using glutamine. Cryobiology 33, 311–319.
Improvement of motility and fertilization potential of post-thaw human sperm using glutamine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XksFylsbw%3D&md5=fe76768f5b9bb0fb6b1579e3216a0d93CAS |

Saleh, R. A., and Agarwal, A. (2002). Oxidative stress and male infertility: from research bench to clinical practice. J. Androl. 23, 737–752.
| 1:CAS:528:DC%2BD38XptV2htbo%3D&md5=9d575436648bef90b163bc0ee7a9ac5bCAS |

Sangeeta, S., Arangasamy, A., Kulkarni, S., and Selvaraju, S. (2015). Role of amino acids as additives on sperm motility, plasma membrane integrity and lipid peroxidation levels at pre-freeze and post-thawed ram semen. Anim. Reprod. Sci. 161, 82–88.
Role of amino acids as additives on sperm motility, plasma membrane integrity and lipid peroxidation levels at pre-freeze and post-thawed ram semen.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsV2lsr7E&md5=9a2ddd26abe0a2a16d15067cafa05ca1CAS |

Santiani, A., Evangelista, S., Sepulveda, N., Risopatron, J., Villegas, J., and Sanchez, R. (2014). Addition of superoxide dismutase mimics during cooling process prevents oxidative stress and improves semen quality parameters in frozen/thawed ram spermatozoa. Theriogenology 82, 884–889.
Addition of superoxide dismutase mimics during cooling process prevents oxidative stress and improves semen quality parameters in frozen/thawed ram spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlCjt7%2FO&md5=10c0b6f9e93e92034f2d2326b3d9a1faCAS |

Sapanidou, V., Taitzoglou, I., Tsakmakidis, I., Kourtzelis, I., Fletouris, D., Theodoridis, A., Zervos, I., and Tsantarliotou, M. (2015). Antioxidant effect of crocin on bovine sperm quality and in vitro fertilization. Theriogenology 84, 1273–1282.
Antioxidant effect of crocin on bovine sperm quality and in vitro fertilization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXht1KrsL7E&md5=f11fa08747497955baf0480d6c058e29CAS |

Setchell, B. P., Hinks, N. T., Voglmayr, J. K., and Scott, T. W. (1967). Amino acids in ram testicular fluid and semen and their metabolism by spermatozoa. Biochem. J. 105, 1061–1065.
Amino acids in ram testicular fluid and semen and their metabolism by spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1cXitVantQ%3D%3D&md5=2f39a22f3784e469cad4eeedd6ec2d4cCAS |

Storey, B. T., Alvarez, J. G., and Thompson, K. A. (1998). Human sperm glutathione reductase activity in situ reveals limitation in the glutathione antioxidant defense system due to supply of NADPH. Mol. Reprod. Dev. 49, 400–407.
Human sperm glutathione reductase activity in situ reveals limitation in the glutathione antioxidant defense system due to supply of NADPH.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhtlOqt7Y%3D&md5=e0d965da4ce198382474c08209a650aaCAS |

Stradaioli, G., Noro, T., Sylla, L., and Monaci, M. (2007). Decrease in glutathione (GSH) content in bovine sperm after cryopreservation: comparison between two extenders. Theriogenology 67, 1249–1255.
Decrease in glutathione (GSH) content in bovine sperm after cryopreservation: comparison between two extenders.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjs1Ojs7g%3D&md5=a737cb81ed910c2b56b991f6d35f3f61CAS |

Tietze, F. (1969). Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal. Biochem. 27, 502–522.
Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1MXktVSlt7k%3D&md5=38ae781b680bb5002ae1b1d02b978cb0CAS |

Topraggaleh, T. R., Shahverdi, A., Rastegarnia, A., Ebrahimi, B., Shafiepour, V., Sharbatoghli, M., Esmaeili, V., and Janzamin, E. (2014). Effect of cysteine and glutamine added to extender on post-thaw sperm functional parameters of buffalo bull. Andrologia 46, 777–783.
Effect of cysteine and glutamine added to extender on post-thaw sperm functional parameters of buffalo bull.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlymsLvM&md5=b7e76fb35b1f1e96a399a235464a8328CAS |

Tuncer, P. B., Sariozkan, S., Bucak, M. N., Ulutas, P. A., Akalin, P. P., Buyukleblebici, S., and Canturk, F. (2011). Effect of glutamine and sugars after bull spermatozoa cryopreservation. Theriogenology 75, 1459–1465.
Effect of glutamine and sugars after bull spermatozoa cryopreservation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkt1KjsLg%3D&md5=0ec6ecb82c90a803a08740d6470974d6CAS |

Wu, G., Bazer, F. W., Johnson, G. A., Knabe, D. A., Burghardt, R. C., Spencer, T. E., Li, X. L., and Wang, J. J. (2011). Triennial Growth Symposium: important roles for l-glutamine in swine nutrition and production. J. Anim. Sci. 89, 2017–2030.
Triennial Growth Symposium: important roles for l-glutamine in swine nutrition and production.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXoslCisrY%3D&md5=f6da73c8210992edfece9922b4b9abc9CAS |

Yeste, M., Flores, E., Estrada, E., Bonet, S., Rigau, T., and Rodriguez-Gil, J. E. (2013). Reduced glutathione and procaine hydrochloride protect the nucleoprotein structure of boar spermatozoa during freeze–thawing by stabilising disulfide bonds. Reprod. Fertil. Dev. 25, 1036–1050.
Reduced glutathione and procaine hydrochloride protect the nucleoprotein structure of boar spermatozoa during freeze–thawing by stabilising disulfide bonds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1Gms7rM&md5=972e7be038947e54c3b91c0d74f64729CAS |

Yeste, M., Estrada, E., Rocha, L. G., Marin, H., Rodriguez-Gil, J. E., and Miro, J. (2015a). Cryotolerance of stallion spermatozoa is related to ROS production and mitochondrial membrane potential rather than to the integrity of sperm nucleus. Andrology 3, 395–407.
Cryotolerance of stallion spermatozoa is related to ROS production and mitochondrial membrane potential rather than to the integrity of sperm nucleus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXntFSgtL8%3D&md5=0460017743d0f3e432d31da15243db53CAS |

Yeste, M., Fernandez-Novell, J. M., Ramio-Lluch, L., Estrada, E., Rocha, L. G., Cebrian-Perez, J. A., Muino-Blanco, T., Concha, I. I., Ramirez, A., and Rodriguez-Gil, J. E. (2015b). Intracellular calcium movements of boar spermatozoa during ‘in vitro’ capacitation and subsequent acrosome exocytosis follow a multiple-storage place, extracellular calcium-dependent model. Andrology 3, 729–747.
Intracellular calcium movements of boar spermatozoa during ‘in vitro’ capacitation and subsequent acrosome exocytosis follow a multiple-storage place, extracellular calcium-dependent model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXht1GkurfN&md5=83d63d157002e56da5b3cabac77d5ce1CAS |

Zhu, Z., Fan, X., Lv, Y., Zhang, N., Fan, C., Zhang, P., and Zeng, W. (2015). Vitamin E analogue improves rabbit sperm quality during the process of cryopreservation through its antioxidative action. PLoS One 10, e0145383.
Vitamin E analogue improves rabbit sperm quality during the process of cryopreservation through its antioxidative action.Crossref | GoogleScholarGoogle Scholar |