Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
REVIEW

Sex-specific differences and developmental programming for diseases in later life

Deepali P. Sundrani A B , Suchitra S. Roy A , Anjali T. Jadhav A and Sadhana R. Joshi A
+ Author Affiliations
- Author Affiliations

A Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Katraj, Pune 411043, India.

B Corresponding author. Email: dips.sundrani@gmail.com

Reproduction, Fertility and Development 29(11) 2085-2099 https://doi.org/10.1071/RD16265
Submitted: 20 August 2015  Accepted: 16 February 2017   Published: 6 April 2017

Abstract

Epidemiological data indicate that developmental programming of various non-communicable diseases (NCDs) occurs as a consequence of altered maternal metabolic and physiological status due to a number of environmental insults during pregnancy. Sex-specific differences have also been reported in most NCDs. Evidence suggests that beginning from conception, the maternal and neonatal metabolic environment, including hormones, contributes to sex-specific placental development. The placenta then regulates the sex-specific differences in NCDs via the epigenetic mechanisms that are further affected by hormones. Male and female embryos have been reported to exhibit sex-specific transcriptional regulation, and it is suggested that their development can be considered as separate processes beginning from conception. This review summarises various animal and human studies examining sex-specific differences in NCDs due to differential placental epigenetic developmental programming. An overview of possible mechanisms underlying this is also discussed. Further, the review describes sex-specific changes in the structure and function of the placenta in pregnancies complicated by fetal growth restriction, pre-eclampsia and preterm birth. Thus, because sex-specific differences are associated with fetal outcome and survival, future studies need to take into consideration the sex of the fetus while explaining the concept of the developmental origins of health and disease.

Additional keywords: fetal programming, nutrition, placenta, sexual dimorphism.


References

Abbott, D. H., Padmanabhan, V., and Dumesic, D. A. (2006). Contributions of androgen and estrogen to fetal programming of ovarian dysfunction. Reprod. Biol. Endocrinol. 4, 17.
Contributions of androgen and estrogen to fetal programming of ovarian dysfunction.Crossref | GoogleScholarGoogle Scholar |

Aiken, C. E., and Ozanne, S. E. (2013). Sex differences in developmental programming models. Reproduction 145, R1–R13.
Sex differences in developmental programming models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslGisLg%3D&md5=426366825616bec1f7662cd25fa898a4CAS |

Alexander, B. T. (2003). Placental insufficiency leads to development of hypertension in growth-restricted offspring. Hypertension 41, 457–462.
Placental insufficiency leads to development of hypertension in growth-restricted offspring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhsV2lur0%3D&md5=72134e3db118f0a6a3e34b03ebd92ebdCAS |

Altman, M., Vanpée, M., Cnattingius, S., and Norman, M. (2013). Risk factors for acute respiratory morbidity in moderately preterm infants. Paediatr. Perinat. Epidemiol. 27, 172–181.
Risk factors for acute respiratory morbidity in moderately preterm infants.Crossref | GoogleScholarGoogle Scholar |

American College of Obstetricians and Gynecologists; Task Force on Hypertension in Pregnancy (2013). Hypertension in pregnancy. Report of the American College of Obstetricians and Gynecologists’ Task Force on Hypertension in Pregnancy. Obstet. Gynecol. 122, 1122–1131.

Anadkat, J. S., Kuzniewicz, M. W., Chaudhari, B. P., Col, F. S., and Hamvas, A. (2012). Increased risk for respiratory distress among White, male, late preterm and term infants. J. Perinatol. 32, 780–785.
Increased risk for respiratory distress among White, male, late preterm and term infants.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC38zpvVKjsA%3D%3D&md5=afad142dea67940d29b0d787981bb177CAS |

Arroyo, J. A., and Winn, V. D. (2008). Vasculogenesis and angiogenesis in the IUGR placenta. Semin. Perinatol. 32, 172–177.
Vasculogenesis and angiogenesis in the IUGR placenta.Crossref | GoogleScholarGoogle Scholar |

Barjaktarovic, M., Korevaar, T. I., Jaddoe, V. W., de Rijke, Y. B., Visser, T. J., Peeters, R. P., and Steegers, E. A. (2016). Human chorionic gonadotropin (hCG) concentrations during the late first trimester are associated with fetal growth in a fetal sex-specific manner. Eur. J. Epidemiol. , .
Human chorionic gonadotropin (hCG) concentrations during the late first trimester are associated with fetal growth in a fetal sex-specific manner.Crossref | GoogleScholarGoogle Scholar |

Barker, D. J. (1990). The fetal and infant origins of adult disease. BMJ 301, 1111.
The fetal and infant origins of adult disease.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3M%2FntVSqtw%3D%3D&md5=e40a2815e71cca01513d24de78a98c58CAS |

Barua, S., Kuizon, S., Brown, W. T., and Junaid, M. A. (2016). High gestational folic acid supplementation alters expression of imprinted and candidate autism susceptibility genes in a sex-specific manner in mouse offspring. J. Mol. Neurosci. 58, 277–286.
High gestational folic acid supplementation alters expression of imprinted and candidate autism susceptibility genes in a sex-specific manner in mouse offspring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvVSgtr%2FI&md5=ad87e37ac95e77dfbb3f5a615d1afee4CAS |

Beck, S., Wojdyla, D., Say, L., Betran, A. P., Merialdi, M., Requejo, J. H., Rubens, C., Menon, R., and Van Look, P. F. (2010). The worldwide incidence of preterm birth: a systematic review of maternal mortality and morbidity. Bull. World Health Organ. 88, 31–38.
The worldwide incidence of preterm birth: a systematic review of maternal mortality and morbidity.Crossref | GoogleScholarGoogle Scholar |

Bermejo-Alvarez, P., Rizos, D., Rath, D., Lonergan, P., and Gutierrez-Adan, A. (2010). Sex determines the expression level of one third of the actively expressed genes in bovine blastocysts. Proc. Natl Acad. Sci. USA 107, 3394–3399.
Sex determines the expression level of one third of the actively expressed genes in bovine blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtFymtbo%3D&md5=aa937c7dba392dbde53b9e853f4d8ec7CAS |

Bermejo-Alvarez, P., Rizos, D., Lonergan, P., and Gutierrez-Adan, A. (2011). Transcriptional sexual dimorphism during preimplantation embryo development and its consequences for developmental competence and adult health and disease. Reproduction 141, 563–570.
Transcriptional sexual dimorphism during preimplantation embryo development and its consequences for developmental competence and adult health and disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmvFCju7Y%3D&md5=9057ec120bc71c8ede2e975588a7cfc3CAS |

Binder, N. K., Beard, S. A., Kaitu’u-Lino, T. J., Tong, S., Hannan, N. J., and Gardner, D. K. (2015). Paternal obesity in a rodent model affects placental gene expression in a sex-specific manner. Reproduction 149, 435–444.
Paternal obesity in a rodent model affects placental gene expression in a sex-specific manner.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtVCkur7K&md5=8df5b1af1af65ba5bcb1869c5a42530fCAS |

Braun, T., Meng, W., Shang, H., Li, S., Sloboda, D. M., Ehrlich, L., Lange, K., Xu, H., Henrich, W., Dudenhausen, J. W., Plagemann, A., Newnham, J. P., and Challis, J. R. (2015). Early dexamethasone treatment induces placental apoptosis in sheep. Reprod. Sci. 22, 47–59.
Early dexamethasone treatment induces placental apoptosis in sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXitFSnurY%3D&md5=c0540a42f3a9da929a5bb926f857a889CAS |

Broere-Brown, Z. A., Baan, E., Schalekamp-Timmermans, S., Verburg, B. O., Jaddoe, V. W., and Steegers, E. A. (2016). Sex-specific differences in fetal and infant growth patterns: a prospective population-based cohort study. Biol. Sex Differ. 7, 65.
Sex-specific differences in fetal and infant growth patterns: a prospective population-based cohort study.Crossref | GoogleScholarGoogle Scholar |

Brown, M. C., Best, K. E., Pearce, M. S., Waugh, J., Robson, S. C., and Bell, R. (2013). Cardiovascular disease risk in women with pre-eclampsia: systematic review and meta-analysis. Eur. J. Epidemiol. 28, 1–19.
Cardiovascular disease risk in women with pre-eclampsia: systematic review and meta-analysis.Crossref | GoogleScholarGoogle Scholar |

