Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Increased high molecular weight adiponectin, but decreased total adiponectin and kisspeptin, in central precocious puberty compared with aged-matched prepubertal girls

Chantacha Sitticharoon A C , Maynart Sukharomana A , Supawadee Likitmaskul B , Malika Churintaraphan A and Pailin Maikaew A
+ Author Affiliations
- Author Affiliations

A Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Siriraj, Bangkoknoi, Bangkok, 10700, Thailand.

B Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Siriraj, Bangkoknoi, Bangkok, 10700, Thailand.

C Corresponding author. Email: chantacha.sit@mahidol.ac.th

Reproduction, Fertility and Development 29(12) 2466-2478 https://doi.org/10.1071/RD16282
Submitted: 19 July 2016  Accepted: 11 May 2017   Published: 14 June 2017

Abstract

The aim of the present study was to compare serum leptin, kisspeptin, total adiponectin, high molecular weight (HMW) adiponectin and neuropeptide Y (NPY) levels between girls with central precocious puberty (CPP; n = 26, 7–9.5 years old) and age-matched controls (n = 29) including or excluding obese girls. Leptin and NPY levels were comparable between CPP and control girls. Kisspeptin levels were lower in the CPP than control group, and were positively correlated with oestrogen in the control group and with systolic and diastolic blood pressure in the CPP group. Kisspeptin levels were negatively correlated with FSH and LH in the CPP group. Total adiponectin levels were lower in CPP than control girls, and were negatively correlated with Tanner stage and body mass index, but positively correlated with the quantitative insulin sensitivity check index in the control group. HMW adiponectin was higher in the CPP than control group, and was positively correlated with Tanner stage and LH in all girls. Total adiponectin had a strong positive correlation with HMW adiponectin in the CPP group (r = 0.915) compared with the control group (r = 0.371). In conclusion, kisspeptin may be associated with increased oestrogen in prepubertal girls, but with increased blood pressure in girls with CPP. In girls entering puberty, HMW adiponectin was increased and associated with reproductive parameters. Based on these observations, HMW adiponectin probably plays an essential role in the initiation of puberty and is a candidate marker for the prediction of CPP.

Additional keywords: hormone, oestrogen, physiology, prematurity, reproduction.


References

Aso, Y., Yamamoto, R., Wakabayashi, S., Uchida, T., Takayanagi, K., Takebayashi, K., Okuno, T., Inoue, T., Node, K., Tobe, T., Inukai, T., and Nakano, Y. (2006). Comparison of serum high-molecular weight (HMW) adiponectin with total adiponectin concentrations in type 2 diabetic patients with coronary artery disease using a novel enzyme-linked immunosorbent assay to detect HMW adiponectin. Diabetes 55, 1954–1960.
Comparison of serum high-molecular weight (HMW) adiponectin with total adiponectin concentrations in type 2 diabetic patients with coronary artery disease using a novel enzyme-linked immunosorbent assay to detect HMW adiponectin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmvVCht78%3D&md5=234fe681ff3815836f904d3c4b5d77e7CAS |

Błogowska, A., Rzepka-Gorska, I., and Krzyzanowska-Swiniarska, B. (2004). Is neuropeptide Y responsible for constitutional delay of puberty in girls? A preliminary report. Gynecol. Endocrinol. 19, 22–25.
Is neuropeptide Y responsible for constitutional delay of puberty in girls? A preliminary report.Crossref | GoogleScholarGoogle Scholar |

Błogowska, A., Krzyzanowska-Swiniarska, B., Zielinska, D., and Rzepka-Gorska, I. (2006). Body composition and concentrations of leptin, neuropeptide Y, beta-endorphin, growth hormone, insulin-like growth factor-I and insulin at menarche in girls with constitutional delay of puberty. Gynecol. Endocrinol. 22, 274–278.
Body composition and concentrations of leptin, neuropeptide Y, beta-endorphin, growth hormone, insulin-like growth factor-I and insulin at menarche in girls with constitutional delay of puberty.Crossref | GoogleScholarGoogle Scholar |

