Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Effects of vitrification of cumulus-enclosed porcine oocytes at the germinal vesicle stage on cumulus expansion, nuclear progression and cytoplasmic maturation

Ruth Appeltant A , Tamás Somfai B D , Elisa C. S. Santos B , Thanh Quang Dang-Nguyen A , Takashi Nagai C and Kazuhiro Kikuchi A
+ Author Affiliations
- Author Affiliations

A Division of Animal Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organisation, Kannondai 2-1-2, Tsukuba, Ibaraki 305-8602, Japan.

B Animal Breeding and Reproduction Research Division, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organisation, Ikenodai 2, Tsukuba, Ibaraki 305-0901, Japan.

C Department of Research Planning and Coordination, National Agriculture and Food Research Organisation, Ikenodai 2, Tsukuba, Ibaraki 305-0901, Japan.

D Corresponding author. Email: somfai@affrc.go.jp

Reproduction, Fertility and Development 29(12) 2419-2429 https://doi.org/10.1071/RD16386

Abstract

Although offspring have been produced from porcine oocytes vitrified at the germinal vesicle (GV) stage, the rate of embryo development remains low. In the present study, nuclear morphology and progression, cumulus expansion, transzonal projections (TZPs), ATP and glutathione (GSH) levels were compared between vitrified cumulus–oocyte complexes (COCs) and control COCs (no cryoprotectant treatment and no cooling), as well as a toxicity control (no cooling). Vitrification was performed with 17.5% (v/v) ethylene glycol and 17.5% (v/v) propylene glycol. Vitrification at the GV stage caused premature meiotic progression, reflected by earlier GV breakdown and untimely attainment of the MII stage. However, cytoplasmic maturation, investigated by measurement of ATP and GSH levels, as well as cumulus expansion, proceeded normally despite detectable damage to TZPs in vitrified COCs. Moreover, treatment with cryoprotectants caused fragmentation of nucleolus precursor bodies and morphological changes in F-actin from which oocytes were able to recover during subsequent IVM culture. Reduced developmental competence may be explained by premature nuclear maturation leading to oocyte aging, although other mechanisms, such as initiation of apoptosis and reduction of cytoplasmic mRNA, can also be considered. Further research will be required to clarify the presence and effects of these phenomena during the vitrification of immature COCs.

Additional keywords: cryopreservation, cumulus cell, cytoskeleton, gamete.


References

Abràmoff, M., Magalhães, P., and Ram, S. (2004). Image processing with ImageJ. Biophoton. Int. 11, 36–43.

Anderson, M. (1985) Determination of glutathione and glutathione disulfide in biological samples. In ‘Glutamate, Glutamine, Glutathione, and Related Compounds’. (Ed. A. Meister.) pp. 548–555. (Academic Press: New York.)

Appeltant, R., Somfai, T., Nakai, M., Bodó, S., Maes, D., Kikuchi, K., and Van Soom, A. (2015). Interactions between oocytes and cumulus cells during in vitro maturation of porcine cumulus–oocyte complexes in a chemically defined medium: effect of denuded oocytes on cumulus expansion and oocyte maturation. Theriogenology 83, 567–576.
Interactions between oocytes and cumulus cells during in vitro maturation of porcine cumulus–oocyte complexes in a chemically defined medium: effect of denuded oocytes on cumulus expansion and oocyte maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvFKmsbbL&md5=24bfdc88e5d61a73d5c46d943774e850CAS |

Appeltant, R., Somfai, T., Santos, E., and Kikuchi, K. (2017). The effect of exposure time on toxicity of vitrification solution on porcine cumulus–oocyte complexes before in vitro maturation. Reprod. Fertil. Dev. 29, 127.
The effect of exposure time on toxicity of vitrification solution on porcine cumulus–oocyte complexes before in vitro maturation.Crossref | GoogleScholarGoogle Scholar |

Brambillasca, F., Guglielmo, M. C., Coticchio, G., Mignini Renzini, M., Dal Canto, M., and Fadini, R. (2013). The current challenges to efficient immature oocyte cryopreservation. J. Assist. Reprod. Genet. 30, 1531–1539.
The current challenges to efficient immature oocyte cryopreservation.Crossref | GoogleScholarGoogle Scholar |

