Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Tissue cell stress response to obesity and its interaction with late gestation diet

Vivek Saroha A , Neele S. Dellschaft A , Duane H. Keisler D , David S. Gardner C , Helen Budge A , Sylvain P. Sebert A E F and Michael E. Symonds A B G
+ Author Affiliations
- Author Affiliations

A Early Life Research Unit, Academic Division of Child Health, Obstetrics and Gynaecology, School of Medicine, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.

B Nottingham Digestive Disease Centre and Biomedical Research Unit, School of Medicine, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.

C School of Veterinary Medicine and Science, Sutton Bonington Campus, University of Nottingham, Nottingham LE12 5RD, UK.

D Department of Animal Science, University of Missouri, Columbia, MO 65211, USA.

E Centre for Life-Course Health Research, and Biocentre Oulu, University of Oulu, Aapistie 5B, 90014 Oulu, Finland.

F Department of Genomics of Complex Diseases, Imperial College London, London, UK.

G Corresponding author. Email: michael.symonds@nottingham.ac.uk

Reproduction, Fertility and Development 30(3) 430-441 https://doi.org/10.1071/RD16494
Submitted: 7 December 2016  Accepted: 8 July 2017   Published: 3 August 2017

Abstract

Intrauterine growth restriction in late pregnancy can contribute to adverse long-term metabolic health in the offspring. In the present study we used an animal (sheep) model of maternal dietary manipulation in late pregnancy, combined with exposure of the offspring to a low-activity, obesogenic environment after weaning, to characterise the effects on glucose homeostasis. Dizygotic twin-pregnant sheep were either fed to 60% of requirements (nutrient restriction (R)) or fed ad libitum (~140% of requirements (A)) from 110 days gestation until term (~147 days). After weaning (~3 months of age), the offspring were kept in either a standard (in order to remain lean) or low-activity, obesogenic environment. R mothers gained less weight and produced smaller offspring. As adults, obese offspring were heavier and fatter with reduced glucose tolerance, regardless of maternal diet. Molecular markers of stress and autophagy in liver and adipose tissue were increased with obesity, with gene expression of hepatic glucose-related protein 78 (Grp78) and omental activation transcription factor 6 (Atf6), Grp78 and ER stress degradation enhancer molecule 1 (Edem1) only being increased in R offspring. In conclusion, the adverse effect of juvenile-onset obesity on insulin-responsive tissues can be amplified by previous exposure to a suboptimal nutritional environment in utero, thereby contributing to earlier onset of insulin resistance.

Additional keywords: adipose tissue, appetite, growth, nutrition.


References

Adabimohazab, R., Garfinkel, A., Milam, E. C., Frosch, O., Mangone, A., and Convit, A. (2016). Does inflammation mediate the association between obesity and insulin resistance? Inflammation 39, 994–1003.
Does inflammation mediate the association between obesity and insulin resistance?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XktlCju7k%3D&md5=fbd4c39d416ab1de72bd18ee0e00bf2fCAS |

Amir, M., and Czaja, M. J. (2011). Autophagy in nonalcoholic steatohepatitis. Expert Rev. Gastroenterol. Hepatol. 5, 159–166.
Autophagy in nonalcoholic steatohepatitis.Crossref | GoogleScholarGoogle Scholar |

Arana, A., Mendizabal, J. A., Alzon, M., Soret, B., and Purroy, A. (2008). The effect of vitamin A supplementation on postnatal adipose tissue development of lambs. J. Anim. Sci. 86, 3393–3400.
The effect of vitamin A supplementation on postnatal adipose tissue development of lambs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsV2jsbzE&md5=31dd66efa4711a69a4f5f9bfedfd0785CAS |

B’chir, W., Maurin, A.-C., Carraro, V., Averous, J., Jousse, C., Muranishi, Y., Parry, L., Stepien, G., Fafournoux, P., and Bruhat, A. (2013). The eIF2α/ATF4 pathway is essential for stress-induced autophagy gene expression. Nucleic Acids Res. 41, 7683–7699.
The eIF2α/ATF4 pathway is essential for stress-induced autophagy gene expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVeitbjF&md5=bf4306dcda16a7d5a21af102ef07981cCAS |