Blüher, M., Brennan, A. M., Kelesidis, T., Kratzsch, J., Fasshauer, M., Kralisch, S., Williams, C. J., and Mantzoros, C. S. (2007). Total and high-molecular weight adiponectin in relation to metabolic variables at baseline and in response to an exercise treatment program: comparative evaluation of three assays. Diabetes Care 30, 280–285.
Total and high-molecular weight adiponectin in relation to metabolic variables at baseline and in response to an exercise treatment program: comparative evaluation of three assays.Crossref | GoogleScholarGoogle Scholar |

Bodles, A. M., Banga, A., Rasouli, N., Ono, F., Kern, P. A., and Owens, R. J. (2006). Pioglitazone increases secretion of high-molecular-weight adiponectin from adipocytes. Am. J. Physiol. Endocrinol. Metab. 291, E1100–E1105.
Pioglitazone increases secretion of high-molecular-weight adiponectin from adipocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1GnsL7O&md5=62956067ceb2288a8e039a478818cb52CAS |

Böttner, A., Kratzsch, J., Müller, G., Kapellen, T. M., Blüher, S., Keller, E., Blüher, M., and Kiess, W. (2004). Gender differences of adiponectin levels develop during the progression of puberty and are related to serum androgen levels. J. Clin. Endocrinol. Metab. 89, 4053–4061.
Gender differences of adiponectin levels develop during the progression of puberty and are related to serum androgen levels.Crossref | GoogleScholarGoogle Scholar |

Burt Solorzano, C. M., and McCartney, C. R. (2010). Obesity and the pubertal transition in girls and boys. Reproduction 140, 399–410.
Obesity and the pubertal transition in girls and boys.Crossref | GoogleScholarGoogle Scholar |

Caraty, A., Smith, J. T., Lomet, D., Ben Said, S., Morrissey, A., Cognie, J., Doughton, B., Baril, G., Briant, C., and Clarke, I. J. (2007). Kisspeptin synchronizes preovulatory surges in cyclical ewes and causes ovulation in seasonally acyclic ewes. Endocrinology 148, 5258–5267.
Kisspeptin synchronizes preovulatory surges in cyclical ewes and causes ovulation in seasonally acyclic ewes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1aju7nM&md5=6187b2d4814c84e975f08e2fa28e1563CAS |

Carel, J. C., and Leger, J. (2008). Clinical practice. Precocious puberty. N. Engl. J. Med. 358, 2366–2377.
Clinical practice. Precocious puberty.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmsVKgtbo%3D&md5=eb4b793da82e17680a65dc3e349dcf6bCAS |

Castellano, J. M., Gaytan, M., Roa, J., Vigo, E., Navarro, V. M., Bellido, C., Dieguez, C., Aguilar, E., Sanchez-Criado, J. E., Pellicer, A., Pinilla, L., Gaytan, F., and Tena-Sempere, M. (2006). Expression of KiSS-1 in rat ovary: putative local regulator of ovulation? Endocrinology 147, 4852–4862.
Expression of KiSS-1 in rat ovary: putative local regulator of ovulation?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVSksbvF&md5=de48378521847bcaeee973e3fc070f10CAS |

Cejudo Roman, A., Pinto, F. M., Dorta, I., Almeida, T. A., Hernandez, M., Illanes, M., Tena-Sempere, M., and Candenas, L. (2012). Analysis of the expression of neurokinin B, kisspeptin, and their cognate receptors NK3R and KISS1R in the human female genital tract. Fertil. Steril. 97, 1213–1219.
Analysis of the expression of neurokinin B, kisspeptin, and their cognate receptors NK3R and KISS1R in the human female genital tract.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjvVektr8%3D&md5=e214d3b09b10e9d9f5ffa7918e0e4e7cCAS |

Chabrolle, C., Tosca, L., Rame, C., Lecomte, P., Royere, D., and Dupont, J. (2009). Adiponectin increases insulin-like growth factor I-induced progesterone and estradiol secretion in human granulosa cells. Fertil. Steril. 92, 1988–1996.
Adiponectin increases insulin-like growth factor I-induced progesterone and estradiol secretion in human granulosa cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitFGisLs%3D&md5=ced54de67470d6f656795e55f6c7bb4aCAS |