Brown, Z. A., Schalekamp-Timmermans, S., Tiemeier, H. W., Hofman, A., Jaddoe, V. W., and Steegers, E. A. (2014). Fetal sex specific differences in human placentation: a prospective cohort study. Placenta 35, 359–364.
Fetal sex specific differences in human placentation: a prospective cohort study.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC2cnisV2ksQ%3D%3D&md5=f59f1415dac7b862ca40d4bb1600f122CAS |

Buckberry, S., Bianco-Miotto, T., Bent, S. J., Dekker, G. A., and Roberts, C. T. (2014). Integrative transcriptome meta-analysis reveals widespread sex-biased gene expression at the human fetal-maternal interface. Mol. Hum. Reprod. 20, 810–819.
Integrative transcriptome meta-analysis reveals widespread sex-biased gene expression at the human fetal-maternal interface.Crossref | GoogleScholarGoogle Scholar |

Chen, P. Y., Ganguly, A., Rubbi, L., Orozco, L. D., Morselli, M., Ashraf, D., Jaroszewicz, A., Feng, S., Jacobsen, S. E., Nakano, A., Devaskar, S. U., and Pellegrini, M. (2013). Intrauterine calorie restriction affects placental DNA methylation and gene expression. Physiol. Genomics 45, 565–576.
Intrauterine calorie restriction affects placental DNA methylation and gene expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1OmtLjL&md5=6d40565893c01b271d0d40c19a669a4aCAS |

Clifton, V. L. (2005). Sexually dimorphic effects of maternal asthma during pregnancy on placental glucocorticoid metabolism and fetal growth. Cell Tissue Res. 322, 63–71.
Sexually dimorphic effects of maternal asthma during pregnancy on placental glucocorticoid metabolism and fetal growth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Gmu7zF&md5=e6c8fe2da90a833a8311956affe19735CAS |

Clifton, V. L. (2010). Sex and the human placenta: mediating differential strategies of fetal growth and survival. Placenta 31, S33–S39.
Sex and the human placenta: mediating differential strategies of fetal growth and survival.Crossref | GoogleScholarGoogle Scholar |

Clifton, V. L., Stark, M. J., Osei-Kumah, A., and Hodyl, N. A. (2012). The feto-placental unit, pregnancy pathology and impact on long term maternal health. Placenta 33, S37–S41.
The feto-placental unit, pregnancy pathology and impact on long term maternal health.Crossref | GoogleScholarGoogle Scholar |

Crespi, E. J., Steckler, T. L., Mohankumar, P. S., and Padmanabhan, V. (2006). Prenatal exposure to excess testosterone modifies the developmental trajectory of the insulin-like growth factor system in female sheep. J. Physiol. 572, 119–130.
Prenatal exposure to excess testosterone modifies the developmental trajectory of the insulin-like growth factor system in female sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xkt1Ghtb0%3D&md5=845248d71daa3c104c3f697663c080e8CAS |

Cserjesi, R., Van Braeckel, K. N., Butcher, P. R., Kerstjens, J. M., Reijneveld, S. A., Bouma, A., Geuze, R. H., and Bos, A. F. (2012). Functioning of 7-year-old children born at 32 to 35 weeks’ gestational age. Pediatrics 130, e838–e846.
Functioning of 7-year-old children born at 32 to 35 weeks’ gestational age.Crossref | GoogleScholarGoogle Scholar |

Cuffe, J. S., Dickinson, H., Simmons, D. G., and Moritz, K. M. (2011). Sex specific changes in placental growth and MAPK following short term maternal dexamethasone exposure in the mouse. Placenta 32, 981–989.
Sex specific changes in placental growth and MAPK following short term maternal dexamethasone exposure in the mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFGjt7bM&md5=9223bf28384b605befd4cf372ab6bc84CAS |

Dabelea, D., and Crume, T. (2011). Maternal environment and the transgenerational cycle of obesity and diabetes. Diabetes 60, 1849–1855.
Maternal environment and the transgenerational cycle of obesity and diabetes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptVChtLc%3D&md5=a29f3e753314541ff58667be87e03473CAS |

Dada, T., Rosenzweig, J. M., Al Shammary, M., Firdaus, W., Al Rebh, S., Borbiev, T., Tekes, A., Zhang, J., Alqahtani, E., Mori, S., Pletnikov, M. V., Johnston, M. V., and Burd, I. (2014). Mouse model of intrauterine inflammation: sex-specific differences in long-term neurologic and immune sequelae. Brain Behav. Immun. 38, 142–150.
Mouse model of intrauterine inflammation: sex-specific differences in long-term neurologic and immune sequelae.Crossref | GoogleScholarGoogle Scholar |

Dasinger, J. H., and Alexander, B. T. (2016). Gender differences in developmental programming of cardiovascular diseases. Clin. Sci. (Lond.) 130, 337–348.
Gender differences in developmental programming of cardiovascular diseases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xit12ntLk%3D&md5=df97f55350f47a7150fcbb6640614b1eCAS |

Davis, E. P., and Pfaff, D. (2014). Sexually dimorphic responses to early adversity: implications for affective problems and autism spectrum disorder. Psychoneuroendocrinology 49, 11–25.
Sexually dimorphic responses to early adversity: implications for affective problems and autism spectrum disorder.Crossref | GoogleScholarGoogle Scholar |

De Matteo, R., Blasch, N., Stokes, V., Davis, P., and Harding, R. (2010). Induced preterm birth in sheep: a suitable model for studying the developmental effects of moderately preterm birth. Reprod. Sci. 17, 724–733.
Induced preterm birth in sheep: a suitable model for studying the developmental effects of moderately preterm birth.Crossref | GoogleScholarGoogle Scholar |

De Matteo, R., Ishak, N., Hanita, T., Harding, R., and Sozo, F. (2016). Respiratory adaptation and surfactant composition of unanesthetized male and female lambs differ for up to 8 h after preterm birth. Pediatr. Res. 79, 13–21.
Respiratory adaptation and surfactant composition of unanesthetized male and female lambs differ for up to 8 h after preterm birth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xhsl2jurg%3D&md5=f124b0abeedb56d2118a8a30b10a58aaCAS |

Di Renzo, G. C., Rosati, A., Sarti, R. D., Cruciani, L., and Cutuli, A. M. (2007). Does fetal sex affect pregnancy outcome? Gend. Med. 4, 19–30.
Does fetal sex affect pregnancy outcome?Crossref | GoogleScholarGoogle Scholar |

Dodic, M., Abouantoun, T., O’Connor, A., Wintour, E. M., and Moritz, K. M. (2002). Programming effects of short prenatal exposure to dexamethasone in sheep. Hypertension 40, 729–734.
Programming effects of short prenatal exposure to dexamethasone in sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XpsFWlsbw%3D&md5=ed69527c57f1ef08a0a85c7b208e11a8CAS |

Edelmann, M. N., and Auger, A. P. (2011). Epigenetic impact of simulated maternal grooming on estrogen receptor alpha within the developing amygdala. Brain Behav. Immun. 25, 1299–1304.
Epigenetic impact of simulated maternal grooming on estrogen receptor alpha within the developing amygdala.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtF2gsLjL&md5=7f8a4c3ce1dcd12d5715b5d75d31c95dCAS |

Edwards, A., Megens, A., Peek, M., and Wallace, E. M. (2000). Sexual origins of placental dysfunction. Lancet 355, 203–204.
Sexual origins of placental dysfunction.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c7jslGqsw%3D%3D&md5=d4a1a61be75a8269010d3f2d301fa833CAS |

Elmes, M. J., Gardner, D. S., and Langley-Evans, S. C. (2007). Fetal exposure to a maternal low-protein diet is associated with altered left ventricular pressure response to ischaemia–reperfusion injury. Br. J. Nutr. 98, 93–100.
Fetal exposure to a maternal low-protein diet is associated with altered left ventricular pressure response to ischaemia–reperfusion injury.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXosVOjsL0%3D&md5=1bd43ee4ee086fd6bf82cdcabcf4095bCAS |

Elsmén, E., Källén, K., Marsál, K., and Hellström-Westas, L. (2006). Fetal gender and gestational-age-related incidence of pre-eclampsia. Acta Obstet. Gynecol. Scand. 85, 1285–1291.
Fetal gender and gestational-age-related incidence of pre-eclampsia.Crossref | GoogleScholarGoogle Scholar |

Eriksson, J. G., Kajantie, E., Osmond, C., Thornburg, K., and Barker, D. J. (2010). Boys live dangerously in the womb. Am. J. Hum. Biol. 22, 330–335.
Boys live dangerously in the womb.Crossref | GoogleScholarGoogle Scholar |