Barker, D. J. (1997). Fetal nutrition and cardiovascular disease in later life. Br. Med. Bull. 53, 96–108.
Fetal nutrition and cardiovascular disease in later life.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2szgtF2htA%3D%3D&md5=c19d4007d2405c044118f2b606406700CAS |

Bloor, I. D., Sébert, S. P., Saroha, V., Gardner, D. S., Keisler, D. H., Budge, H., Symonds, M. E., and Mahajan, R. P. (2013). Sex differences in metabolic and adipose tissue responses to juvenile-onset obesity in sheep. Endocrinology 154, 3622–3631.
Sex differences in metabolic and adipose tissue responses to juvenile-onset obesity in sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFKlt7bJ&md5=a3e57a9bc3c78eb632b092c4bed38262CAS |

Bryden, M. M., Evans, H. E., and Binns, W. (1972). Embryology of the sheep. II. The alimentary tract and associated glands. J. Morphol. 138, 187–205.
Embryology of the sheep. II. The alimentary tract and associated glands.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE3s%2Fit1ehtg%3D%3D&md5=3c95d5026e854cd6acdac20c1736f347CAS |

Budge, H., Bispham, J., Dandrea, J., Evans, E., Heasman, L., Ingleton, P. M., Sullivan, C., Wilson, V., Stephenson, T., and Symonds, M. E. (2000). Effect of maternal nutrition on brown adipose tissue and its prolactin receptor status in the fetal lamb. Pediatr. Res. 47, 781–786.
Effect of maternal nutrition on brown adipose tissue and its prolactin receptor status in the fetal lamb.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3cvit1eisg%3D%3D&md5=c0e43fd8626fe71053f8358afbaf2fa0CAS |

Cnop, M., Foufelle, F., and Velloso, L. A. (2012). Endoplasmic reticulum stress, obesity and diabetes. Trends Mol. Med. 18, 59–68.
Endoplasmic reticulum stress, obesity and diabetes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XptVSgtw%3D%3D&md5=cff898eeff0a3cd236306b02462be594CAS |

Considine, R. V., Sinha, M. K., Heiman, M. L., Kriauciunas, A., Stephens, T. W., Nyce, M. R., Ohannesian, J. P., Marco, C. C., McKee, L. J., and Bauer, T. L. (1996). Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N. Engl. J. Med. 334, 292–295.
Serum immunoreactive-leptin concentrations in normal-weight and obese humans.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK287jtlOnsw%3D%3D&md5=ba01f16d9af604541537fee23d300e40CAS |

de Rooij, S. R., Painter, R. C., Holleman, F., Bossuyt, P. M., and Roseboom, T. J. (2007). The metabolic syndrome in adults prenatally exposed to the Dutch famine. Am. J. Clin. Nutr. 86, 1219–1224.
| 1:CAS:528:DC%2BD2sXhtFyksLrO&md5=a8060d4e579fd63e2476f223256e61bcCAS |

Delavaud, C., Bocquier, F., Chilliard, Y., Keisler, D. H., Gertler, A., and Kann, G. (2000). Plasma leptin determination in ruminants: effect of nutritional status and body fatness on plasma leptin concentration assessed by a specific RIA in sheep. J. Endocrinol. 165, 519–526.
Plasma leptin determination in ruminants: effect of nutritional status and body fatness on plasma leptin concentration assessed by a specific RIA in sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjvFegtb4%3D&md5=4ec369d82a8846cd87669bfd28b2eec6CAS |