Chen, H., Sullivan, G., and Quon, M. J. (2005). Assessing the predictive accuracy of QUICKI as a surrogate index for insulin sensitivity using a calibration model. Diabetes 54, 1914–1925.
Assessing the predictive accuracy of QUICKI as a surrogate index for insulin sensitivity using a calibration model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmtVels7Y%3D&md5=2758ebf2b1e71cd602c76159cdedae2cCAS |

Cravo, R. M., Frazao, R., Perello, M., Osborne-Lawrence, S., Williams, K. W., Zigman, J. M., Vianna, C., and Elias, C. F. (2013). Leptin signaling in Kiss1 neurons arises after pubertal development. PLoS One 8, e58698.
Leptin signaling in Kiss1 neurons arises after pubertal development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXktlyiu7c%3D&md5=7e822d8ad29ae89ec5bd8a52356f77b5CAS |

d’Anglemont de Tassigny, X., Fagg, L. A., Dixon, J. P., Day, K., Leitch, H. G., Hendrick, A. G., Zahn, D., Franceschini, I., Caraty, A., Carlton, M. B., Aparicio, S. A., and Colledge, W. H. (2007). Hypogonadotropic hypogonadism in mice lacking a functional Kiss1 gene. Proc. Natl Acad. Sci. USA 104, 10714–10719.
Hypogonadotropic hypogonadism in mice lacking a functional Kiss1 gene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnt1yhtrk%3D&md5=1cc035fe77ccc8d96a6ca8d53f42308bCAS |

de Onis, M., Onyango, A. W., Borghi, E., Siyam, A., Nishida, C., and Siekmann, J. (2007). Development of a WHO growth reference for school-aged children and adolescents. Bull. World Health Organ. 85, 660–667.

de Roux, N., Genin, E., Carel, J. C., Matsuda, F., Chaussain, J. L., and Milgrom, E. (2003). Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. Proc. Natl Acad. Sci. USA 100, 10972–10976.
Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnslyntbc%3D&md5=9a42515628d9f64963320715adbac19cCAS |

De Vries, L., Shtaif, B., Phillip, M., and Gat-Yablonski, G. (2009). Kisspeptin serum levels in girls with central precocious puberty. Clin. Endocrinol. (Oxf.) 71, 524–528.
Kisspeptin serum levels in girls with central precocious puberty.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Cqt77J&md5=34c906fdaa62f76f295ee10d17ffd378CAS |

Dhillo, W. S., Chaudhri, O. B., Patterson, M., Thompson, E. L., Murphy, K. G., Badman, M. K., McGowan, B. M., Amber, V., Patel, S., Ghatei, M. A., and Bloom, S. R. (2005). Kisspeptin-54 stimulates the hypothalamic–pituitary gonadal axis in human males. J. Clin. Endocrinol. Metab. 90, 6609–6615.
Kisspeptin-54 stimulates the hypothalamic–pituitary gonadal axis in human males.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlaltLrN&md5=6773236a25f4b5d2195e2c56f5815761CAS |

Donato, J., Cravo, R. M., Frazao, R., Gautron, L., Scott, M. M., Lachey, J., Castro, I. A., Margatho, L. O., Lee, S., Lee, C., Richardson, J. A., Friedman, J., Chua, S., Coppari, R., Zigman, J. M., Elmquist, J. K., and Elias, C. F. (2011). Leptin’s effect on puberty in mice is relayed by the ventral premammillary nucleus and does not require signaling in Kiss1 neurons. J. Clin. Invest. 121, 355–368.
Leptin’s effect on puberty in mice is relayed by the ventral premammillary nucleus and does not require signaling in Kiss1 neurons.Crossref | GoogleScholarGoogle Scholar |