Esmailnasab, N., Moradi, G., and Delaveri, A. (2012). Risk factors of non-communicable diseases and metabolic syndrome. Iran. J. Public Health 41, 77–85.
| 1:STN:280:DC%2BC3s%2Fps1Whsg%3D%3D&md5=81ecd67d55c784f71d324838f1c1e7e2CAS |

Fall, C. H. (2013). Fetal programming and the risk of noncommunicable disease. Indian J. Pediatr. 80, S13–S20.
Fetal programming and the risk of noncommunicable disease.Crossref | GoogleScholarGoogle Scholar |

Gabory, A., Attig, L., and Junien, C. (2009). Sexual dimorphism in environmental epigenetic programming. Mol. Cell. Endocrinol. 304, 8–18.
Sexual dimorphism in environmental epigenetic programming.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXls1ylsLY%3D&md5=12e9b6bac3e14775163e5babe6e2eacaCAS |

Gabory, A., Roseboom, T. J., Moore, T., Moore, L. G., and Junien, C. (2013). Placental contribution to the origins of sexual dimorphism in health and diseases: sex chromosomes and epigenetics. Biol. Sex Differ. 4, 5.
Placental contribution to the origins of sexual dimorphism in health and diseases: sex chromosomes and epigenetics.Crossref | GoogleScholarGoogle Scholar |

Gardner, D. K., Larman, M. G., and Thouas, G. A. (2010). Sex-related physiology of the preimplantation embryo. Mol. Hum. Reprod. 16, 539–547.
Sex-related physiology of the preimplantation embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptlegt7s%3D&md5=0c32d210a0e13116e0f5f215e74a7e7eCAS |

Gilbert, J. S., and Nijland, M. J. (2008). Sex differences in the developmental origins of hypertension and cardiorenal disease. Am. J. Physiol. Regul. Integr. Comp. Physiol. 295, R1941–R1952.
Sex differences in the developmental origins of hypertension and cardiorenal disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFSntbfJ&md5=400d5ba7a66d939d1a9f42a5fb097668CAS |

Gilbert, J. S., Ford, S. P., Lang, A. L., Pahl, L. R., Drumhiller, M. C., Babcock, S. A., Nathanielsz, P. W., and Nijland, M. J. (2007). Nutrient restriction impairs nephrogenesis in a gender-specific manner in the ovine fetus. Pediatr. Res. 61, 42–47.
Nutrient restriction impairs nephrogenesis in a gender-specific manner in the ovine fetus.Crossref | GoogleScholarGoogle Scholar |

Giussani, D. A., Fletcher, A. J., and Gardner, D. S. (2011). Sex differences in the ovine fetal cortisol response to stress. Pediatr. Res. 69, 118–122.
Sex differences in the ovine fetal cortisol response to stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXitFCqsrY%3D&md5=cc4ddd3ceadbb816f5d7885bc2b4342dCAS |

Goyal, R., and Longo, L. D. (2013). Maternal protein deprivation: sexually dimorphic programming of hypertension in the mouse. Hypertens. Res. 36, 29–35.
Maternal protein deprivation: sexually dimorphic programming of hypertension in the mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXktFaqug%3D%3D&md5=87df5700771333b1744a26de3d7edcebCAS |

Gray, C., Al-Dujaili, E. A., Sparrow, A. J., Gardiner, S. M., Craigon, J., Welham, S. J., and Gardner, D. S. (2013). Excess maternal salt intake produces sex-specific hypertension in offspring: putative roles for kidney and gastrointestinal sodium handling. PLoS One 8, e72682.
Excess maternal salt intake produces sex-specific hypertension in offspring: putative roles for kidney and gastrointestinal sodium handling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlOhtbzN&md5=4fb203965fbb2fc5f11f75bdc54ac682CAS |

Gude, N. M., Roberts, C. T., Kalionis, B., and King, R. G. (2004). Growth and function of the normal human placenta. Thromb. Res. 114, 397–407.
Growth and function of the normal human placenta.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXovVKmsrk%3D&md5=84c50a91c499262c56ce1d305bcd2357CAS |

Gutiérrez-Adán, A., Perez-Crespo, M., Fernandez-Gonzalez, R., Ramirez, M. A., Moreira, P., Pintado, B., Lonergan, P., and Rizos, D. (2006). Developmental consequences of sexual dimorphism during pre-implantation embryonic development. Reprod. Domest. Anim. 41, 54–62.
Developmental consequences of sexual dimorphism during pre-implantation embryonic development.Crossref | GoogleScholarGoogle Scholar |

Haley, D. W., Handmaker, N. S., and Lowe, J. (2006). Infant stress reactivity and prenatal alcohol exposure. Alcohol. Clin. Exp. Res. 30, 2055–2064.
Infant stress reactivity and prenatal alcohol exposure.Crossref | GoogleScholarGoogle Scholar |

Halldorsson, T. I., Gunnarsdottir, I., Birgisdottir, B. E., Gudnason, V., Aspelund, T., and Thorsdottir, I. (2011). Childhood growth and adult hypertension in a population of high birthweight. Hypertension 58, 8–15.
Childhood growth and adult hypertension in a population of high birthweight.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXns12ns78%3D&md5=f4e54d4d0ef28692a8d502251d841a0fCAS |

Hanson, M. A., and Gluckman, P. D. (2008). Developmental origins of health and disease: new insights. Basic Clin. Pharmacol. Toxicol. 102, 90–93.
Developmental origins of health and disease: new insights.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhvF2gsrY%3D&md5=3abfe4f0a7966edd02f87e03db15029eCAS |

Hernandez-Medrano, J. H., Copping, K. J., Hoare, A., Wapanaar, W., Grivell, R., Kuchel, T., Miguel-Pacheco, G., McMillen, I. C., Rodgers, R. J., and Perry, V. E. (2015). Gestational dietary protein is associated with sex specific decrease in blood flow, fetal heart growth and post-natal blood pressure of progeny. PLoS One 10, e0125694.
Gestational dietary protein is associated with sex specific decrease in blood flow, fetal heart growth and post-natal blood pressure of progeny.Crossref | GoogleScholarGoogle Scholar |

Hintz, S. R., Kendrick, D. E., Vohr, B. R., Kenneth Poole, W., Higgins, R. D., Nichd Neonatal Research Network (2006). Gender differences in neurodevelopmental outcomes among extremely preterm, extremely-low-birthweight infants. Acta Paediatr. 95, 1239–1248.
Gender differences in neurodevelopmental outcomes among extremely preterm, extremely-low-birthweight infants.Crossref | GoogleScholarGoogle Scholar |

Hogg, K., McNeilly, A. S., and Duncan, W. C. (2011). Prenatal androgen exposure leads to alterations in gene and protein expression in the ovine fetal ovary. Endocrinology 152, 2048–2059.
Prenatal androgen exposure leads to alterations in gene and protein expression in the ovine fetal ovary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsVOjsrY%3D&md5=cfdde79a706d9da725b4b249e745fbccCAS |

Hou, L., Wang, X., Li, G., Zou, L., Chen, Y., and Zhang, W. (2014). Cross sectional study in China: fetal gender has adverse perinatal outcomes in mainland China. BMC Pregnancy Childbirth 14, 372.
Cross sectional study in China: fetal gender has adverse perinatal outcomes in mainland China.Crossref | GoogleScholarGoogle Scholar |

Intapad, S., Ojeda, N. B., Dasinger, J. H., and Alexander, B. T. (2014). Sex differences in the developmental origins of cardiovascular disease. Physiology (Bethesda) 29, 122–132.
Sex differences in the developmental origins of cardiovascular disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXosVyhsbk%3D&md5=3dc044e9337f9964339ec452756bc851CAS |

Isaacs, E. B., Ross, S., Kennedy, K., Weaver, L. T., Lucas, A., and Fewtrell, M. S. (2011). 10-year cognition in preterms after random assignment to fatty acid supplementation in infancy. Pediatrics 128, e890–e898.
10-year cognition in preterms after random assignment to fatty acid supplementation in infancy.Crossref | GoogleScholarGoogle Scholar |

Ishak, N., Hanita, T., Sozo, F., Maritz, G., Harding, R., and De Matteo, R. (2012). Sex differences in cardiorespiratory transition and surfactant composition following preterm birth in sheep. Am. J. Physiol. Regul. Integr. Comp. Physiol. 303, R778–R789.
Sex differences in cardiorespiratory transition and surfactant composition following preterm birth in sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1yktLrM&md5=73c7db6ebcfae6835303b95180210143CAS |