Dellschaft, N. S., Alexandre-Gouabau, M.-C., Gardner, D. S., Antignac, J.-P., Keisler, D. H., Budge, H., Symonds, M. E., and Sebert, S. P. (2015). Effect of pre- and postnatal growth and post-weaning activity on glucose metabolism in the offspring. J. Endocrinol. 224, 171–182.
Effect of pre- and postnatal growth and post-weaning activity on glucose metabolism in the offspring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXmtV2mt7Y%3D&md5=41aa51ad7fdd7bfa22e0915eef88cec7CAS |

Dwyer, C. M. (2008). Genetic and physiological determinants of maternal behavior and lamb survival: implications for low-input sheep management. J. Anim. Sci. 86, E246–E258.
Genetic and physiological determinants of maternal behavior and lamb survival: implications for low-input sheep management.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1c3lsVyntg%3D%3D&md5=19cdea4b7f43798bb0c3d759f64afc2cCAS |

Fraser, A., Ebrahim, S., Smith, G. D., and Lawlor, D. A. (2008). The associations between birthweight and adult markers of liver damage and function. Paediatr. Perinat. Epidemiol. 22, 12–21.
The associations between birthweight and adult markers of liver damage and function.Crossref | GoogleScholarGoogle Scholar |

Fulda, S., Gorman, A. M., Hori, O., and Samali, A. (2010). Cellular stress responses: cell survival and cell death. Int. J. Cell Biol. 2010, 214074.
Cellular stress responses: cell survival and cell death.Crossref | GoogleScholarGoogle Scholar |

Gardner, D. S., Tingey, K., Van Bon, B., Dandrea, J., Keisler, D. H., Stephenson, T., and Symonds, M. E. (2005). Programming of glucose-insulin metabolism in adult sheep after maternal undernutrition. Am. J. Physiol. Regul. Integr. Comp. Physiol. 289, R947–R954.
Programming of glucose-insulin metabolism in adult sheep after maternal undernutrition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFensb7I&md5=c63191ef36721956954ac37bad0cce16CAS |

González-Rodríguez, A., Mayoral, R., Agra, N., Valdecantos, M. P., Pardo, V., Miquilena-Colina, M. E., Vargas-Castrillón, J., Lo Iacono, O., Corazzari, M., Fimia, G. M., Piacentini, M., Muntané, J., Boscá, L., García-Monzón, C., Martín-Sanz, P., and Valverde, Á. M. (2014). Impaired autophagic flux is associated with increased endoplasmic reticulum stress during the development of NAFLD. Cell Death Dis. 5, e1179.
Impaired autophagic flux is associated with increased endoplasmic reticulum stress during the development of NAFLD.Crossref | GoogleScholarGoogle Scholar |

Gregor, M. F., Yang, L., Fabbrini, E., Mohammed, B. S., Eagon, J. C., Hotamisligil, G. S., and Klein, S. (2009). Endoplasmic reticulum stress is reduced in tissues of obese subjects after weight loss. Diabetes 58, 693–700.
Endoplasmic reticulum stress is reduced in tissues of obese subjects after weight loss.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjt1Wktrk%3D&md5=34e0303ba7e4d9dca3f8f0cb851d9841CAS |

Hollenbeck, C. B., Haskell, W., Rosenthal, M., and Reaven, G. M. (1985). Effect of habitual physical activity on regulation of insulin-stimulated glucose disposal in older males. J. Am. Geriatr. Soc. 33, 273–277.
Effect of habitual physical activity on regulation of insulin-stimulated glucose disposal in older males.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2M7otlKgsg%3D%3D&md5=4da271b1d6e7a22ef88b378202e81449CAS |

Hyatt, M. A., Gardner, D. S., Sebert, S., Wilson, V., Davidson, N., Nigmatullina, Y., Chan, L. L. Y., Budge, H., and Symonds, M. E. (2011). Suboptimal maternal nutrition, during early fetal liver development, promotes lipid accumulation in the liver of obese offspring. Reproduction 141, 119–126.
Suboptimal maternal nutrition, during early fetal liver development, promotes lipid accumulation in the liver of obese offspring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisVehs7Y%3D&md5=a817f4c0e72e5b4d7e993a3722e7fd18CAS |