Funes, S., Hedrick, J. A., Vassileva, G., Markowitz, L., Abbondanzo, S., Golovko, A., Yang, S., Monsma, F. J., and Gustafson, E. L. (2003). The KiSS-1 receptor GPR54 is essential for the development of the murine reproductive system. Biochem. Biophys. Res. Commun. 312, 1357–1363.
The KiSS-1 receptor GPR54 is essential for the development of the murine reproductive system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpsVSisL0%3D&md5=a5b0bb6adb8d82e58d179dcd9362e5a8CAS |

Goldstein, B. J., and Scalia, R. (2004). Adiponectin: a novel adipokine linking adipocytes and vascular function. J. Clin. Endocrinol. Metab. 89, 2563–2568.
Adiponectin: a novel adipokine linking adipocytes and vascular function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtlGqt7k%3D&md5=c871a7cc11fd7bd5e74b4db8deba1d0fCAS |

Gottsch, M. L., Cunningham, M. J., Smith, J. T., Popa, S. M., Acohido, B. V., Crowley, W. F., Seminara, S., Clifton, D. K., and Steiner, R. A. (2004). A role for kisspeptins in the regulation of gonadotropin secretion in the mouse. Endocrinology 145, 4073–4077.
A role for kisspeptins in the regulation of gonadotropin secretion in the mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnt1CisbY%3D&md5=ef151f464ee0c8afd682312e01f715ccCAS |

Kadowaki, T., and Yamauchi, T. (2005). Adiponectin and adiponectin receptors. Endocr. Rev. 26, 439–451.
Adiponectin and adiponectin receptors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltVWru7c%3D&md5=1b0703e497a4f376042f85eb9959d1c6CAS |

Kaplowitz, P. B. (2008). Link between body fat and the timing of puberty. Pediatrics 121, S208–S217.
Link between body fat and the timing of puberty.Crossref | GoogleScholarGoogle Scholar |

Klenke, U., Constantin, S., and Wray, S. (2010). Neuropeptide Y directly inhibits neuronal activity in a subpopulation of gonadotropin-releasing hormone-1 neurons via Y1 receptors. Endocrinology 151, 2736–2746.
Neuropeptide Y directly inhibits neuronal activity in a subpopulation of gonadotropin-releasing hormone-1 neurons via Y1 receptors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnsVyqtL8%3D&md5=5c77731a90d1d72eed2a67d6a297c69cCAS |

Klenke, U., Taylor-Burds, C., and Wray, S. (2014). Metabolic influences on reproduction: adiponectin attenuates GnRH neuronal activity in female mice. Endocrinology 155, 1851–1863.
Metabolic influences on reproduction: adiponectin attenuates GnRH neuronal activity in female mice.Crossref | GoogleScholarGoogle Scholar |

Kos, K., Baker, A. R., Jernas, M., Harte, A. L., Clapham, J. C., O’Hare, J. P., Carlsson, L., Kumar, S., and McTernan, P. G. (2009). DPP-IV inhibition enhances the antilipolytic action of NPY in human adipose tissue. Diabetes Obes. Metab. 11, 285–292.
DPP-IV inhibition enhances the antilipolytic action of NPY in human adipose tissue.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1M7ptFKiug%3D%3D&md5=0c2b07ff37b69cc0cde7bcf184a52bedCAS |

Lapatto, R., Pallais, J. C., Zhang, D., Chan, Y. M., Mahan, A., Cerrato, F., Le, W. W., Hoffman, G. E., and Seminara, S. B. (2007). Kiss1−/− mice exhibit more variable hypogonadism than Gpr54−/− mice. Endocrinology 148, 4927–4936.
Kiss1−/− mice exhibit more variable hypogonadism than Gpr54−/− mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFWls7bM&md5=f668afb52ff8c66be807cbc41f5dfe81CAS |

Lu, M., Tang, Q., Olefsky, J. M., Mellon, P. L., and Webster, N. J. (2008). Adiponectin activates adenosine monophosphate-activated protein kinase and decreases luteinizing hormone secretion in LbetaT2 gonadotropes. Mol. Endocrinol. 22, 760–771.
Adiponectin activates adenosine monophosphate-activated protein kinase and decreases luteinizing hormone secretion in LbetaT2 gonadotropes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXis12nsLs%3D&md5=3b3094b2eda03f17bbf1602a3aa3b3e6CAS |