Ismail-Beigi, F., Catalano, P. M., and Hanson, R. W. (2006). Metabolic programming: fetal origins of obesity and metabolic syndrome in the adult. Am. J. Physiol. Endocrinol. Metab. 291, E439–E440.
Metabolic programming: fetal origins of obesity and metabolic syndrome in the adult.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVSlu7vF&md5=fa85ac8e8920284da78289464e141d4aCAS |

James, J. L., Carter, A. M., and Chamley, L. W. (2012). Human placentation from nidation to 5 weeks of gestation. Part I: what do we know about formative placental development following implantation? Placenta 33, 327–334.
Human placentation from nidation to 5 weeks of gestation. Part I: what do we know about formative placental development following implantation?Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC38vks12ksA%3D%3D&md5=833a6cfffc047e0bbcb5800556c2b822CAS |

Jones, A., Beda, A., Ward, A. M., Osmond, C., Phillips, D. I., Moore, V. M., and Simpson, D. M. (2007). Size at birth and autonomic function during psychological stress. Hypertension 49, 548–555.
Size at birth and autonomic function during psychological stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVSiu7w%3D&md5=7aa9324c7c4666d48a0dd0d16199acb0CAS |

Jones, A., Beda, A., Osmond, C., Godfrey, K. M., Simpson, D. M., and Phillips, D. I. (2008). Sex-specific programming of cardiovascular physiology in children. Eur. Heart J. 29, 2164–2170.
Sex-specific programming of cardiovascular physiology in children.Crossref | GoogleScholarGoogle Scholar |

Jones, J. E., Jurgens, J. A., Evans, S. A., Ennis, R. C., Villar, V. A., and Jose, P. A. (2012). Mechanisms of fetal programming in hypertension. Int. J. Pediatr. 2012, 584831.
Mechanisms of fetal programming in hypertension.Crossref | GoogleScholarGoogle Scholar |

Joseph, R. M., O’Shea, T. M., Allred, E. N., Heeren, T., Hirtz, D., Paneth, N., Leviton, A., and Kuban, K. C. (2017). Prevalence and associated features of autism spectrum disorder in extremely low gestational age newborns at age 10 years. Autism Res. 10, 224–232.
Prevalence and associated features of autism spectrum disorder in extremely low gestational age newborns at age 10 years.Crossref | GoogleScholarGoogle Scholar |

Kaminsky, Z., Wang, S. C., and Petronis, A. (2006). Complex disease, gender and epigenetics. Ann. Med. 38, 530–544.
Complex disease, gender and epigenetics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitV2mtLY%3D&md5=d490a311144f07f24bc6362cdde2619aCAS |

Ke, X., McKnight, R. A., Caprau, D., O’Grady, S., Fu, Q., Yu, X., Callaway, C. W., Albertine, K. H., and Lane, R. H. (2011). Intrauterine growth restriction affects hippocampal dual specificity phosphatase 5 gene expression and epigenetic characteristics. Physiol. Genomics 43, 1160–1169.
Intrauterine growth restriction affects hippocampal dual specificity phosphatase 5 gene expression and epigenetic characteristics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFGrtbbF&md5=1f087a988e41af5c59b17b7364d9f747CAS |

Kind, K. L., Simonetta, G., Clifton, P. M., Robinson, J. S., and Owens, J. A. (2002). Effect of maternal feed restriction on blood pressure in the adult guinea pig. Exp. Physiol. 87, 469–477.
Effect of maternal feed restriction on blood pressure in the adult guinea pig.Crossref | GoogleScholarGoogle Scholar |

Kingdom, J., Huppertz, B., Seaward, G., and Kaufmann, P. (2000). Development of the placental villous tree and its consequences for fetal growth. Eur. J. Obstet. Gynecol. Reprod. Biol. 92, 35–43.
Development of the placental villous tree and its consequences for fetal growth.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3M%2FislSiuw%3D%3D&md5=1403eddc86e7358724f347dbac9c073eCAS |

Kobayashi, S., Isotani, A., Mise, N., Yamamoto, M., Fujihara, Y., Kaseda, K., Nakanishi, T., Ikawa, M., Hamada, H., Abe, K., and Okabe, M. (2006). Comparison of gene expression in male and female mouse blastocysts revealed imprinting of the X-linked gene, Rhox5/Pem, at preimplantation stages. Curr. Biol. 16, 166–172.
Comparison of gene expression in male and female mouse blastocysts revealed imprinting of the X-linked gene, Rhox5/Pem, at preimplantation stages.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xosl2mtw%3D%3D&md5=669bd11d6ad091eca41a913953741335CAS |

Kovo, M., Schreiber, L., and Bar, J. (2013). Placental vascular pathology as a mechanism of disease in pregnancy complications. Thromb. Res. 131, S18–S21.
Placental vascular pathology as a mechanism of disease in pregnancy complications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmt1Crsrc%3D&md5=062633b7ee50256d25d3151c1ae54e7fCAS |

Kwong, W. Y., Wild, A. E., Roberts, P., Willis, A. C., and Fleming, T. P. (2000). Maternal undernutrition during the preimplantation period of rat development causes blastocyst abnormalities and programming of postnatal hypertension. Development 127, 4195–4202.
| 1:CAS:528:DC%2BD3cXotVWisbw%3D&md5=02884a22b37c4bff1437afe41d9690b1CAS |

Lampl, M., Gotsch, F., Kusanovic, J. P., Gomez, R., Nien, J. K., Frongillo, E. A., and Romero, R. (2010). Sex differences in fetal growth responses to maternal height and weight. Am. J. Hum. Biol. 22, 431–443.
Sex differences in fetal growth responses to maternal height and weight.Crossref | GoogleScholarGoogle Scholar |

Langley-Evans, S. C. (2006). Developmental programming of health and disease. Proc. Nutr. Soc. 65, 97–105.
Developmental programming of health and disease.Crossref | GoogleScholarGoogle Scholar |

Langley-Evans, S. C., Gardner, D. S., and Jackson, A. A. (1996). Maternal protein restriction influences the programming of the rat hypothalamic–pituitary–adrenal axis. J. Nutr. 126, 1578–1585.
| 1:CAS:528:DyaK28XjtlKktr8%3D&md5=974e44a72a16ed5355120d8370e47266CAS |

Leon-Garcia, S. M., Roeder, H. A., Nelson, K. K., Liao, X., Pizzo, D. P., Laurent, L. C., Parast, M. M., and LaCoursiere, D. Y. (2016). Maternal obesity and sex-specific differences in placental pathology. Placenta 38, 33–40.
Maternal obesity and sex-specific differences in placental pathology.Crossref | GoogleScholarGoogle Scholar |

Liu, F., Cao, S., Liu, J., Du, Z., Guo, Z., and Ren, C. (2013). Ultrasound measurement of the corpus callosum and neural development of premature infants. Neural Regen. Res. 8, 2432–2440.

Liyanage, V. R., Jarmasz, J. S., Murugeshan, N., Del Bigio, M. R., Rastegar, M., and Davie, J. R. (2014). DNA modifications: function and applications in normal and disease States. Biology (Basel) 3, 670–723.
DNA modifications: function and applications in normal and disease States.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXisFSju7k%3D&md5=23e09baf1a06227eff5357293da517eeCAS |

Loria, A., Reverte, V., Salazar, F., Saez, F., Llinas, M. T., and Salazar, F. J. (2007). Sex and age differences of renal function in rats with reduced ANG II activity during the nephrogenic period. Am. J. Physiol. Renal Physiol. 293, F506–F510.
Sex and age differences of renal function in rats with reduced ANG II activity during the nephrogenic period.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXptlyqtbs%3D&md5=69588c9ce126cef92e70634f2c37e16fCAS |

Makrides, M., Gibson, R. A., McPhee, A. J., Collins, C. T., Davis, P. G., Doyle, L. W., Simmer, K., Colditz, P. B., Morris, S., Smithers, L. G., Willson, K., and Ryan, P. (2009). Neurodevelopmental outcomes of preterm infants fed high-dose docosahexaenoic acid: a randomized controlled trial. JAMA 301, 175–182.
Neurodevelopmental outcomes of preterm infants fed high-dose docosahexaenoic acid: a randomized controlled trial.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnsFGnuw%3D%3D&md5=821a60c76e919e1313af80baaa2b0f5cCAS |