Dai, J., Wu, C., Muneri, C. W., Niu, Y., Zhang, S., Rui, R., and Zhang, D. (2015). Changes in mitochondrial function in porcine vitrified MII-stage oocytes and their impacts on apoptosis and developmental ability. Cryobiology 71, 291–298.
Changes in mitochondrial function in porcine vitrified MII-stage oocytes and their impacts on apoptosis and developmental ability.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXht1ygs7rP&md5=e7a1518a548c41e3ce1cb648efdb6d69CAS |

Dalton, C. M., Szabadkai, G., and Carroll, J. (2014). Measurement of ATP in single oocytes: impact of maturation and cumulus cells on levels and consumption. J. Cell. Physiol. 229, 353–361.
Measurement of ATP in single oocytes: impact of maturation and cumulus cells on levels and consumption.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVWgtL7I&md5=9010dcfdf9bea7892cb0e45bf06060afCAS |

Dekel, N. (2005). Cellular, biochemical and molecular mechanisms regulating oocyte maturation. Mol. Cell. Endocrinol. 234, 19–25.
Cellular, biochemical and molecular mechanisms regulating oocyte maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjt1SqtL8%3D&md5=905ec5bc29a95965a3953b0582efa244CAS |

Dekel, N., and Phillips, D. M. (1980). Cyclic AMP, prostaglandin E2 and steroids: possible mediators in the rat cumulus oophorus mucification. Biol. Reprod. 22, 289–296.
Cyclic AMP, prostaglandin E2 and steroids: possible mediators in the rat cumulus oophorus mucification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXhvFWmtLY%3D&md5=2c04f96bd7ead5452fd6c8a364171b07CAS |

Egerszegi, I., Somfai, T., Nakai, M., Tanihara, F., Noguchi, J., Kaneko, H., Nagai, T., Ratky, J., and Kikuchi, K. (2013). Comparison of cytoskeletal integrity, fertilization and developmental competence of oocytes vitrified before or after in vitro maturation in a porcine model. Cryobiology 67, 287–292.
Comparison of cytoskeletal integrity, fertilization and developmental competence of oocytes vitrified before or after in vitro maturation in a porcine model.Crossref | GoogleScholarGoogle Scholar |

Ferreira, E. M., Vireque, A. A., Adona, P. R., Meirelles, F. V., Ferriani, R. A., and Navarro, P. A. A. S. (2009). Cytoplasmic maturation of bovine oocytes: structural and biochemical modifications and acquisition of developmental competence. Theriogenology 71, 836–848.
Cytoplasmic maturation of bovine oocytes: structural and biochemical modifications and acquisition of developmental competence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXitVSgs7k%3D&md5=f91a75ef471829f8367aec20f883c6b4CAS |

Funahashi, H., Cantley, T., and Day, B. (1997). Synchronization of meiosis in porcine oocytes by exposure to dibutyryl cyclic adenosine monophosphate improves developmental competence following in vitro fertilization. Biol. Reprod. 57, 49–53.
Synchronization of meiosis in porcine oocytes by exposure to dibutyryl cyclic adenosine monophosphate improves developmental competence following in vitro fertilization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXktFCntb0%3D&md5=ffb7701b6168879bc26861ac3c1a7997CAS |

Grupen, C. G. (2014). The evolution of porcine embryo in vitro production. Theriogenology 81, 24–37.
The evolution of porcine embryo in vitro production.Crossref | GoogleScholarGoogle Scholar |

Grupen, C. G., Nagashima, H., and Nottle, M. B. (1997). Asynchronous meiotic progression in porcine oocytes matured in vitro: a cause of polyspermic fertilization? Reprod. Fertil. Dev. 9, 187–191.
Asynchronous meiotic progression in porcine oocytes matured in vitro: a cause of polyspermic fertilization?Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2szlt1WntA%3D%3D&md5=f66f8ea25835c6d7c28fdf252aa64c9aCAS |

Herrick, J. R., Wang, C., and Machaty, Z. (2016). The effects of permeating cryoprotectants on intracellular free-calcium concentrations and developmental potential of in vitro-matured feline oocytes. Reprod. Fertil. Dev. 28, 599–607.
The effects of permeating cryoprotectants on intracellular free-calcium concentrations and developmental potential of in vitro-matured feline oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XktVOisLs%3D&md5=15e66af3c9046b0101c436fa37d13914CAS |

Homa, S. T. (1991). Neomycin, an inhibitor of phosphoinositide hydrolysis, inhibits the resumption of bovine oocyte spontaneous meiotic maturation. J. Exp. Zool. 258, 95–103.
Neomycin, an inhibitor of phosphoinositide hydrolysis, inhibits the resumption of bovine oocyte spontaneous meiotic maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXkt1alsLk%3D&md5=0808509935c7acadeb9a43f49d48d736CAS |