Ma, D., Feitosa, M. F., Wilk, J. B., Laramie, J. M., Yu, K., Leiendecker-Foster, C., Myers, R. H., Province, M. A., and Borecki, I. B. (2009). Leptin is associated with blood pressure and hypertension in women from the National Heart, Lung, and Blood Institute Family Heart Study. Hypertension 53, 473–479.
Leptin is associated with blood pressure and hypertension in women from the National Heart, Lung, and Blood Institute Family Heart Study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1Cntbw%3D&md5=2e9dfbbda91ce11aed0682c2dd7586a4CAS |

Maillard, V., Uzbekova, S., Guignot, F., Perreau, C., Rame, C., Coyral-Castel, S., and Dupont, J. (2010). Effect of adiponectin on bovine granulosa cell steroidogenesis, oocyte maturation and embryo development. Reprod. Biol. Endocrinol. 8, 23.
Effect of adiponectin on bovine granulosa cell steroidogenesis, oocyte maturation and embryo development.Crossref | GoogleScholarGoogle Scholar |

Mathieu, P., Poirier, P., Pibarot, P., Lemieux, I., and Despres, J. P. (2009). Visceral obesity: the link among inflammation, hypertension, and cardiovascular disease. Hypertension 53, 577–584.
Visceral obesity: the link among inflammation, hypertension, and cardiovascular disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXivVemtr4%3D&md5=c7c1b0d8961ff9ac67e7571df28ee1cfCAS |

Matsui, H., Takatsu, Y., Kumano, S., Matsumoto, H., and Ohtaki, T. (2004). Peripheral administration of metastin induces marked gonadotropin release and ovulation in the rat. Biochem. Biophys. Res. Commun. 320, 383–388.
Peripheral administration of metastin induces marked gonadotropin release and ovulation in the rat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlt1egtr8%3D&md5=a49478d0916815dfb8b46ac80273d10aCAS |

Mead, E. J., Maguire, J. J., Kuc, R. E., and Davenport, A. P. (2007). Kisspeptins are novel potent vasoconstrictors in humans, with a discrete localization of their receptor, G protein-coupled receptor 54, to atherosclerosis-prone vessels. Endocrinology 148, 140–147.
Kisspeptins are novel potent vasoconstrictors in humans, with a discrete localization of their receptor, G protein-coupled receptor 54, to atherosclerosis-prone vessels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjsV2qsA%3D%3D&md5=c2ab4f6208f928ffd04adcbefb8be397CAS |

Messager, S., Chatzidaki, E. E., Ma, D., Hendrick, A. G., Zahn, D., Dixon, J., Thresher, R. R., Malinge, I., Lomet, D., Carlton, M. B., Colledge, W. H., Caraty, A., and Aparicio, S. A. (2005). Kisspeptin directly stimulates gonadotropin-releasing hormone release via G protein-coupled receptor 54. Proc. Natl Acad. Sci. USA 102, 1761–1766.
Kisspeptin directly stimulates gonadotropin-releasing hormone release via G protein-coupled receptor 54.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhs1Klu7Y%3D&md5=05905b4327fe29f76771bab0ebca3530CAS |

Neumeier, M., Weigert, J., Buettner, R., Wanninger, J., Schaffler, A., Muller, A. M., Killian, S., Sauerbruch, S., Schlachetzki, F., Steinbrecher, A., Aslanidis, C., Scholmerich, J., and Buechler, C. (2007). Detection of adiponectin in cerebrospinal fluid in humans. Am. J. Physiol. Endocrinol. Metab. 293, E965–E969.
Detection of adiponectin in cerebrospinal fluid in humans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1WltbnN&md5=351d3b0e5186bd40822d1bf99b1f507dCAS |

Pajvani, U. B., Du, X., Combs, T. P., Berg, A. H., Rajala, M. W., Schulthess, T., Engel, J., Brownlee, M., and Scherer, P. E. (2003). Structure–function studies of the adipocyte-secreted hormone Acrp30/adiponectin. Implications for metabolic regulation and bioactivity. J. Biol. Chem. 278, 9073–9085.
Structure–function studies of the adipocyte-secreted hormone Acrp30/adiponectin. Implications for metabolic regulation and bioactivity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhvVyqu7g%3D&md5=4eb74b45fb417e410d6285b73121dbc1CAS |