Maloney, C. A., Hay, S. M., Young, L. E., Sinclair, K. D., and Rees, W. D. (2011). A methyldeficient diet fed to rat dams during the peri-conception period programs glucose homeostasis in adult male but not female offspring. J. Nutr. 141, 95–100.
A methyldeficient diet fed to rat dams during the peri-conception period programs glucose homeostasis in adult male but not female offspring.Crossref | GoogleScholarGoogle Scholar |

Mandò, C., Calabrese, S., Mazzocco, M. I., Novielli, C., Anelli, G. M., Antonazzo, P., and Cetin, I. (2016). Sex specific adaptations in placental biometry of overweight and obese women. Placenta 38, 1–7.
Sex specific adaptations in placental biometry of overweight and obese women.Crossref | GoogleScholarGoogle Scholar |

Manikkam, M., Crespi, E. J., Doop, D. D., Herkimer, C., Lee, J. S., Yu, S., Brown, M. B., Foster, D. L., and Padmanabhan, V. (2004). Fetal programming: prenatal testosterone excess leads to fetal growth retardation and postnatal catch-up growth in sheep. Endocrinology 145, 790–798.
Fetal programming: prenatal testosterone excess leads to fetal growth retardation and postnatal catch-up growth in sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXovFSmtQ%3D%3D&md5=4b635e37544ba7d64fb3bd46f909fcfbCAS |

Mansell, T., Novakovic, B., Meyer, B., Rzehak, P., Vuillermin, P., Ponsonby, A. L., Collier, F., Burgner, D., Saffer, R., Ryan, J., BIS Investigator Team (2016). The effects of maternal anxiety during pregnancy on IGF2/H19 methylation in cord blood. Transl. Psychiatry 6, e765.
The effects of maternal anxiety during pregnancy on IGF2/H19 methylation in cord blood.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xkt1CktLc%3D&md5=9c8bcfaf3892d11be672b4870ae26cbbCAS |

Månsson, J., Fellman, V., Stjernqvist, K., The EXPRESS Study Group (2015). Extremely preterm birth affects boys more and socio-economic and neonatal variables pose sex-specific risks. Acta Paediatr. 104, 514–521.
Extremely preterm birth affects boys more and socio-economic and neonatal variables pose sex-specific risks.Crossref | GoogleScholarGoogle Scholar |

Mao, J., Zhang, X., Sieli, P. T., Falduto, M. T., Torres, K. E., and Rosenfeld, C. S. (2010). Contrasting effects of different maternal diets on sexually dimorphic gene expression in the murine placenta. Proc. Natl Acad. Sci. USA 107, 5557–5562.
Contrasting effects of different maternal diets on sexually dimorphic gene expression in the murine placenta.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXktFKhsLc%3D&md5=9aab69f6e568cbeaa229870a44f8a483CAS |

Matheson, H., Veerbeek, J. H., Charnock-Jones, D. S., Burton, G. J., and Yung, H. W. (2016). Morphological and molecular changes in the murine placenta exposed to normobaric hypoxia throughout pregnancy. J. Physiol. 594, 1371–1388.
Morphological and molecular changes in the murine placenta exposed to normobaric hypoxia throughout pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsV2jtLfK&md5=63c4227b91f8ced0ee62ebb9aea402fdCAS |

Melamed, N., Yogev, Y., and Glezerman, M. (2010). Fetal gender and pregnancy outcome. J. Matern. Fetal Neonatal Med. 23, 338–344.
Fetal gender and pregnancy outcome.Crossref | GoogleScholarGoogle Scholar |

Micke, G. C., Sullivan, T. M., Gatford, K. L., Owens, J. A., and Perry, V. E. (2010). Nutrient intake in the bovine during early and mid-gestation causes sex-specific changes in progeny plasma IGF-I, liveweight, height and carcass traits. Anim. Reprod. Sci. 121, 208–217.
Nutrient intake in the bovine during early and mid-gestation causes sex-specific changes in progeny plasma IGF-I, liveweight, height and carcass traits.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtV2hsrrE&md5=287a6ca6c483242f79fd844dd68220ebCAS |

Mingrone, G., Manco, M., Mora, M. E., Guidone, C., Iaconelli, A., Gniuli, D., Leccesi, L., Chiellini, C., and Ghirlanda, G. (2008). Influence of maternal obesity on insulin sensitivity and secretion in offspring. Diabetes Care 31, 1872–1876.
Influence of maternal obesity on insulin sensitivity and secretion in offspring.Crossref | GoogleScholarGoogle Scholar |

Mueller, B. R., and Bale, T. L. (2007). Early prenatal stress impact on coping strategies and learning performance is sex dependent. Physiol. Behav. 91, 55–65.
Early prenatal stress impact on coping strategies and learning performance is sex dependent.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkslOjtrg%3D&md5=6a3326fe4f6136426d967cf93c12bacfCAS |

Mueller, B. R., and Bale, T. L. (2008). Sex-specific programming of offspring emotionality after stress early in pregnancy. J. Neurosci. 28, 9055–9065.
Sex-specific programming of offspring emotionality after stress early in pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFSmsr%2FM&md5=dbd7171bc42fca6b7cd94785aadef4cdCAS |

Muralimanoharan, S., Maloyan, A., and Myatt, L. (2013). Evidence of sexual dimorphism in the placental function with severe preeclampsia. Placenta 34, 1183–1189.
Evidence of sexual dimorphism in the placental function with severe preeclampsia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1OrtLjN&md5=29b54670caec12cac9907096550f2893CAS |

Murji, A., Proctor, L. K., Paterson, A. D., Chitayat, D., Weksberg, R., and Kingdom, J. (2012). Male sex bias in placental dysfunction. Am. J. Med. Genet. A. 158A, 779–783.
Male sex bias in placental dysfunction.Crossref | GoogleScholarGoogle Scholar |

Murray, E., Matijasevich, A., Santos, I. S., Barros, A. J., Anselmi, L., Barros, F. C., and Stein, A. (2015). Sex differences in the association between foetal growth and child attention at age four: specific vulnerability of girls. J. Child Psychol. Psychiatry 56, 1380–1388.
Sex differences in the association between foetal growth and child attention at age four: specific vulnerability of girls.Crossref | GoogleScholarGoogle Scholar |

Myatt, L., Muralimanoharan, S., and Maloyan, A. (2014). Effect of preeclampsia on placental function: influence of sexual dimorphism, microRNA’s and mitochondria. Adv. Exp. Med. Biol. 814, 133–146.
Effect of preeclampsia on placental function: influence of sexual dimorphism, microRNA’s and mitochondria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXmvVWjtbY%3D&md5=c6ead082e484e6650e17ccbd8c270a75CAS |

Naeye, R. L., and Demers, L. M. (1987). Differing effects of fetal sex on pregnancy and its outcome. Am. J. Med. Genet. Suppl. 28, 67–74.
Differing effects of fetal sex on pregnancy and its outcome.Crossref | GoogleScholarGoogle Scholar |

Nielsen, C. H., Larsen, A., and Nielsen, A. L. (2016). DNA methylation alterations in response to prenatal exposure of maternal cigarette smoking: a persistent epigenetic impact on health from maternal lifestyle? Arch. Toxicol. 90, 231–245.
DNA methylation alterations in response to prenatal exposure of maternal cigarette smoking: a persistent epigenetic impact on health from maternal lifestyle?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitVGls7%2FN&md5=339126517834a15e567a550ff8f03cb1CAS |

Nivoit, P., Morens, C., Van Assche, F. A., Jansen, E., Poston, L., Remacle, C., and Reusens, B. (2009). Established diet-induced obesity in female rats leads to offspring hyperphagia, adiposity and insulin resistance. Diabetologia 52, 1133–1142.
Established diet-induced obesity in female rats leads to offspring hyperphagia, adiposity and insulin resistance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlt1Gqtbk%3D&md5=0da9e15407cc7204bd23a345098c1e60CAS |

Ojeda, N. B., Grigore, D., Yanes, L. L., Iliescu, R., Robertson, E. B., Zhang, H., and Alexander, B. T. (2007). Testosterone contributes to marked elevations in mean arterial pressure in adult male intrauterine growth restricted offspring. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, R758–R763.
Testosterone contributes to marked elevations in mean arterial pressure in adult male intrauterine growth restricted offspring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjt1Gnurs%3D&md5=85686937816b7294f715bba23de5b2c4CAS |

