Cryopreservation of saltwater crocodile (Crocodylus porosus) spermatozoa
S. D. Johnston A G , E. Qualischefski A , J. Cooper B , R. McLeod C , J. Lever C , B. Nixon D , A. L. Anderson D , R. Hobbs E , J. Gosálvez F , C. López-Fernández F and T. Keeley AA School of Agriculture and Food Science, The University of Queensland, Gatton, Qld 4343, Australia.
B Just Genes Artificial Breeding Services, Everton Park, Brisbane, Qld 4053, Australia.
C Koorana Crocodile Farm, Coowonga, Qld 4702, Australia.
D School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia.
E Taronga Conservation Society, Mosman, NSW 2088, Australia.
F Department of Biology, Universidad Autónoma de Madrid, Madrid, 20849, Spain.
G Corresponding author. Email: s.johnston1@uq.edu.au
Reproduction, Fertility and Development 29(11) 2235-2244 https://doi.org/10.1071/RD16511
Submitted: 18 December 2016 Accepted: 21 February 2017 Published: 30 March 2017
Abstract
The aim of the present study was to develop a protocol for the successful cryopreservation of Saltwater crocodile spermatozoa. Sperm cells were frozen above liquid nitrogen vapour in phosphate-buffered saline (PBS) containing either 0.3 M trehalose, 0.3 M raffinose or 0.3 M sucrose and compared with glycerol (0.3–2.7 M). Although the highest levels of mean post-thaw motility were observed following cryopreservation in 0.3 M trehalose (7.6%) and 0.3 M sucrose (7.3%), plasma membrane integrity (PI) was best following cryopreservation in 2.7 M glycerol (52.5%). A pilot study then assessed the cytotoxicity of glycerol and sucrose prior to cryopreservation and revealed no loss of survival when spermatozoa were diluted in 0.68 M glycerol or 0.2–0.3 M sucrose once cryoprotectants were washed out with PBS or Biggers, Whitten and Whittingham medium containing sperm capacitation agents (BWWCAP). A final study refined the combined use of permeating (0.68 or 1.35 M glycerol) and non-permeating (0.2 or 0.3 M sucrose) cryoprotectants. Spermatozoa were cryopreserved in liquid nitrogen vapour at rates of approximately −21°C min−1 (fast freeze) or −6.0°C min−1 (slow freeze). Post-thaw survival was highest with a combination of 0.2 M sucrose and 0.68 M glycerol and when these cryoprotectants were washed out with BWWCAP, regardless of whether spermatozoa were frozen using a fast (motility 14.2 ± 4.7%; PI 20.7 ± 2.0%) or slow (motility 12.0 ± 2.7%; PI 22 ± 4%) cryopreservation rate.
Additional keywords: glycerol, non-permeating cryoprotectants, permeating cryoprotectants, raffinose, sucrose, trehalose.
References
Amman, R. P. (1999). Cryopreservation of sperm. In ‘Encyclopedia of Reproduction’. Vol. 1. (Eds E. Knobil and J. D. Neill.) pp. 773–783. (Academic Press: Sydney.)Barth, A. D., and Bowman, P. A. (1988). Determination of the best practical method of thawing bovine semen. Can. Vet. J. 29, 366–369.
| 1:STN:280:DC%2BC3crpsVaitw%3D%3D&md5=4521d0dcd9aac5a4173454dfb181e1ecCAS |
Biggers, J. D., Whitten, W. K., and Whittingham, D. G. (1971). The culture of mouse embryos in vitro. In ‘Methods in Mammalian Embryology’. (Ed. J. C. Daniel.) pp. 86–116. (Freeman Press: San Francisco, CA.)
Browne, R. K., Li, H., Robertson, H., Uteshev, V. K., Shishova, N. V., McGinnity, D., Nofs, S., Fihel, C., Mansour, N., Lloyd, R., Agnew, D., Carleton, C., Wy, M., and Gakhova, E. (2011). Reptile and amphibian conservation through gene banking and other reproduction technologies. Russ. J. Herpetol. 18, 165–174.
Clulow, J., and Clulow, S. (2016). Cryopreservation and other assisted reproductive technologies for the conservation of threatened amphibians and reptiles: bringing the ARTs up to speed. Reprod. Fertil. Dev. 28, 1116–1132.
| Cryopreservation and other assisted reproductive technologies for the conservation of threatened amphibians and reptiles: bringing the ARTs up to speed.Crossref | GoogleScholarGoogle Scholar |
Evans, G., Maxwell, W. M. C., and Salamon, S. (1987). ‘Salamon’s Artificial Insemination of Sheep and Goats’. (Butterworths: Sydney.)