Peake, P. W., Kriketos, A. D., Campbell, L. V., Shen, Y., and Charlesworth, J. A. (2005). The metabolism of isoforms of human adiponectin: studies in human subjects and in experimental animals. Eur. J. Endocrinol. 153, 409–417.
The metabolism of isoforms of human adiponectin: studies in human subjects and in experimental animals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVygsrjK&md5=83b29fffaaa04fe7fd644b6d7d409d3aCAS |

Peng, J., Tang, M., Zhang, B. P., Zhang, P., Zhong, T., Zong, T., Yang, B., and Kuang, H. B. (2013). Kisspeptin stimulates progesterone secretion via the Erk1/2 mitogen-activated protein kinase signaling pathway in rat luteal cells. Fertil. Steril. 99, 1436–1443.e1.
Kisspeptin stimulates progesterone secretion via the Erk1/2 mitogen-activated protein kinase signaling pathway in rat luteal cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnslCitQ%3D%3D&md5=ffaee8b9ee84c0118ffe12a38e26cef8CAS |

Pielecka-Fortuna, J., Chu, Z., and Moenter, S. M. (2008). Kisspeptin acts directly and indirectly to increase gonadotropin-releasing hormone neuron activity and its effects are modulated by estradiol. Endocrinology 149, 1979–1986.
Kisspeptin acts directly and indirectly to increase gonadotropin-releasing hormone neuron activity and its effects are modulated by estradiol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXktVeqsbY%3D&md5=2023a4f60fbc2f7146c2b288272935ccCAS |

Pita, J., Barrios, V., Gavela-Perez, T., Martos-Moreno, G. A., Munoz-Calvo, M. T., Pozo, J., Rovira, A., Argente, J., and Soriano-Guillen, L. (2011). Circulating kisspeptin levels exhibit sexual dimorphism in adults, are increased in obese prepubertal girls and do not suffer modifications in girls with idiopathic central precocious puberty. Peptides 32, 1781–1786.
Circulating kisspeptin levels exhibit sexual dimorphism in adults, are increased in obese prepubertal girls and do not suffer modifications in girls with idiopathic central precocious puberty.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFGltb%2FL&md5=689145c7eba0deed8229199fcc4ae2a8CAS |

Pons, J., Lee, E. W., Li, L., and Kitlinska, J. (2004). Neuropeptide Y: multiple receptors and multiple roles in cardiovascular diseases. Curr. Opin. Investig. Drugs 5, 957–962.
| 1:CAS:528:DC%2BD2cXpsVSis74%3D&md5=ffc6bcb100e4464ee46d3bd73aaccae7CAS |

Pralong, F. P., Voirol, M., Giacomini, M., Gaillard, R. C., and Grouzmann, E. (2000). Acceleration of pubertal development following central blockade of the Y1 subtype of neuropeptide Y receptors. Regul. Pept. 95, 47–52.
Acceleration of pubertal development following central blockade of the Y1 subtype of neuropeptide Y receptors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXptFWn&md5=31c706ae47987d5ae1a8d849fe145751CAS |

Psilopanagioti, A., Papadaki, H., Kranioti, E. F., Alexandrides, T. K., and Varakis, J. N. (2009). Expression of adiponectin and adiponectin receptors in human pituitary gland and brain. Neuroendocrinology 89, 38–47.
Expression of adiponectin and adiponectin receptors in human pituitary gland and brain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFSmsL0%3D&md5=d3e58c6e37b86f71eac001348ac4dcc7CAS |

Qi, Y., Takahashi, N., Hileman, S. M., Patel, H. R., Berg, A. H., Pajvani, U. B., Scherer, P. E., and Ahima, R. S. (2004). Adiponectin acts in the brain to decrease body weight. Nat. Med. 10, 524–529.
Adiponectin acts in the brain to decrease body weight.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsF2jtLw%3D&md5=c33f3e25f28eb86532b11927f792749fCAS |