Ojeda, N. B., Hennington, B. S., Williamson, D. T., Hill, M. L., Betson, N. E., Sartori-Valinotti, J. C., Reckelhoff, J. F., Royals, T. P., and Alexander, B. T. (2012). Oxidative stress contributes to sex differences in blood pressure in adult growth-restricted offspring. Hypertension 60, 114–122.
Oxidative stress contributes to sex differences in blood pressure in adult growth-restricted offspring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVerurzM&md5=74617d9b02b5ee540f3e665e8a0dcab8CAS |

Olmos-Ortiz, A., García-Quiroz, J., López-Marure, R., González-Curiel, I., Rivas-Santiago, B., Olivares, A., Avila, E., Barrera, D., Halhali, A., Caldiño, F., Larrea, F., and Díaz, L. (2016). Evidence of sexual dimorphism in placental vitamin D metabolism: testosterone inhibits calcitriol-dependent cathelicidin expression. J. Steroid Biochem. Mol. Biol. 163, 173–182.
Evidence of sexual dimorphism in placental vitamin D metabolism: testosterone inhibits calcitriol-dependent cathelicidin expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xpt1emu7k%3D&md5=11d592c5fdc383e9ac5f96301a07e8a3CAS |

Osei-Kumah, A., Smith, R., Jurisica, I., Caniggia, I., and Clifton, V. L. (2011). Sex-specific differences in placental global gene expression in pregnancies complicated by asthma. Placenta 32, 570–578.
Sex-specific differences in placental global gene expression in pregnancies complicated by asthma.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptlyhtLc%3D&md5=796c119e072a6f5fe13bae8650bc1356CAS |

Oyhenart, E. E., Cesani, M. F., Castro, L. E., Quintero, F. A., Fucini, M. C., Luna, M. E., and Guimarey, L. M. (2011). Bone growth and sexual dimorphism at birth in intrauterine-growth-retarded rats. Anat. Sci. Int. 86, 119–127.
Bone growth and sexual dimorphism at birth in intrauterine-growth-retarded rats.Crossref | GoogleScholarGoogle Scholar |

Padmanabhan, V., and Veiga-Lopez, A. (2014). Reproduction Symposium: developmental programming of reproductive and metabolic health. J. Anim. Sci. 92, 3199–3210.
Reproduction Symposium: developmental programming of reproductive and metabolic health.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlKnurzI&md5=d627a6d011473831486ca23c1f167683CAS |

Pasternak, Y., Aviram, A., Poraz, I., and Hod, M. (2013). Maternal nutrition and offspring’s adulthood NCD’s: a review. J. Matern. Fetal Neonatal Med. 26, 439–444.
Maternal nutrition and offspring’s adulthood NCD’s: a review.Crossref | GoogleScholarGoogle Scholar |

Pedersen, J. F. (1980). Ultrasound evidence of sexual difference in fetal size in first trimester. BMJ 281, 1253.
Ultrasound evidence of sexual difference in fetal size in first trimester.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL3M%2FktFGisA%3D%3D&md5=69ec666d6742d849b526c33c039eacf6CAS |

Peelen, M. J., Kazemier, B. M., Ravelli, A. C., de Groot, C. J., van der Post, J. A., Mol, B. W., Hajenius, P. J., and Kok, M. (2016). Impact of fetal gender on the risk of preterm birth, a national cohort study. Acta Obstet. Gynecol. Scand. 95, 1034–1041.
Impact of fetal gender on the risk of preterm birth, a national cohort study.Crossref | GoogleScholarGoogle Scholar |

Poore, K. R., Hollis, L. J., Murray, R. J., Warlow, A., Brewin, A., Fulford, L., Cleal, J. K., Lillycrop, K. A., Burdge, G. C., Hanson, M. A., and Green, L. R. (2014). Differential pathways to adult metabolic dysfunction following poor nutrition at two critical developmental periods in sheep. PLoS One 9, e90994.
Differential pathways to adult metabolic dysfunction following poor nutrition at two critical developmental periods in sheep.Crossref | GoogleScholarGoogle Scholar |

Pozharny, Y., Lambertini, L., Clunie, G., Ferrara, L., and Lee, M. J. (2010). Epigenetics in women’s health care. Mt. Sinai J. Med. 77, 225–235.
Epigenetics in women’s health care.Crossref | GoogleScholarGoogle Scholar |

Pujol Lopez, Y., Kenis, G., Stettinger, W., Neumeier, K., de Jonge, S., Steinbusch, H. W., Zill, P., van den Hove, D. L., and Myint, A. M. (2016). Effects of prenatal Poly I:C exposure on global histone deacetylase (HDAC) and DNA methyltransferase (DNMT) activity in the mouse brain. Mol. Biol. Rep. 43, 711–717.
Effects of prenatal Poly I:C exposure on global histone deacetylase (HDAC) and DNA methyltransferase (DNMT) activity in the mouse brain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XosVSqt7c%3D&md5=514708b4ee2201df4c987f61bf23f43aCAS |

Qian, Y. Y., Huang, X. L., Liang, H., Zhang, Z. F., Xu, J. H., Chen, J. P., Yuan, W., He, L., Wang, L., Miao, M. H., Du, J., and Li, D. K. (2016). Effects of maternal folic acid supplementation on gene methylation and being small for gestational age. J. Hum. Nutr. Diet. 29, 643–651.
Effects of maternal folic acid supplementation on gene methylation and being small for gestational age.Crossref | GoogleScholarGoogle Scholar |

Regnault, N., Gillman, M. W., Rifas-Shiman, S. L., Eggleston, E., and Oken, E. (2013). Sex-specific associations of gestational glucose tolerance with childhood body composition. Diabetes Care 36, 3045–3053.
Sex-specific associations of gestational glucose tolerance with childhood body composition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1ylt7nP&md5=ce458f753441ab0e1b96690a0f591ce8CAS |

Reverte, V., Tapia, A., Moreno, J. M., Rodriguez, L., Salazar, F., Llinas, M. T., and Salazar, F. J. (2011). Renal effects of prolonged high protein intake and COX2 inhibition on hypertensive rats with altered renal development. Am. J. Physiol. Renal Physiol. 301, F327–F333.
Renal effects of prolonged high protein intake and COX2 inhibition on hypertensive rats with altered renal development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFSrtbjO&md5=a18bc75630d75ec552c0bdaa52eaaecfCAS |

Reynolds, S. A., Roberts, J. M., Bodnar, L. M., Haggerty, C. L., Youk, A. O., and Catov, J. M. (2012). Newborns of preeclamptic women show evidence of sex-specific disparity in fetal growth. Gend. Med. 9, 424–435.
Newborns of preeclamptic women show evidence of sex-specific disparity in fetal growth.Crossref | GoogleScholarGoogle Scholar |

Ricart, W., López, J., Mozas, J., Pericot, A., Sancho, M. A., González, N., Balsells, M., Luna, R., Cortázar, A., Navarro, P., Ramírez, O., Flández, B., Pallardo, L. F., Hernández, A., Ampudia, J., Fernández-Real, J. M., Hernández-Aguado, I., Corcoy, R., Spanish Group for the study of the impact of Carpenter and Coustan GDM thresholds (2009). Maternal glucose tolerance status influences the risk of macrosomia in male but not in female fetuses. J. Epidemiol. Community Health 63, 64–68.
Maternal glucose tolerance status influences the risk of macrosomia in male but not in female fetuses.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1M%2Fhs1Wjtg%3D%3D&md5=b7742f29f3e5c82af5220dd626f895cbCAS |

Rojas-García, P. P., Recabarren, M. P., Sir-Petermann, T., Rey, R., Palma, S., Carrasco, A., Perez-Marin, C. C., Padmanabhan, V., and Recabarren, S. E. (2013). Altered testicular development as a consequence of increase number of sertoli cell in male lambs exposed prenatally to excess testosterone. Endocrine 43, 705–713.
Altered testicular development as a consequence of increase number of sertoli cell in male lambs exposed prenatally to excess testosterone.Crossref | GoogleScholarGoogle Scholar |

Romeo, D. M., Di Stefano, A., Conversano, M., Ricci, D., Mazzone, D., Romeo, M. G., and Mercuri, E. (2010). Neurodevelopmental outcome at 12 and 18 months in late preterm infants. Eur. J. Paediatr. Neurol. 14, 503–507.
Neurodevelopmental outcome at 12 and 18 months in late preterm infants.Crossref | GoogleScholarGoogle Scholar |

