Association of CYP19A1 gene polymorphisms with anoestrus in water buffaloes
Khairy M. El-Bayomi A , Ayman A. Saleh B J , Ashraf Awad B , Mahmoud S. El-Tarabany A , Hadeel S. El-Qaliouby C , Mohamed Afifi D E , Shymaa El-Komy F , Walaa M. Essawi G , Essam A. Almadaly H and Mohammed A. El-Magd I JA Department of Animal Wealth Development, Animal Breeding and Production, Faculty of Veterinary Medicine, Zagazig University, Postal Box 44519, Egypt.
B Department of Animal Wealth Development, Genetics and Genetic Engineering, Faculty of Veterinary Medicine, Zagazig University, Postal Box 44519, Egypt.
C Department of Animal Wealth Development, Animal Breeding and Production, Faculty of Veterinary Medicine, Benha University, Postal Box 13518, Egypt.
D Department of Animal Wealth Development, Biostatistics, Faculty of Veterinary Medicine, Zagazig University, Postal Box 44519, Egypt.
E Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, C1A 4P3, Canada.
F Department of Animal Production, Faculty of Agriculture, Postal Box 31527, Tanta University, Egypt.
G Department of Theriogenology, Faculty of Veterinary Medicine, Postal Box 81528 Aswan University.
H Department of Theriogenology, Faculty of Veterinary Medicine, Kafrelsheikh University, Postal Box 33516, Egypt.
I Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Kafrelsheikh University, Postal Box 33516, Egypt.
J Corresponding authors. Emails: mohrizk73@yahoo.com; lateefsaleh@yahoo.com
Reproduction, Fertility and Development 30(3) 487-497 https://doi.org/10.1071/RD16528
Submitted: 7 November 2016 Accepted: 17 July 2017 Published: 17 August 2017
Abstract
Cytochrome P450 aromatase (encoded by the CYP19A1 gene) regulates oestrogen biosynthesis and so plays an essential role in female fertility. We investigated the genetic association of CYP19A1 with the risk of anoestrus in Egyptian water buffaloes. A total of 651 animals (326 anoestrous and 325 cycling) were used in this case-control study. Using single-strand conformation polymorphisms and sequencing, four single nucleotide polymorphisms (SNPs) were detected; c.−135T > C SNP in the 5′UTR and three non-synonymous SNPs: c.559G > A (p. V187M) in Exon 5, c.1285C > T (p. P429S) and c.1394A > G (p. D465G) in Exon 10. Individual SNP-anoestrus association analyses revealed that genotypes (CC, AA and GG) and alleles (C, A and G) of the −135T > C, c.559G > A and c.1394A > G SNPs respectively were high risk for anoestrus. A further analysis confirmed that these three SNPs were in linkage disequilibrium. Additionally, haplotypes with two (TAG/122 and CAA/221) or three (CAG/222) risk alleles were significantly associated with susceptibility to anoestrus, lower blood levels of both oestradiol and antioxidant enzymes (superoxide dismutase, glutathione peroxidase (GPX) and catalase) and downregulated expression levels of CYP19A1, oestrogen receptor α and Gpx3 in the ovary, as well as increased serum level of malondialdehyde. This suggests the occurrence of a high incidence of oxidative ovarian damage and subsequently ovarian inactivity in buffaloes carrying risk alleles. Therefore, with this study we suggest the selection of buffaloes with protective alleles at these SNPs to improve the reproductive efficiency of the herd.
Additional keywords: antioxidant enzymes, oestradiol, oestrogen receptor α, risk alleles.
References
Abbas, H. S., El-Magd, M. A., El-Bayomi, K. M., and Sosa, G. A. (2014a). Detection of SNPs in exon7 locus of Cyp19 gene and their association with anestrus in Egyptian buffaloes (Bubalus bubalis). Benha Veterinary Medical Journal 26, 151–160.Abbas, H. S., El-Magd, M. A., El-Bayomi, K. M., and Sosa, G. A. (2014b). Isolation and sequencing of Cyp19 gene (exon 9) in Egyptian buffaloes. Benha Veterinary Medical Journal 26, 161–170.