Jo, J. W., Jee, B. C., Lee, J. R., and Suh, C. S. (2011). Effect of antifreeze protein supplementation in vitrification medium on mouse oocyte developmental competence. Fertil. Steril. 96, 1239–1245.
Effect of antifreeze protein supplementation in vitrification medium on mouse oocyte developmental competence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVSkt73K&md5=b0aeef6f254fcc7b7f9d1c63a444c3c5CAS |

Kaufman, M. L., and Homa, S. T. (1993). Defining a role for calcium in the resumption and progression of meiosis in the pig oocyte. J. Exp. Zool. 265, 69–76.
| 1:STN:280:DyaK3s3htVCquw%3D%3D&md5=12b77f4f47132041819a5f1cd78080a0CAS |

Kim, S. S., Olsen, R., Kim, D. D., and Albertini, D. F. (2014). The impact of vitrification on immature oocyte cell cycle and cytoskeletal integrity in a rat model. J. Assist. Reprod. Genet. 31, 739–747.
The impact of vitrification on immature oocyte cell cycle and cytoskeletal integrity in a rat model.Crossref | GoogleScholarGoogle Scholar |

Krisher, R. L., Brad, A. M., Herrick, J. R., Sparman, M. L., and Swain, J. E. (2007). A comparative analysis of metabolism and viability in porcine oocytes during in vitro maturation. Anim. Reprod. Sci. 98, 72–96.
A comparative analysis of metabolism and viability in porcine oocytes during in vitro maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhs1Sksrw%3D&md5=a2c515e0be04b04f358b4a2773ada758CAS |

Macháty, Z., Wang, W., Day, B. N., and Prather, R. S. (1997). Complete activation of porcine oocytes induced by the sulfhydryl reagent, thimerosal. Biol. Reprod. 57, 1123–1127.
Complete activation of porcine oocytes induced by the sulfhydryl reagent, thimerosal.Crossref | GoogleScholarGoogle Scholar |

Maedomari, N., Kikuchi, K., Ozawa, M., Noguchi, J., Kaneko, H., Ohnuma, K., Nakai, M., Shino, M., Nagai, T., and Kashiwazaki, N. (2007). Cytoplasmic glutathione regulated by cumulus cells during porcine oocyte maturation affects fertilization and embryonic development in vitro. Theriogenology 67, 983–993.
Cytoplasmic glutathione regulated by cumulus cells during porcine oocyte maturation affects fertilization and embryonic development in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitFOns70%3D&md5=6a31f92647e993a7f5e1f6a940f444e2CAS |

Manipalviratn, S., Tong, Z. B., Stegmann, B., Widra, E., Carter, J., and DeCherney, A. (2011). Effect of vitrification and thawing on human oocyte ATP concentration. Fertil. Steril. 95, 1839–1841.
Effect of vitrification and thawing on human oocyte ATP concentration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjs1Sru7k%3D&md5=46319f2831f0e09cdb5f0a231e7b0ba5CAS |

Mattioli, M., Barboni, B., Gioia, L., and Loi, P. (2003). Cold-induced calcium elevation triggers DNA fragmentation in immature pig oocytes. Mol. Reprod. Dev. 65, 289–297.
Cold-induced calcium elevation triggers DNA fragmentation in immature pig oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXksVOitbo%3D&md5=d3ad727fd120e676e3062d747eae4230CAS |

Miao, Y. L., Kikuchi, K., Sun, Q. Y., and Schatten, H. (2009). Oocyte aging: cellular and molecular changes, developmental potential and reversal possibility. Hum. Reprod. Update 15, 573–585.
Oocyte aging: cellular and molecular changes, developmental potential and reversal possibility.Crossref | GoogleScholarGoogle Scholar |

Mori, T., Amano, T., and Shimizu, H. (2000). Roles of gap junctional communication of cumulus cells in cytoplasmic maturation of porcine oocytes cultured in vitro. Biol. Reprod. 62, 913–919.
Roles of gap junctional communication of cumulus cells in cytoplasmic maturation of porcine oocytes cultured in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXitFajt7k%3D&md5=1ea690f4b8bb92c3b9fa821114995f95CAS |