Lie, S., Duffield, J. A., McMillen, I. C., Morrison, J. L., Ozanne, S. E., Pilgrim, C., and Muhlhausler, B. S. (2013). The effect of placental restriction on insulin signaling and lipogenic pathways in omental adipose tissue in the postnatal lamb. J. Dev. Orig. Health Dis. 4, 421–429.
The effect of placental restriction on insulin signaling and lipogenic pathways in omental adipose tissue in the postnatal lamb.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlOqu7rE&md5=45f588f4265f0e03cd6b000b180d0e7bCAS |

Livak, K. J., and Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25, 402–408.
Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtFelt7s%3D&md5=27001fc4d390214adec9d2e6245c9fd6CAS |

Micke, G. C., Sullivan, T. M., McMillen, I. C., Gentili, S., and Perry, V. E. A. (2011). Heifer nutrition intake during early- and mid-gestation programs adult offspring adiposity and mRNA expression of growth-related genes in adipose depots. Reproduction 141, 697–706.
Heifer nutrition intake during early- and mid-gestation programs adult offspring adiposity and mRNA expression of growth-related genes in adipose depots.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmvFCis78%3D&md5=bb9ea69900d59ce658310aea77e13159CAS |

Minokoshi, Y., Kim, Y.-B., Peroni, O. D., Fryer, L. G. D., Müller, C., Carling, D., and Kahn, B. B. (2002). Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature 415, 339–343.
Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xptlamtw%3D%3D&md5=6a0e55b7bed3e439b6de3eae42795c7aCAS |

Mumbare, S. S., Maindarkar, G., Darade, R., Yenge, S., Tolani, M. K., and Patole, K. (2012). Maternal risk factors associated with term low birth weight neonates: a matched-pair case control study. Indian Pediatr. 49, 25–28.
Maternal risk factors associated with term low birth weight neonates: a matched-pair case control study.Crossref | GoogleScholarGoogle Scholar |

Nafikov, R. A., and Beitz, D. C. (2007). Carbohydrate and lipid metabolism in farm animals. J. Nutr. 137, 702–705.
| 1:CAS:528:DC%2BD2sXisVygsLc%3D&md5=49fc5eb15f2ee3ee0bf046beadb9a2e9CAS |

Nobili, V., Marcellini, M., Marchesini, G., Vanni, E., Manco, M., Villani, A., and Bugianesi, E. (2007). Intrauterine growth retardation, insulin resistance, and nonalcoholic fatty liver disease in children. Diabetes Care 30, 2638–2640.
Intrauterine growth retardation, insulin resistance, and nonalcoholic fatty liver disease in children.Crossref | GoogleScholarGoogle Scholar |

Nuñez, C. E., Rodrigues, V. S., Gomes, F. S., de Moura, R. F., Victorio, S. C., Bombassaro, B., Chaim, E. A., Pareja, J. C., Geloneze, B., Velloso, L. A., and Araujo, E. P. (2013). Defective regulation of adipose tissue autophagy in obesity. Int. J. Obes. (Lond.) 37, 1473–1480.
Defective regulation of adipose tissue autophagy in obesity.Crossref | GoogleScholarGoogle Scholar |

Ohsumi, Y. (2001). Molecular dissection of autophagy: two ubiquitin-like systems. Nat. Rev. Mol. Cell Biol. 2, 211–216.
Molecular dissection of autophagy: two ubiquitin-like systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhvFyjtr8%3D&md5=baaf41eafdb37d76089dabc364dd9838CAS |

Ojha, S., Symonds, M. E., and Budge, H. (2015). Suboptimal maternal nutrition during early-to-mid gestation in the sheep enhances pericardial adiposity in the near-term fetus. Reprod. Fertil. Dev. 27, 1205–1212.
Suboptimal maternal nutrition during early-to-mid gestation in the sheep enhances pericardial adiposity in the near-term fetus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhs1Glu7bN&md5=b223bf8500ad2e61b3f4e6c5e05130c9CAS |