Abd-Alrahman, S. H., Elhalwagy, M. E., Kotb, G. A., Farid, H., Farag, A. A., Draz, H. M., Isa, A. M., and Sabico, S. (2014). Exposure to difenoconazole, diclofop-methyl alone and combination alters oxidative stress and biochemical parameters in albino rats. Int. J. Clin. Exp. Med. 7, 3637–3646.
Ahmed, W. M., Hanafi, E. M., Ali, A. H., and Shalaby, S. A. (2010). Clinical perspective of repeat breeding syndrome in buffaloes. J. Am. Sci. 6, 661–666.
Baltgalvis, K. A., Greising, S. M., Warren, G. L., and Lowe, D. A. (2010). Estrogen regulates estrogen receptors and antioxidant gene expression in mouse skeletal muscle. PLoS One 5, e10164.
| Estrogen regulates estrogen receptors and antioxidant gene expression in mouse skeletal muscle.Crossref | GoogleScholarGoogle Scholar |
Barrett, J. C., Fry, B., Maller, J., and Daly, M. J. (2005). Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21, 263–265.
| Haploview: analysis and visualization of LD and haplotype maps.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkt1WitQ%3D%3D&md5=be70cb8299e90fc3a8f6300ce49bcbabCAS |
Borrás, C., Gambini, J., López-Grueso, R., Pallardó, F. V., and Viña, J. (2010). Direct antioxidant and protective effect of estradiol on isolated mitochondria. Biochim. Biophys. Acta 1802, 205–211.
| Direct antioxidant and protective effect of estradiol on isolated mitochondria.Crossref | GoogleScholarGoogle Scholar |
Derar, R., Hussein, H. A., Fahmy, S., and Megahed, G. (2012). The effect of parity on the efficacy of ovulation synchronization (Ovsynch) protocol in buffalo (Bubalus bubalis). Anim. Reprod. 9, 52–60.
Donaghue, C., Westley, B., and May, F. (1999). Selective promoter usage of the human estrogen receptor-α gene and its regulation by estrogen. Mol. Endocrinol. 13, 1934–1950.
| 1:CAS:528:DyaK1MXnt1GntLo%3D&md5=ee28109e554a81abc3ad15a3eea35051CAS |
El-Magd, M. A., Abbas, H. E., El-kattawy, A. M., and Mokhbatly, A. (2013). Novel polymorphisms of the IGF1R gene and their association with average daily gain in Egyptian buffalo (Bubalus bubalis). Domest. Anim. Endocrinol. 45, 105–110.
| Novel polymorphisms of the IGF1R gene and their association with average daily gain in Egyptian buffalo (Bubalus bubalis).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVKrtbzJ&md5=c48a0343341659c199ca7c9181defdf0CAS |
El-Magd, M. A., Abo-Al-Ela, H. G., El-Nahas, A., Saleh, A. A., and Mansour, A. A. (2014). Effects of a novel SNP of IGF2R gene on growth traits and expression rate of IGF2R and IGF2 genes in gluteus medius muscle of Egyptian buffalo. Gene 540, 133–139.
| Effects of a novel SNP of IGF2R gene on growth traits and expression rate of IGF2R and IGF2 genes in gluteus medius muscle of Egyptian buffalo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXktV2ktbg%3D&md5=88b339b55616af93681ac3ed41a9f523CAS |
El-Magd, M. A., Saleh, A. A., Abdel-Hamid, T. M., Saleh, R. M., and Afifi, M. A. (2016). Is really endogenous ghrelin a hunger signal in chickens? Association of GHSR SNPs with increase appetite, growth traits, expression and serum level of GHRL, and GH. Gen. Comp. Endocrinol. 237, 131–139.