Roseboom, T., de Rooij, S., and Painter, R. (2006). The Dutch famine and its long-term consequences for adult health. Early Hum. Dev. 82, 485–491.
The Dutch famine and its long-term consequences for adult health.Crossref | GoogleScholarGoogle Scholar |

Rosenfeld, C. S. (2015). Sex-specific placental responses in fetal development. Endocrinology 156, 3422–3434.
Sex-specific placental responses in fetal development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtFajs7g%3D&md5=42d93b33eb8061a3d8fea4c9ae577cceCAS |

Roy, S., Dhobale, M., Dangat, K., Mehendale, S., Wagh, G., Lalwani, S., and Joshi, S. (2014). Differential levels of long chain polyunsaturated fatty acids in women with preeclampsia delivering male and female babies. Prostaglandins Leukot. Essent. Fatty Acids 91, 227–232.
Differential levels of long chain polyunsaturated fatty acids in women with preeclampsia delivering male and female babies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsVKnurvM&md5=6f56f88848382e3a7445ffabd8c31dcaCAS |

Roy, S., Dhobale, M., Dangat, K., Mehendale, S., Lalwani, S., and Joshi, S. (2015). Differential oxidative stress levels in mothers with preeclampsia delivering male and female babies. J. Matern. Fetal Neonatal Med. 28, 1973–1980.

Saigal, S., and Doyle, L. W. (2008). An overview of mortality and sequelae of preterm birth from infancy to adulthood. Lancet 371, 261–269.
An overview of mortality and sequelae of preterm birth from infancy to adulthood.Crossref | GoogleScholarGoogle Scholar |

Sathishkumar, K., Balakrishnan, M., Chinnathambi, V., Chauhan, M., Hankins, G. D., and Yallampalli, C. (2012). Fetal sex-related dysregulation in testosterone production and their receptor expression in the human placenta with preeclampsia. J. Perinatol. 32, 328–335.
Fetal sex-related dysregulation in testosterone production and their receptor expression in the human placenta with preeclampsia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmtlCqtbk%3D&md5=2b35a5bab80fc8e4428b7b8d337d8b9bCAS |

Schalekamp-Timmermans, S., Cornette, J., Hofman, A., Helbing, W. A., Jaddoe, V. W., Steegers, E. A., and Verburg, B. O. (2016a). In utero origin of sex-related differences in future cardiovascular disease. Biol. Sex Differ. 7, 55.
In utero origin of sex-related differences in future cardiovascular disease.Crossref | GoogleScholarGoogle Scholar |

Schalekamp-Timmermans, S., Arends, L. R., Alsaker, E., Chappell, L., Hansson, S., Harsem, N. K., Jälmby, M., Jeyabalan, A., Laivuori, H., Lawlor, D. A., Macdonald-Wallis, C., Magnus, P., Myers, J., Olsen, J., Poston, L., Redman, C. W., Staff, A. C., Villa, P., Roberts, J. M., and Steegers, E. A. (2016b). Fetal sex-specific differences in gestational age at delivery in pre-eclampsia: a meta-analysis. Int. J. Epidemiol , .
Fetal sex-specific differences in gestational age at delivery in pre-eclampsia: a meta-analysis.Crossref | GoogleScholarGoogle Scholar |

Sedlmeier, E. M., Brunner, S., Much, D., Pagel, P., Ulbrich, S. E., Meyer, H. H., Amann-Gassner, U., Hauner, H., and Bader, B. L. (2014). Human placental transcriptome shows sexually dimorphic gene expression and responsiveness to maternaldietary n-3 long-chain polyunsaturated fatty acid intervention during pregnancy. BMC Genomics 15, 941.
Human placental transcriptome shows sexually dimorphic gene expression and responsiveness to maternaldietary n-3 long-chain polyunsaturated fatty acid intervention during pregnancy.Crossref | GoogleScholarGoogle Scholar |

Smith, A. L., Alexander, M., Rosenkrantz, T. S., Sadek, M. L., and Fitch, R. H. (2014). Sex differences in behavioral outcome following neonatal hypoxia ischemia: insights from a clinical meta-analysis and a rodent model of induced hypoxic ischemic brain injury. Exp. Neurol. 254, 54–67.
Sex differences in behavioral outcome following neonatal hypoxia ischemia: insights from a clinical meta-analysis and a rodent model of induced hypoxic ischemic brain injury.Crossref | GoogleScholarGoogle Scholar |

Sood, R., Zehnder, J. L., Druzin, M. L., and Brown, P. O. (2006). Gene expression patterns in human placenta. Proc. Natl Acad. Sci. USA 103, 5478–5483.
Gene expression patterns in human placenta.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjslejsrk%3D&md5=10fa9263cd363ab5bd7c646c8d0579a4CAS |

Stark, M. J., Dierkx, L., Clifton, V. L., and Wright, I. M. (2006). Alterations in the maternal peripheral microvascular response in pregnancies complicated by preeclampsia and the impact of fetal sex. J. Soc. Gynecol. Investig. 13, 573–578.
Alterations in the maternal peripheral microvascular response in pregnancies complicated by preeclampsia and the impact of fetal sex.Crossref | GoogleScholarGoogle Scholar |

Stark, M. J., Clifton, V. L., and Wright, I. M. (2008). Sex-specific differences in peripheral microvascular blood flow in preterm infants. Pediatr. Res. 63, 415–419.
Sex-specific differences in peripheral microvascular blood flow in preterm infants.Crossref | GoogleScholarGoogle Scholar |

Stark, M. J., Wright, I. M., and Clifton, V. L. (2009). Sex-specific alterations in placental 11beta-hydroxysteroid dehydrogenase 2 activity and early postnatal clinical course following antenatal betamethasone. Am. J. Physiol. Regul. Integr. Comp. Physiol. 297, R510–R514.
Sex-specific alterations in placental 11beta-hydroxysteroid dehydrogenase 2 activity and early postnatal clinical course following antenatal betamethasone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVaht7zK&md5=d4d870a5153da8f1701435fee03ea9f0CAS |

Syddall, H. E., Simmonds, S. J., Martin, H. J., Watson, C., Dennison, E. M., Cooper, C., Sayer, A. A., Hertfordshire Cohort Study Group (2010). Cohort profile: The Hertfordshire Ageing Study (HAS). Int. J. Epidemiol. 39, 36–43.
Cohort profile: The Hertfordshire Ageing Study (HAS).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3c7htlehtw%3D%3D&md5=c7a35c92dd00bd39f01232dac4e6aa0dCAS |

Sykes, S. D., Pringle, K. G., Zhou, A., Dekker, G. A., Roberts, C. T., Lumbers, E. R., SCOPE consortium (2014). Fetal sex and the circulating renin–angiotensin system during early gestation in women who later develop preeclampsia or gestational hypertension. J. Hum. Hypertens. 28, 133–139.
Fetal sex and the circulating renin–angiotensin system during early gestation in women who later develop preeclampsia or gestational hypertension.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmtlSntQ%3D%3D&md5=ccf8846d26b16a5d7463c0a39e4a42c0CAS |

Symonds, M. E., Sebert, S. P., and Budge, H. (2009). The impact of diet during early life and its contribution to later disease: critical checkpoints in development and their long-term consequences for metabolic health. Proc. Nutr. Soc. 68, 416–421.
The impact of diet during early life and its contribution to later disease: critical checkpoints in development and their long-term consequences for metabolic health.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFems7nE&md5=b21acbb08d0e26e2f01e9adbe86aeb62CAS |

Tang, L., Carey, L. C., Bi, J., Valego, N., Sun, X., Deibel, P., Perrott, J., Figueroa, J. P., Chappell, M. C., and Rose, J. C. (2009). Gender differences in the effects of antenatal betamethasone exposure on renal function in adult sheep. Am. J. Physiol. Regul. Integr. Comp. Physiol. 296, R309–R317.
Gender differences in the effects of antenatal betamethasone exposure on renal function in adult sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXitVejt7w%3D&md5=3b4a78bef84894d9ade7d58ceee3a234CAS |

Tarín, J. J., García-Pérez, M. A., Hermenegildo, C., and Cano, A. (2014). Changes in sex ratio from fertilization to birth in assisted-reproductive-treatment cycles. Reprod. Biol. Endocrinol. 12, 56.
Changes in sex ratio from fertilization to birth in assisted-reproductive-treatment cycles.Crossref | GoogleScholarGoogle Scholar |