Ozcan, U., Cao, Q., Yilmaz, E., Lee, A.-H., Iwakoshi, N. N., Ozdelen, E., Tuncman, G., Görgün, C., Glimcher, L. H., and Hotamisligil, G. S. (2004). Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306, 457–461.
Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes.Crossref | GoogleScholarGoogle Scholar |

Park, H.-R., Tomida, A., Sato, S., Tsukumo, Y., Yun, J., Yamori, T., Hayakawa, Y., Tsuruo, T., and Shin-ya, K. (2004). Effect on tumor cells of blocking survival response to glucose deprivation. J. Natl. Cancer Inst. 96, 1300–1310.
Effect on tumor cells of blocking survival response to glucose deprivation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnsVyht7g%3D&md5=42074a2431bf15f131f2b8e8ff788d09CAS |

Ravelli, A. C., van der Meulen, J. H., Michels, R. P. J., Osmond, C., Barker, D. J., Hales, C. N., and Bleker, O. P. (1998). Glucose tolerance in adults after prenatal exposure to famine. Lancet 351, 173–177.
Glucose tolerance in adults after prenatal exposure to famine.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1c7htFGhtw%3D%3D&md5=f558d5d8e6b19860c878a8e4fead5f40CAS |

Rich-Edwards, J. W., Colditz, G. A., Stampfer, M. J., Willett, W. C., Gillman, M. W., Hennekens, C. H., Speizer, F. E., and Manson, J. E. (1999). Birthweight and the risk for type 2 diabetes mellitus in adult women. Ann. Intern. Med. 130, 278–284.
Birthweight and the risk for type 2 diabetes mellitus in adult women.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1M7kvF2lsQ%3D%3D&md5=18992be2f2d61b82ffb88dd1e9c801caCAS |

Sartori, C., Rimoldi, S. F., Rexhaj, E., Allemann, Y., and Scherrer, U. (2016). Epigenetics in cardiovascular regulation. In ‘Hypoxia’. (Eds R. C. Roach, P. H. Hackett, and P. D. Wagner.) pp. 55–62. (Springer: New York.)

Schröder, M., and Kaufman, R. J. (2005). The mammalian unfolded protein response. Annu. Rev. Biochem. 74, 739–789.
The mammalian unfolded protein response.Crossref | GoogleScholarGoogle Scholar |

Sharkey, D., Gardner, D. S., Fainberg, H. P., Sebert, S., Bos, P., Wilson, V., Bell, R., Symonds, M. E., and Budge, H. (2009a). Maternal nutrient restriction during pregnancy differentially alters the unfolded protein response in adipose and renal tissue of obese juvenile offspring. FASEB J. 23, 1314–1324.
Maternal nutrient restriction during pregnancy differentially alters the unfolded protein response in adipose and renal tissue of obese juvenile offspring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlsFSnu7k%3D&md5=0b2418dbc1b5abc20e1ae688a68e6678CAS |

Sharkey, D., Symonds, M. E., and Budge, H. (2009b). Adipose tissue inflammation: developmental ontogeny and consequences of gestational nutrient restriction in offspring. Endocrinology 150, 3913–3920.
Adipose tissue inflammation: developmental ontogeny and consequences of gestational nutrient restriction in offspring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpsV2qsrg%3D&md5=c52bd6ce0adc6db55bb6d5772653b467CAS |

Singh, R., Kaushik, S., Wang, Y., Xiang, Y., Novak, I., Komatsu, M., Tanaka, K., Cuervo, A. M., and Czaja, M. J. (2009). Autophagy regulates lipid metabolism. Nature 458, 1131–1135.
Autophagy regulates lipid metabolism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjvV2ks7s%3D&md5=75f6f4a54024318129d5911d425b6af1CAS |