Motlík, J., and Fulka, J. (1976). Breakdown of the germinal vesicle in pig oocytes in vivo and in vitro. J. Exp. Zool. 198, 155–162.
Breakdown of the germinal vesicle in pig oocytes in vivo and in vitro.Crossref | GoogleScholarGoogle Scholar |

Ozawa, M., Nagai, T., Somfai, T. s., Nakai, M., Maedomari, N., Miyazaki, H., Kaneko, H., Noguchi, J., and Kikuchi, K. (2010). Cumulus cell-enclosed oocytes acquire a capacity to synthesize GSH by FSH stimulation during in vitro maturation in pigs. J. Cell. Physiol. 222, 294–301.
Cumulus cell-enclosed oocytes acquire a capacity to synthesize GSH by FSH stimulation during in vitro maturation in pigs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFSgsrrN&md5=4fc5c805a787d83d48e3f799b9a6b912CAS |

Petters, R. M., and Wells, K. D. (1993). Culture of pig embryos. J. Reprod. Fertil. Suppl. 48, 61–73.
| 1:STN:280:DyaK2c7psVCktQ%3D%3D&md5=d2a8664c44881c286edee782a5e17448CAS |

Rice, C., and McGaughey, R. (1981). Effect of testosterone and dibutytyl cAMP on the spontaneous maturation of pig oocytes. J. Reprod. Fertil. 62, 245–256.
Effect of testosterone and dibutytyl cAMP on the spontaneous maturation of pig oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXktVSrtL0%3D&md5=b42dd51264a50c60a2037fd599964d5eCAS |

Russell, D. L., Gilchrist, R. B., Brown, H. M., and Thompson, J. G. (2016). Bidirectional communication between cumulus cells and the oocyte: old hands and new players? Theriogenology 86, 62–68.
Bidirectional communication between cumulus cells and the oocyte: old hands and new players?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XmslKru7s%3D&md5=e907f83a632e00b6516a4db3938364ecCAS |

Salvetti, P., Buff, S., Afanassieff, M., Daniel, N., Guerin, P., and Joly, T. (2010). Structural, metabolic and developmental evaluation of ovulated rabbit oocytes before and after cryopreservation by vitrification and slow freezing. Theriogenology 74, 847–855.
Structural, metabolic and developmental evaluation of ovulated rabbit oocytes before and after cryopreservation by vitrification and slow freezing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVGrtbjF&md5=8e99a234acf2912fef0a4dd2e1d7accbCAS |

Schoevers, E. J., Bevers, M. M., Roelen, B. A., and Colenbrander, B. (2005). Nuclear and cytoplasmic maturation of sow oocytes are not synchronized by specific meiotic inhibition with roscovitine during in vitro maturation. Theriogenology 63, 1111–1130.
Nuclear and cytoplasmic maturation of sow oocytes are not synchronized by specific meiotic inhibition with roscovitine during in vitro maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlSltLc%3D&md5=36f05ce4bdd1310c7c264f3a6b0617c1CAS |

Sirard, M. A. (2001). Resumption of meiosis: mechanism involved in meiotic progression and its relation with developmental competence. Theriogenology 55, 1241–1254.
Resumption of meiosis: mechanism involved in meiotic progression and its relation with developmental competence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjsFSisr0%3D&md5=f9ac6ab40205fabfd099d6d14a2f23a7CAS |

Somfai, T., Kikuchi, K., Onishi, A., Iwamoto, M., Fuchimoto, D., Papp, Á. B., Sato, E., and Nagai, T. (2003). Meiotic arrest maintained by cAMP during the initiation of maturation enhances meiotic potential and developmental competence and reduces polyspermy of IVM/IVF porcine oocytes. Zygote 11, 199–206.
Meiotic arrest maintained by cAMP during the initiation of maturation enhances meiotic potential and developmental competence and reduces polyspermy of IVM/IVF porcine oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXot12gsL0%3D&md5=4dc8282b03423e04d31ca31390a99a5fCAS |

Somfai, T., Kikuchi, K., Onishi, A., Iwamoto, M., Fuchimoto, D.-i., Papp, B., Sato, E., and Nagai, T. (2004). Relationship between the morphological changes of somatic compartment and the kinetics of nuclear and cytoplasmic maturation of oocytes during in vitro maturation of porcine follicular oocytes. Mol. Reprod. Dev. 68, 484–491.
Relationship between the morphological changes of somatic compartment and the kinetics of nuclear and cytoplasmic maturation of oocytes during in vitro maturation of porcine follicular oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlslWiu7g%3D&md5=95d83349eb8deb5338f24e3ed4a360a7CAS |