Tarrade, A., Panchenko, P., Junien, C., and Gabory, A. (2015). Placental contribution to nutritional programming of health and diseases: epigenetics and sexual dimorphism. J. Exp. Biol. 218, 50–58.
Placental contribution to nutritional programming of health and diseases: epigenetics and sexual dimorphism.Crossref | GoogleScholarGoogle Scholar |

Teh, J. K., Tey, N. P., and Ng, S. T. (2014). Ethnic and gender differentials in non-communicable diseases and self-rated health in Malaysia. PLoS One 9, e91328.
Ethnic and gender differentials in non-communicable diseases and self-rated health in Malaysia.Crossref | GoogleScholarGoogle Scholar |

Theys, N., Bouckenooghe, T., Ahn, M. T., Remacle, C., and Reusens, B. (2009). Maternal low-protein diet alters pancreatic islet mitochondrial function in a sex-specific manner in the adult rat. Am. J. Physiol. Regul. Integr. Comp. Physiol. 297, R1516–R1525.
Maternal low-protein diet alters pancreatic islet mitochondrial function in a sex-specific manner in the adult rat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsValtr%2FN&md5=631552900743c553e6a41dc12d00fe77CAS |

van Abeelen, A. F., de Rooij, S. R., Osmond, C., Painter, R. C., Veenendaal, M. V., Bossuyt, P. M., Elias, S. G., Grobbee, D. E., van der Schouw, Y. T., Barker, D. J., and Roseboom, T. J. (2011). The sex-specific effects of famine on the association between placental size and later hypertension. Placenta 32, 694–698.
The sex-specific effects of famine on the association between placental size and later hypertension.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3MjpsF2ltQ%3D%3D&md5=7cb7d21dc120a515e680eaad0f760f29CAS |

van der Linde, S., Romano, T., Wadley, G., Jeffries, A. J., Wlodek, M. E., and Hryciw, D. H. (2014). Growth restriction in the rat alters expression of cardiac JAK/STAT genes in a sex-specific manner. J. Dev. Orig. Health Dis. 5, 314–321.
Growth restriction in the rat alters expression of cardiac JAK/STAT genes in a sex-specific manner.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVCjsrnL&md5=20c8b234703cf653ef4d46446d5b0685CAS |

Van Lieshout, R. J., and Boylan, K. (2010). Increased depressive symptoms in female but not male adolescents born at low birth weight in the offspring of a national cohort. Can. J. Psychiatry 55, 422–430.
Increased depressive symptoms in female but not male adolescents born at low birth weight in the offspring of a national cohort.Crossref | GoogleScholarGoogle Scholar |

Vatten, L. J., and Skjaerven, R. (2004). Offspring sex and pregnancy outcome by length of gestation. Early Hum. Dev. 76, 47–54.
Offspring sex and pregnancy outcome by length of gestation.Crossref | GoogleScholarGoogle Scholar |

Voigt, M., Hermanussen, M., Wittwer-Backofen, U., Fusch, C., and Hesse, V. (2006). Sex-specific differences in birth weight due to maternal smoking during pregnancy. Eur. J. Pediatr. 165, 757–761.
Sex-specific differences in birth weight due to maternal smoking during pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28rmt1Skug%3D%3D&md5=1110108f5f4f989a67c1f4dd641beac1CAS |

Wainstock, T., Shoham-Vardi, I., Glasser, S., Anteby, E., and Lerner-Geva, L. (2015). Fetal sex modifies effects of prenatal stress exposure and adverse birth outcomes. Stress 18, 49–56.
Fetal sex modifies effects of prenatal stress exposure and adverse birth outcomes.Crossref | GoogleScholarGoogle Scholar |

Walker, M. G., Fitzgerald, B., Keating, S., Ray, J. G., Windrim, R., and Kingdom, J. C. (2012). Sex-specific basis of severe placental dysfunction leading to extreme preterm delivery. Placenta 33, 568–571.
Sex-specific basis of severe placental dysfunction leading to extreme preterm delivery.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC38rmtVOntQ%3D%3D&md5=0876c5dea59a55fee2e1b313c15124a8CAS |

Wallace, J. M., Bhattacharya, S., and Horgan, G. W. (2013). Gestational age, gender and parity specific centile charts for placental weight for singleton deliveries in Aberdeen, UK. Placenta 34, 269–274.
Gestational age, gender and parity specific centile charts for placental weight for singleton deliveries in Aberdeen, UK.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3szgs1yhtQ%3D%3D&md5=373bac546ec93a0b6b738da46b0d81fdCAS |

Ward, A. M., Moore, V. M., Steptoe, A., Cockington, R. A., Robinson, J. S., and Phillips, D. I. (2004). Size at birth and cardiovascular responses to psychological stressors: evidence for prenatal programming in women. J. Hypertens. 22, 2295–2301.
Size at birth and cardiovascular responses to psychological stressors: evidence for prenatal programming in women.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFaitbnM&md5=738c03df93c4e6796e170e226584850fCAS |

Weitzel, H. K., Lorenz, U., and Kipper, B. (1987). Clinical aspects of antenatal glucocorticoid treatment for prevention of neonatal respiratory distress syndrome. J. Perinat. Med. 15, 441–446.
Clinical aspects of antenatal glucocorticoid treatment for prevention of neonatal respiratory distress syndrome.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1c7nt1SmsQ%3D%3D&md5=1d4704a5e2ddeec513e49a1b4bf466ddCAS |

Weng, Y. H., Yang, C. Y., and Chiu, Y. W. (2015). Neonatal outcomes in relation to sex differences: a national cohort survey in Taiwan. Biol. Sex Differ. 6, 30.
Neonatal outcomes in relation to sex differences: a national cohort survey in Taiwan.Crossref | GoogleScholarGoogle Scholar |

Winder, N. R., Krishnaveni, G. V., Hill, J. C., Karat, C. L., Fall, C. H., Veena, S. R., and Barker, D. J. (2011). Placental programming of blood pressure in Indian children. Acta Paediatr. 100, 653–660.
Placental programming of blood pressure in Indian children.Crossref | GoogleScholarGoogle Scholar |

Wolf, C. J., Hotchkiss, A., Ostby, J. S., LeBlanc, G. A., and Gray, L. E. (2002). Effects of prenatal testosterone propionate on the sexual development of male and female rats: a dose–response study. Toxicol. Sci. 65, 71–86.
Effects of prenatal testosterone propionate on the sexual development of male and female rats: a dose–response study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkvFSitA%3D%3D&md5=c3484e0a6dd0df353018f58d83e8caa3CAS |

Woods, L. L., Ingelfinger, J. R., and Rasch, R. (2005). Modest maternal protein restriction fails to program adult hypertension in female rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 289, R1131–R1136.
Modest maternal protein restriction fails to program adult hypertension in female rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFensbzL&md5=66358bf80d8ec8bdd42180dd13dd552bCAS |

Wooten, G. F., Currie, L. J., Bovbjerg, V. E., Lee, J. K., and Patrie, J. (2004). Are men at greater risk for Parkinson’s disease than women? J. Neurol. Neurosurg. Psychiatry 75, 637–639.
Are men at greater risk for Parkinson’s disease than women?Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2c7jsVShsQ%3D%3D&md5=264e145c8aa38178df9746384d79a44cCAS |

Zarén, B., Lindmark, G., and Bakketeig, L. (2000). Maternal smoking affects fetal growth more in the male fetus. Paediatr. Perinat. Epidemiol. 14, 118–126.
Maternal smoking affects fetal growth more in the male fetus.Crossref | GoogleScholarGoogle Scholar |

Zhang, C. R., Ho, M. F., Vega, M. C., Burne, T. H., and Chong, S. (2015). Prenatal ethanol exposure alters adult hippocampal VGLUT2 expression with concomitant changes in promoter DNA methylation, H3K4 trimethylation and miR-467b-5p levels. Epigenetics Chromatin 8, 40.
Prenatal ethanol exposure alters adult hippocampal VGLUT2 expression with concomitant changes in promoter DNA methylation, H3K4 trimethylation and miR-467b-5p levels.Crossref | GoogleScholarGoogle Scholar |

Zimmermann, E., Gamborg, M., Sørensen, T. I., and Baker, J. L. (2015). Sex differences in the association between birth weight and adult type 2 diabetes. Diabetes 64, 4220–4225.
Sex differences in the association between birth weight and adult type 2 diabetes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XktVGgtbg%3D&md5=4d53ceee75590f4c09a8ed4fa4f4c6e0CAS |