| Is really endogenous ghrelin a hunger signal in chickens? Association of GHSR SNPs with increase appetite, growth traits, expression and serum level of GHRL, and GH.Crossref | GoogleScholarGoogle Scholar |
Evans, A. C. O., Ireland, J. L. H., Winn, M. E., Longergan, P., Smith, G. W., Coussens, P. M., and Ireland, J. J. (2004). Identification of genes involved in apoptosis and dominant follicle development during follicular waves in cattle. Biol. Reprod. 70, 1475–1484.
| Identification of genes involved in apoptosis and dominant follicle development during follicular waves in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsFelurw%3D&md5=4ea96ca4bc9a76b97adf5a063afd503cCAS |
Fisher, C. R., Graves, K. H., Parlow, A. F., and Simpson, E. R. (1998). Characterization of mice deficient in aromatase (ArKO) because of targeted disruption of the cyp19 gene. Proc. Natl. Acad. Sci. USA 95, 6965–6970.
| Characterization of mice deficient in aromatase (ArKO) because of targeted disruption of the cyp19 gene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjslyms7w%3D&md5=afc1360c598645304acdfa95e080113cCAS |
Gali, J. M. R. (2006). Characterization of 5′-end of aromatase cytochrome P450 (CYP19) transcripts in buffalo ovary. M.Sc. Thesis, National Dairy Research Institute, Karnal, India.
Grumbach, M. M., and Auchus, R. J. (1999). Estrogen: consequences and implications of human mutations in synthesis and action. J. Clin. Endocrinol. Metab. 84, 4677–4694.
| 1:CAS:528:DyaK1MXotVGqsLc%3D&md5=38b4dbcd9639348cd96616a91eb3d8e2CAS |
Hafez, E. S. E., and Hafez, B. (2000). Chapter 17. Reproductive failure in females. In ‘Reproduction in Farm Animals’. 7th edn. (Eds M. R. Jainudeen and E. S. E. Hafez.) pp. 261–263. (Lippincott Williams and Wilkins Publications: USA.)
Hedrick, P. W. (1987). Gametic disequilibrium measures: proceed with caution. Genetics 117, 331–341.
| 1:STN:280:DyaL1c%2FjtVKmtA%3D%3D&md5=3735b4a8766a9fa03db039a392fca0efCAS |
Hornsby, P. J. (1980). Regulation of cytochrome P-450-supported 11 beta-hydroxylation of deoxycortisol by steroids, oxygen, and antioxidants in adrenocortical cell cultures. J. Biol. Chem. 255, 4020–4027.
| 1:CAS:528:DyaL3cXktF2lt7c%3D&md5=a5d60fc01ed1fcb101b9e5f90e44133aCAS |
Iannuzzi, L., Di Meo, G. P., Perucatti, A., Schibler, L., Incarnato, D., and Cribiu, E. P. (2001). Comparative FISH-mapping in river buffalo and sheep chromosomes: assignment of forty autosomal type I loci from sixteen human chromosomes. Cytogenet. Cell Genet. 94, 43–48.
| Comparative FISH-mapping in river buffalo and sheep chromosomes: assignment of forty autosomal type I loci from sixteen human chromosomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXovFWjtr4%3D&md5=db623fa479ceba491a00e1034769b190CAS |
Ing, N. H., Spencer, T. E., and Bazer, F. W. (1996). Estrogen enhances endometrial estrogen receptor gene expression by a posttranscriptional mechanism in the ovariectomized ewe. Biol. Reprod. 54, 591–599.
| Estrogen enhances endometrial estrogen receptor gene expression by a posttranscriptional mechanism in the ovariectomized ewe.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhtFCjt7k%3D&md5=e9cb039eab78ea82fc0c3f8fbfd53245CAS |
Karuputhula, N. B., Chattopadhyay, R., Chakravarty, B., and Chaudhury, K. (2013). Oxidative status in granulosa cells of infertile women undergoing IVF. Syst Biol Reprod Med 59, 91–98.
| Oxidative status in granulosa cells of infertile women undergoing IVF.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtF2ru7g%3D&md5=82e1f5144d006116aca79800977852dbCAS |
Layman, L. C. (2002). Human gene mutations causing infertility. J. Med. Genet. 39, 153–161.