Somfai, T., Ozawa, M., Noguchi, J., Kaneko, H., Kuriani Karja, N. W., Farhudin, M., Dinnyés, A., Nagai, T., and Kikuchi, K. (2007). Developmental competence of in vitro-fertilized porcine oocytes after in vitro maturation and solid surface vitrification: effect of cryopreservation on oocyte antioxidative system and cell cycle stage. Cryobiology 55, 115–126.
Developmental competence of in vitro-fertilized porcine oocytes after in vitro maturation and solid surface vitrification: effect of cryopreservation on oocyte antioxidative system and cell cycle stage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpvF2qtbc%3D&md5=eb3a674ffbaa35d88867c3e1b7930f9dCAS |

Somfai, T., Noguchi, J., Kaneko, H., Nakai, M., Ozawa, M., Kashiwazaki, N., Egerszegi, I., Ratky, J., Nagai, T., and Kikuchi, K. (2010). Production of good-quality porcine blastocysts by in vitro fertilization of follicular oocytes vitrified at the germinal vesicle stage. Theriogenology 73, 147–156.
Production of good-quality porcine blastocysts by in vitro fertilization of follicular oocytes vitrified at the germinal vesicle stage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFGrsrfJ&md5=405ce273a799ecb3f40b79de9d315e6cCAS |

Somfai, T., Nakai, M., Tanihara, F., Noguchi, J., Kaneko, H., Kashiwazaki, N., Egerszegi, I., Nagai, T., and Kikuchi, K. (2013). Comparison of ethylene glycol and propylene glycol for the vitrification of immature porcine oocytes. J. Reprod. Dev. 59, 378–384.
Comparison of ethylene glycol and propylene glycol for the vitrification of immature porcine oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1SitrbK&md5=b76e03f0abaa311b432767d43ecef120CAS |

Somfai, T., Yoshioka, K., Tanihara, F., Kaneko, H., Noguchi, J., Kashiwazaki, N., Nagai, T., and Kikuchi, K. (2014). Generation of live piglets from cryopreserved oocytes for the first time using a defined system for in vitro embryo production. PLoS One 9, e97731.
Generation of live piglets from cryopreserved oocytes for the first time using a defined system for in vitro embryo production.Crossref | GoogleScholarGoogle Scholar |

Somfai, T., Matoba, S., Inaba, Y., Nakai, M., Imai, K., Nagai, T., and Geshi, M. (2015a). Cytoskeletal and mitochondrial properties of bovine oocytes obtained by ovum pick-up: the effects of follicle stimulation and in vitro maturation. Anim. Sci. J. 86, 970–980.
Cytoskeletal and mitochondrial properties of bovine oocytes obtained by ovum pick-up: the effects of follicle stimulation and in vitro maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvFKru7fM&md5=45f350aeda2b38fd6be05b8e4e5bea21CAS |

Somfai, T., Men, N. T., Noguchi, J., Kaneko, H., Kashiwazaki, N., and Kikuchi, K. (2015b). Optimization of cryoprotectant treatment for the vitrification of immature cumulus-enclosed porcine oocytes: comparison of sugars, combinations of permeating cryoprotectants and equilibration regimens. J. Reprod. Dev. 61, 571–579.
Optimization of cryoprotectant treatment for the vitrification of immature cumulus-enclosed porcine oocytes: comparison of sugars, combinations of permeating cryoprotectants and equilibration regimens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXlsVGju7s%3D&md5=b83ab8cdeba253df3aeda7f7f4d2fd7bCAS |

Stojkovic, M., Machado, S., Stojkovic, P., Zakhartchenko, V., Hutzler, P., Gonçalves, P., and Wolf, E. (2001). Mitochondrial distribution and adenosine triphosphate content of bovine oocytes before and after in vitro maturation: correlation with morphological criteria and developmental capacity after in vitro fertilization and culture. Biol. Reprod. 64, 904–909.
Mitochondrial distribution and adenosine triphosphate content of bovine oocytes before and after in vitro maturation: correlation with morphological criteria and developmental capacity after in vitro fertilization and culture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhsVKjtrk%3D&md5=8b7cf000f9af1a1d5cf28bb11a06283eCAS |