Ramachandran, R., Ocón-Grove, O. M., and Metzger, S. L. (2007). Molecular cloning and tissue expression of chicken AdipoR1 and AdipoR2 complementary deoxyribonucleic acids. Domest. Anim. Endocrinol. 33, 19–31.
Molecular cloning and tissue expression of chicken AdipoR1 and AdipoR2 complementary deoxyribonucleic acids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtVGhu7w%3D&md5=f4d6527b0a6d0fe57c977f83b8bb75ffCAS |

Raposinho, P. D., Broqua, P., Pierroz, D. D., Hayward, A., Dumont, Y., Quirion, R., Junien, J. L., and Aubert, M. L. (1999). Evidence that the inhibition of luteinizing hormone secretion exerted by central administration of neuropeptide Y (NPY) in the rat is predominantly mediated by the NPY-Y5 receptor subtype. Endocrinology 140, 4046–4055.
Evidence that the inhibition of luteinizing hormone secretion exerted by central administration of neuropeptide Y (NPY) in the rat is predominantly mediated by the NPY-Y5 receptor subtype.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlslSrtr4%3D&md5=7b188cc7b70f7a2d709e1ad21382bf72CAS |

Rhie, Y. J., Lee, K. H., Eun, S. H., Choi, B. M., Chae, H. W., Kwon, A. R., Lee, W. J., Kim, J. H., and Kim, H. S. (2011). Serum kisspeptin levels in Korean girls with central precocious puberty. J. Korean Med. Sci. 26, 927–931.
Serum kisspeptin levels in Korean girls with central precocious puberty.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVSnsb7N&md5=a28b9e1969be0734437ff2a3460612efCAS |

Richards, J. S., Liu, Z., Kawai, T., Tabata, K., Watanabe, H., Suresh, D., Kuo, F. T., Pisarska, M. D., and Shimada, M. (2012). Adiponectin and its receptors modulate granulosa cell and cumulus cell functions, fertility and early embryo development in the mouse and human. Fertil. Steril. 98, 471–479.e1.
Adiponectin and its receptors modulate granulosa cell and cumulus cell functions, fertility and early embryo development in the mouse and human.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnslOhs7w%3D&md5=cc228bb96ac4f0f7fb20833a7bf407ebCAS |

Rosmaninho-Salgado, J., Araujo, I. M., Alvaro, A. R., Duarte, E. P., and Cavadas, C. (2007). Intracellular signaling mechanisms mediating catecholamine release upon activation of NPY Y1 receptors in mouse chromaffin cells. J. Neurochem. 103, 896–903.
Intracellular signaling mechanisms mediating catecholamine release upon activation of NPY Y1 receptors in mouse chromaffin cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlSitLnO&md5=a42c6a79710f9e5e0df4fc569c5763eeCAS |

Sanchez-Garrido, M. A., and Tena-Sempere, M. (2013). Metabolic control of puberty: roles of leptin and kisspeptins. Horm. Behav. 64, 187–194.
Metabolic control of puberty: roles of leptin and kisspeptins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlKqs7fK&md5=0629f61348e0adc8e92a14c61d12bce1CAS |

Seminara, S. B., Messager, S., Chatzidaki, E. E., Thresher, R. R., Acierno, J. S., Shagoury, J. K., Bo-Abbas, Y., Kuohung, W., Schwinof, K. M., Hendrick, A. G., Zahn, D., Dixon, J., Kaiser, U. B., Slaugenhaupt, S. A., Gusella, J. F., O’Rahilly, S., Carlton, M. B., Crowley, W. F., Aparicio, S. A., and Colledge, W. H. (2003). The GPR54 gene as a regulator of puberty. N. Engl. J. Med. 349, 1614–1627.
The GPR54 gene as a regulator of puberty.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXosFWrsr8%3D&md5=190a0f3b4d09478a87c18655a517e83cCAS |