Holt, W. V., Abaigar, T., Watson, P. F., and Wildt, D. E. (2003). Genetic resource banks for species conservation. In ‘Reproductive Science and Integrated Conservation’. Vol 8. (Eds W. V. Holt, A. R. Pickard, J. C. Rodger, and D. E. Wildt.) pp. 267–280. (Cambridge University Press: Cambridge, UK.)
Johnston, S. D., Lever, J., McLeod, R., Oishi, M., and Collins, S. (2014a). Development of breeding techniques in the crocodile industry. RIRDC Publication No. 13/097, RIRDC Project No. PRJ006157. Available at https://rirdc.infoservices.com.au/items/13-09
Johnston, S. D., Lever, J., McLeod, R., Qualischefski, E., Oishi, M., Omanga, C., Leitner, M., Price, R., Barker, L., Noble, C., Kamau, K., Gaughan, J., and D’Occhio, M. (2014b). Semen collection and seminal characteristics of the Australian saltwater crocodile (Crocodylus porosus). Aquaculture 422–423, 25–35.
| Semen collection and seminal characteristics of the Australian saltwater crocodile (Crocodylus porosus).Crossref | GoogleScholarGoogle Scholar |
Johnston, S. D., Lever, J., McLeod, R., Qualischefski, E., Barbazon, S., Walton, S., and Collins, S. N. (2014c). Extension, osmotic tolerance and cryopreservation of saltwater crocodile (Crocodylus porosus) spermatozoa. Aquaculture 426–427, 213–221.
| Extension, osmotic tolerance and cryopreservation of saltwater crocodile (Crocodylus porosus) spermatozoa.Crossref | GoogleScholarGoogle Scholar |
Johnston, S. D., López-Fernández, C., Arroyo, F., López-Fernández, J. L., and Gosálvez, J. (2017). The assessment of sperm DNA fragmentation in the saltwater crocodile (Crocodylus porosus). Reprod. Fertil. Dev. 29, 630–636.
| The assessment of sperm DNA fragmentation in the saltwater crocodile (Crocodylus porosus).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXivVOgsrY%3D&md5=dc34b5c7d31df83f5c1d62b5d52fda17CAS |
Molinia, F. C., Bell, T., Norbury, G., Cree, A., and Gleeson, D. M. (2010). Assisted breeding of skinks or how to teach a lizard old tricks! Herpetol. Conserv. Biol. 5, 311–319.
Morrell, J. M., and Rodriguez-Martinez, H. (2011). Practical applications of sperm selection techniques as a tool for improving reproductive efficiency. Vet. Med. Int. 2011, 894767.
| Practical applications of sperm selection techniques as a tool for improving reproductive efficiency.Crossref | GoogleScholarGoogle Scholar |
Nixon, B., Anderson, A. L., Smith, N. D., McLeod, R., and Johnston, S. D. (2016). The Australian saltwater crocodile (Crocodylus porosus) provides evidence that the capacitation of spermatozoa may extend beyond the mammalian lineage. Proc. Biol. Sci. 283, 20160495.
| The Australian saltwater crocodile (Crocodylus porosus) provides evidence that the capacitation of spermatozoa may extend beyond the mammalian lineage.Crossref | GoogleScholarGoogle Scholar |
Young, C., Ravida, N., Curtis, M., Mazzott, F., and Durrant, B. (2017). Development of a sperm cryopreservation protocol for the Argentine black and white tegu (Tupinambis merianae). Theriogenology 87, 55–63.
| Development of a sperm cryopreservation protocol for the Argentine black and white tegu (Tupinambis merianae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhsVyqurbP&md5=eebf45fa22552843db823360e269fd18CAS |
Zee, Y. P., Holt, W. V., Allen, C. D., Nicolson, V., Burridge, M., Lisle, A., Carrick, F. N., and Johnston, S. D. (2007). Effects of cryopreservation on mitochondrial function and heterogeneity, lipid raft stability and phosphatidylserine translocation in koala (Phascolarctos cinereus) spermatozoa. Reprod. Fertil. Dev. 19, 850–860.
| Effects of cryopreservation on mitochondrial function and heterogeneity, lipid raft stability and phosphatidylserine translocation in koala (Phascolarctos cinereus) spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVWhtrzJ&md5=5331f89040fb792dfe74e2d430efa132CAS |