Succu, S., Bebbere, D., Bogliolo, L., Ariu, F., Fois, S., Leoni, G. G., Berlinguer, F., Naitana, S., and Ledda, S. (2008). Vitrification of in vitro matured ovine oocytes affects in vitro pre-implantation development and mRNA abundance. Mol. Reprod. Dev. 75, 538–546.
Vitrification of in vitro matured ovine oocytes affects in vitro pre-implantation development and mRNA abundance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhs1Crsrk%3D&md5=563e8344984307e56c7e2c8e10223844CAS |

Tanghe, S., Van Soom, A., Nauwynck, H., Coryn, M., and de Kruif, A. (2002). Minireview: functions of the cumulus oophorus during oocyte maturation, ovulation, and fertilization. Mol. Reprod. Dev. 61, 414–424.
Minireview: functions of the cumulus oophorus during oocyte maturation, ovulation, and fertilization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhsFCgtbk%3D&md5=5acaa592247f798a811f0840fe5423c7CAS |

Tharasanit, T., Colleoni, S., Galli, C., Colenbrander, B., and Stout, T. A. (2009). Protective effects of the cumulus–corona radiata complex during vitrification of horse oocytes. Reproduction 137, 391–401.
Protective effects of the cumulus–corona radiata complex during vitrification of horse oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXovV2ksbo%3D&md5=79a4b59b773dc288c5f81959c8ef3f64CAS |

Tombes, R. M., Simerly, C., Borisy, G. G., and Schatten, G. (1992). Meiosis, egg activation, and nuclear envelope breakdown are differentially reliant on Ca2+, whereas germinal vesicle breakdown is Ca2+ independent in the mouse oocyte. J. Cell Biol. 117, 799–811.
| 1:CAS:528:DyaK38XitFWks7o%3D&md5=0686a7f17667daf899a0420807b22c8fCAS |

Vallorani, C., Spinaci, M., Bucci, D., Porcu, E., Tamanini, C., and Galeati, G. (2012). Pig oocyte vitrification by Cryotop method and the activation of the apoptotic cascade. Anim. Reprod. Sci. 135, 68–74.
Pig oocyte vitrification by Cryotop method and the activation of the apoptotic cascade.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlCiur7E&md5=11c1eb85babaf196efad90bed6c431b8CAS |

Wang, C., and Machaty, Z. (2013). Calcium influx in mammalian eggs. Reproduction 145, R97–R105.
Calcium influx in mammalian eggs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXotFait7k%3D&md5=4ddd0f239d318b63a8d8fb5c075b638bCAS |

Wang, W. H., Machaty, Z., Abeydeera, L. R., Prather, R. S., and Day, B. N. (1998). Parthenogenogenetic activation of pig oocytes with calcium ionophore and the block to sperm penetration after activation. Biol. Reprod. 58, 1357–1366.
Parthenogenogenetic activation of pig oocytes with calcium ionophore and the block to sperm penetration after activation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjsFSht7Y%3D&md5=5f7d91c4ac0a7c06ac6a6f3514c89ccbCAS |

Yoshida, M., Ishigaki, K., Nagai, T., Chikyu, M., and Pursel, V. G. (1993). Glutathione concentration during maturation and after fertilization in pig oocytes: relevance to the ability of oocytes to form male pronucleus. Biol. Reprod. 49, 89–94.
Glutathione concentration during maturation and after fertilization in pig oocytes: relevance to the ability of oocytes to form male pronucleus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXkvFahtLY%3D&md5=52e19af116f3120149468a07d0acf995CAS |

Yoshioka, K., Suzuki, C., and Onishi, A. (2008). Defined system for in vitro production of porcine embryos using a single basic medium. J. Reprod. Dev. 54, 208–213.
Defined system for in vitro production of porcine embryos using a single basic medium.Crossref | GoogleScholarGoogle Scholar |

Zhao, X. M., Du, W. H., Wang, D., Hao, H. S., Liu, Y., Qin, T., and Zhu, H. B. (2011). Recovery of mitochondrial function and endogenous antioxidant systems in vitrified bovine oocytes during extended in vitro culture. Mol. Reprod. Dev. 78, 942–950.
Recovery of mitochondrial function and endogenous antioxidant systems in vitrified bovine oocytes during extended in vitro culture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVOitr7M&md5=ae110530c2cf0aad7eb5909127442c06CAS |

Zhou, G. B., and Li, N. (2009). Cryopreservation of porcine oocytes: recent advances. Mol. Hum. Reprod. 15, 279–285.
Cryopreservation of porcine oocytes: recent advances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksVSqtLk%3D&md5=00d8637294a0b51c9c7060c9f4046e2aCAS |