Symonds, M. E., Dellschaft, N., Pope, M., Birtwistle, M., Alagal, R., Keisler, D., and Budge, H. (2016). Developmental programming, adiposity, and reproduction in ruminants. Theriogenology 86, 120–129.
Developmental programming, adiposity, and reproduction in ruminants.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC28bovFejuw%3D%3D&md5=df23467bf069b2c7c68b8117e94022f7CAS |

Trayhurn, P., Duncan, J. S., Hoggard, N., and Rayner, D. V. (1998). Regulation of leptin production: a dominant role for the sympathetic nervous system? Proc. Nutr. Soc. 57, 413–419.
Regulation of leptin production: a dominant role for the sympathetic nervous system?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntFGiu74%3D&md5=75ec38ec8f008d81d9ead1cd54f7e973CAS |

Vernon, R. G. (1980). Lipid metabolism in the adipose tissue of ruminant animals. Prog. Lipid Res. 19, 23–106.
Lipid metabolism in the adipose tissue of ruminant animals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXislyhsw%3D%3D&md5=1b4d44bb5f237f27c6109baec906f42eCAS |

Wallace, T. M., Levy, J. C., and Matthews, D. R. (2004). Use and abuse of HOMA modeling. Diabetes Care 27, 1487–1495.
Use and abuse of HOMA modeling.Crossref | GoogleScholarGoogle Scholar |

Yacoub Wasef, S. Z., Robinson, K. A., Berkaw, M. N., and Buse, M. G. (2006). Glucose, dexamethasone, and the unfolded protein response regulate TRB3 mRNA expression in 3T3-L1 adipocytes and L6 myotubes. Am. J. Physiol. Endocrinol. Metab. 291, E1274–E1280.
Glucose, dexamethasone, and the unfolded protein response regulate TRB3 mRNA expression in 3T3-L1 adipocytes and L6 myotubes.Crossref | GoogleScholarGoogle Scholar |

Yang, L., Li, P., Fu, S., Calay, E. S., and Hotamisligil, G. S. (2010). Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab. 11, 467–478.
Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnsFyitrs%3D&md5=d09422491755263f08962bdcceeab22bCAS |

Yoshida, H., Matsui, T., Hosokawa, N., Kaufman, R. J., Nagata, K., and Mori, K. (2003). A time-dependent phase shift in the mammalian unfolded protein response. Dev. Cell 4, 265–271.
A time-dependent phase shift in the mammalian unfolded protein response.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhsFKntrY%3D&md5=21a0cafd6a225cd0b54e37db9a70b941CAS |

Yoshinaga, M., Sameshima, K., Jougasaki, M., Yoshikawa, H., Tanaka, Y., Hashiguchi, J., Tahara, H., Ichiki, T., Shimizu, S., and Nakamura, K. (2006). Emergence of cardiovascular risk factors from mild obesity in Japanese elementary school children. Diabetes Care 29, 1408–1410.
Emergence of cardiovascular risk factors from mild obesity in Japanese elementary school children.Crossref | GoogleScholarGoogle Scholar |

Zain, S. M., Mohamed, Z., Mahadeva, S., Cheah, P.-L., Rampal, S., Chin, K.-F., Mahfudz, A. S., Basu, R. C., Tan, H.-L., and Mohamed, R. (2013). Impact of leptin receptor gene variants on risk of non-alcoholic fatty liver disease and its interaction with adiponutrin gene. J. Gastroenterol. Hepatol. 28, 873–879.
Impact of leptin receptor gene variants on risk of non-alcoholic fatty liver disease and its interaction with adiponutrin gene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmslSmt7Y%3D&md5=db5de429276c3da2cfad9ffeb449c07eCAS |

Zhang, K., and Kaufman, R. J. (2004). Signaling the unfolded protein response from the endoplasmic reticulum. J. Biol. Chem. 279, 25935–25938.
Signaling the unfolded protein response from the endoplasmic reticulum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXkvVWhtb8%3D&md5=b14c3c953a94f0d2e65ff130b9186ab3CAS |