| Human gene mutations causing infertility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XivV2ktrg%3D&md5=168bb938f04877eec0926237ef813f21CAS |
Lindsey, J. K., and Jones, B. (1998). Choosing among generalized linear models applied to medical data. Stat. Med. 17, 59–68.
| Choosing among generalized linear models applied to medical data.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1c7isFSisg%3D%3D&md5=65b797a93c099ef2e1b8e14ff9f4d208CAS |
Livak, K. J., and Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25, 402–408.
| Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtFelt7s%3D&md5=27001fc4d390214adec9d2e6245c9fd6CAS |
Lôbo, A. M., Lôbo, R. N., and Paiva, S. R. (2009). Aromatase gene and its effects on growth, reproductive and maternal ability traits in a multibreed sheep population from Brazil. Genet. Mol. Biol. 32, 484–490.
| Aromatase gene and its effects on growth, reproductive and maternal ability traits in a multibreed sheep population from Brazil.Crossref | GoogleScholarGoogle Scholar |
Lundholm, L., Putnik, M., Otsuki, M., Andersson, S., Ohlsson, C., Gustafsson, J. A., and Dahlman-Wright, K. (2008). Effects of estrogen on gene expression profiles in mouse hypothalamus and white adipose tissue: target genes include glutathione peroxidase 3 and cell death-inducing DNA fragmentation factor, alpha-subunit-like effector A. J. Endocrinol. 196, 547–557.
| Effects of estrogen on gene expression profiles in mouse hypothalamus and white adipose tissue: target genes include glutathione peroxidase 3 and cell death-inducing DNA fragmentation factor, alpha-subunit-like effector A.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkt1Cgur0%3D&md5=29cf9a22c19505d78935fa73fd929f3cCAS |
Montano, M. M., Deng, H., Liu, M., Sun, X., and Singal, R. (2004). Transcriptional regulation by the estrogen receptor of antioxidative stress enzymes and its functional implications. Oncogene 23, 2442–2453.
| Transcriptional regulation by the estrogen receptor of antioxidative stress enzymes and its functional implications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXis1Gmtr4%3D&md5=29209af55da963fb40e2cbe3abede4e2CAS |
Othman, O. E., Ahmed, W. M., Balabel, E. A., Zaabal, M. M., El Khadrawy, H. H., and Hanafy, E. M. (2014). Genetic polymorphism of Cyp19 gene and its association with ovarian activity in Egyptian buffaloes. Glob. Vet. 12, 768–773.
Oztekin, E., Tiftik, A. M., Baltaci, A. K., and Mogulkoc, R. (2007). Lipid peroxidation in liver tissue of ovariectomized and pinealectomized rats: effect of estradiol and progesterone supplementation. Cell Biochem. Funct. 25, 401–405.
| Lipid peroxidation in liver tissue of ovariectomized and pinealectomized rats: effect of estradiol and progesterone supplementation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXot1emtbg%3D&md5=27d0ccd2df1aa8fdd49e0ee246ecea6bCAS |
Perera, B. M. (2011). Reproductive cycles of buffalo. Anim. Reprod. Sci. 124, 194–199.
| Reproductive cycles of buffalo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlvFWhtbo%3D&md5=c5904f8570ac7fe4489c7ea355826ac0CAS |
Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A., Bender, D., Maller, J., Sklar, P., de Bakker, P. I., Daly, M. J., and Sham, P. C. (2007). PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575.
| PLINK: a tool set for whole-genome association and population-based linkage analyses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVSqurrL&md5=33c036c257d25829cc8970a46a65987bCAS |
Simpson, E. R., and Davis, S. R. (2001). Minireview: aromatase and the regulation of estrogen biosynthesis – some new perspectives. Endocrinology 142, 4589–4594.
| Minireview: aromatase and the regulation of estrogen biosynthesis – some new perspectives.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnslGqt7g%3D&md5=515fdb671ca536140e9c14926cadf199CAS |
Stepniak, J., and Karbownik-Lewinska, M. (2016). 17beta-estradiol prevents experimentally-induced oxidative damage to membrane lipids and nuclear DNA in porcine ovary. Syst Biol Reprod Med 62, 17–21.