Spranger, J., Verma, S., Gohring, I., Bobbert, T., Seifert, J., Sindler, A. L., Pfeiffer, A., Hileman, S. M., Tschop, M., and Banks, W. A. (2006). Adiponectin does not cross the blood–brain barrier but modifies cytokine expression of brain endothelial cells. Diabetes 55, 141–147.
Adiponectin does not cross the blood–brain barrier but modifies cytokine expression of brain endothelial cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlvVSltQ%3D%3D&md5=07f8cb3b0342e183b6c4078a730d66b2CAS |

Suzuki, K., Simpson, K. A., Minnion, J. S., Shillito, J. C., and Bloom, S. R. (2010). The role of gut hormones and the hypothalamus in appetite regulation. Endocr. J. 57, 359–372.
The role of gut hormones and the hypothalamus in appetite regulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFahsrrK&md5=5ce57665ffdaf567bab1d4e043f572a8CAS |

Thompson, E. L., Patterson, M., Murphy, K. G., Smith, K. L., Dhillo, W. S., Todd, J. F., Ghatei, M. A., and Bloom, S. R. (2004). Central and peripheral administration of kisspeptin-10 stimulates the hypothalamic–pituitary–gonadal axis. J. Neuroendocrinol. 16, 850–858.
Central and peripheral administration of kisspeptin-10 stimulates the hypothalamic–pituitary–gonadal axis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVSisL7N&md5=81b14749b3d9390f149df8859cc56cb8CAS |

Wang, L., Waltenberger, B., Pferschy-Wenzig, E.-M., Blunder, M., Liu, X., Malainer, C., Blazevic, T., Schwaiger, S., Rollinger, J. M., Heiss, E. H., Schuster, D., Kopp, B., Bauer, R., Stuppner, H., Dirsch, V. M., and Atanasov, A. G. (2014). Natural product agonists of peroxisome proliferator-activated receptor gamma (PPARγ): a review. Biochem. Pharmacol. 92, 73–89.
Natural product agonists of peroxisome proliferator-activated receptor gamma (PPARγ): a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1ymtbjK&md5=bb0654ea5611924726e01d5582dc8877CAS |

Weise, M., Eisenhofer, G., and Merke, D. P. (2002). Pubertal and gender-related changes in the sympathoadrenal system in healthy children. J. Clin. Endocrinol. Metab. 87, 5038–5043.
Pubertal and gender-related changes in the sympathoadrenal system in healthy children.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xos1ynsbY%3D&md5=36888de8bf1581eb155500a462c40871CAS |

Wen, J. P., Lv, W. S., Yang, J., Nie, A. F., Cheng, X. B., Yang, Y., Ge, Y., Li, X. Y., and Ning, G. (2008). Globular adiponectin inhibits GnRH secretion from GT1–7 hypothalamic GnRH neurons by induction of hyperpolarization of membrane potential. Biochem. Biophys. Res. Commun. 371, 756–761.
Globular adiponectin inhibits GnRH secretion from GT1–7 hypothalamic GnRH neurons by induction of hyperpolarization of membrane potential.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmsFyrt7o%3D&md5=aeb32283bf864703a0af6fcb6a352ae5CAS |

Wen, J. P., Liu, C., Bi, W. K., Hu, Y. T., Chen, Q., Huang, H., Liang, J. X., Li, L. T., Lin, L. X., and Chen, G. (2012). Adiponectin inhibits KISS1 gene transcription through AMPK and specificity protein-1 in the hypothalamic GT1–7 neurons. J. Endocrinol. 214, 177–189.
Adiponectin inhibits KISS1 gene transcription through AMPK and specificity protein-1 in the hypothalamic GT1–7 neurons.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1CgsbrL&md5=3e2e6fd9411ff99f6b7494a13bc547b2CAS |

Woo, J. G., Dolan, L. M., Daniels, S. R., Goodman, E., and Martin, L. J. (2005). Adolescent sex differences in adiponectin are conditional on pubertal development and adiposity. Obes. Res. 13, 2095–2101.
Adolescent sex differences in adiponectin are conditional on pubertal development and adiposity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhsVegtLc%3D&md5=aed4e842cbd06ec9a15253cfbfa615dbCAS |