| 17beta-estradiol prevents experimentally-induced oxidative damage to membrane lipids and nuclear DNA in porcine ovary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtFCrsg%3D%3D&md5=3dfe27932e375c04f077217adc90dccdCAS |
Strehlow, K., Rotter, S., Wassmann, S., Adam, O., Grohe, C., Laufs, K., Bohm, M., and Nickenig, G. (2003). Modulation of antioxidant enzyme expression and function by estrogen. Circ. Res. 93, 170–177.
| Modulation of antioxidant enzyme expression and function by estrogen.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlsVOnsbc%3D&md5=ff8589ad2961b607f5b5e2051713502cCAS |
Suneel Kumar, S. O., Sharma, D., Singh, D., and Sharma, M. K. (2009). CYP19 (cytochrome P450 aromatase) gene polymorphism in murrah buffalo heifers of different fertility performance. Res. Vet. Sci. 86, 427–437.
| CYP19 (cytochrome P450 aromatase) gene polymorphism in murrah buffalo heifers of different fertility performance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkslKrsbc%3D&md5=b1bc76ac593f09f9f329bf6a9cfdcaf5CAS |
Vanselow, J., Pöhland, R., and Fürbass, R. (2005). Promoter-2-derived Cyp19 expression in bovine granulosa cells coincides with gene-specific DNA hypo-methylation. Mol. Cell. Endocrinol. 233, 57–64.
| Promoter-2-derived Cyp19 expression in bovine granulosa cells coincides with gene-specific DNA hypo-methylation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXitlCitL8%3D&md5=63b81c5ce71f8776390ac251315e4c62CAS |
Vina, J., Borras, C., Gambini, J., Sastre, J., and Pallardo, F. V. (2005). Why females live longer than males: control of longevity by sex hormones. Sci. Aging Knowl. Environ. 2005, pe17.
| Why females live longer than males: control of longevity by sex hormones.Crossref | GoogleScholarGoogle Scholar |
Vina, J., Borras, C., Gomez-Cabrera, M. C., and Orr, W. C. (2006). Part of the series: from dietary antioxidants to regulators in cellular signalling and gene expression. Role of reactive oxygen species and (phyto)oestrogens in the modulation of adaptive response to stress. Free Radic. Res. 40, 111–119.
| Part of the series: from dietary antioxidants to regulators in cellular signalling and gene expression. Role of reactive oxygen species and (phyto)oestrogens in the modulation of adaptive response to stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlGht7rN&md5=b3621e848049d1ff42759559a663e087CAS |
Wyszyńska-Koko, J., Pierzchala, M., Flisikowski, K., Kamyczek, M., Rozycki, M., and Kuryl, J. (2006). Polymorphisms in coding and regulatory regions of the porcine MYF6 and MYOG genes and expression of the MYF6 gene in m. longissimus dorsi versus productive traits in pigs. J. Appl. Genet. 47, 131–138.
| Polymorphisms in coding and regulatory regions of the porcine MYF6 and MYOG genes and expression of the MYF6 gene in m. longissimus dorsi versus productive traits in pigs.Crossref | GoogleScholarGoogle Scholar |
Zhang, L., Fujii, S., and Kosaka, H. (2007). Effect of oestrogen on reactive oxygen species production in the aortas of ovariectomized Dahl salt-sensitive rats. J. Hypertens. 25, 407–414.
| Effect of oestrogen on reactive oxygen species production in the aortas of ovariectomized Dahl salt-sensitive rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXisV2ksQ%3D%3D&md5=88ace96fc30638b16e16b7d9d6301bf1CAS |
Zicarelli, L. (2007). Can we consider buffalo a non precocious and hypofertile species? Ital. J. Anim. Sci. 6, 143–154.
| Can we consider buffalo a non precocious and hypofertile species?Crossref | GoogleScholarGoogle Scholar |